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Abstract

The problem 2-MsH of finding a Nash equilibrium of a bimatrix game belongs to the
complexity class PPAD. This class comprises computational problems thahane ko
have a solution by means of a path-following argument. For bimatrix gamesrghisiant

is provided by the Lemke—Howson algorithm. It has been shown that thisitalgois
worst-case exponential with the help of dual cyclic polytopes, wherelgjogidam can be
expressed combinatorially via labeled bitstrings defined by the “Gale essmoadition”
that characterize the vertices of these polytopes. We define the comkihatoblem An-
OTHER COMPLETELY LABELEDGALE STRING whose solutions define the Nash equilibria
of games defined by cyclic polytopes, including games where the Lemkesdthoalgo-
rithm takes exponential time. If this problem was PPAD-complete, this would imply th
2-NAsH is PPAD-complete, in a much simpler way than the currently known proofs, in-
cluding the original proof by Chen and Deng [3]. However, we showANOTHER COM-
PLETELY LABELED GALE STRING is solvable in polynomial time by a simple reduction to
PERFECT MATCHING in graphs, making it unlikely to be PPAD-complete. Although this
result is negative, we hope that it stimulates research into combinatorialiedefroblems
that are PPAD-complete and imply this property for 29W.
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1 Labeled Gale strings

Let [k] = {1,...,k} for any positive integek. If Sis a set, we often consider a
functions: [k — Sas a strings(1)s(2) - - - (k) of k elements ofS. Fors: k] — S
and a subseA of k], let s(A) be the sefs(i) | i € [k]}. If S={0,1}, we callsa
string ofbits. A bit strings: [k] — {0, 1} can be considered as an indicator function
of a subset ofk| that we denote by(¥), that is,

Us)=s (1) ={jeK|s(j)=1}.

Definition 1.1 G(d,n) is the set of all strings of n bits so that exactlyl bits in's
are 1 and so thatfulfills the Gale evenness condition, that is, whenever ¢ is a
substring ofs, thenk is even. An element of d&(d, n) is also called &ale string
of dimension d (and lengtm).

For example,G(4,6) consists of the nine strings 111100, 111001, 110110,
110011, 101101, 100111, 011110, 011011, 001111.

For a bit strings, a maximal substring of of consecutive 1’s is called rn.

A Gale string may only have interior runs (bounded on botlesioy a 0) of even
length but may start or end with an odd(-length) rundlis even, then ang in
G(d,n) that starts with an odd run also ends with an odd run, and tiresedd
runs may be “glued together” to form an even run. This shoves the set of
Gale strings of even dimension is invariant under a cyclitt s the strings. We
normally assume thatis even.

Given a seG of bit strings of lengtm and a parametet, alabeling is a func-
tion| : [n] — [d]. Given a labeling, a stringin G is calledcompletely labeled if
I(1(s)) = [d], that is, if every label irjd] appears aKi) for at least one big(i) so
thats(i) = 1. Clearly, ifsis completely labeled, themhas at leasd bits that are 1,
and if exactlyd bits insare 1, then every label ildl] occurs exactly once.

We consider the following decision problem.

COMPLETELY LABELED GALE STRING
Input:  Alabelingl : [n] — [d], whered is even andl < n.
Question Is there a Gale stringin G(d, n) that iscompletely labeled?

For example, for the string of labells= 1123143 (withd = 4) the completely
labeled Gale strings are 0110011 and 0011110.1 Fefi23432 they are 111100,
110110, 100111, and 101101. Hos 121314, there are no completely labeled
Gale strings.

The setG(d, n) of Gale strings has a combinatorial structure that allowsue
of a “parity argument”, which we consider in detail later,sloow the following
known property; it holds for odd as well but we assume throughout tdas even.



Theorem 1.2 For any labeling | : [n] — [d], whered iseven and d < n, the number
of completely labeled Gale stringsin G(d, n) is even.

Theoreml.2implies that if there is one completely labeled Gale strthgre is
also a second one. The following function problem asks toprdgma completely
labeled Gale string if one such string is already given.

ANOTHER COMPLETELY LABELED GALE STRING

Input: A labelingl : [n] — [d], whered is even andl < n, and a completely
labeled Gale stringin G(d,n).

Output: A completely labeled Gale strirgin G(d,n) wheres' # s.

The main result of this paper is that both problemeMPLETELY LABELED
GALE STRING and ANOTHER COMPLETELY LABELED GALE STRING, can be
solved in polynomial time. The proof uses a reduction to tiWing problem,
which was first shown to be solvable in polynomial time by Edaf®[5].
PERFECTMATCHING
Input:  GraphG = (V,E).

Question Is there a sevl C E of pairwise non-adjacent edges so that every vertex
v eV is incident to exactly one edge M?

Theorem 1.3 Theproblems COMPLETELY LABELED GALE STRINGand ALMOST
COMPLETELY LABELED GALE STRING can be solved in polynomial time.

Proof. We give a rather simple reduction tERFECTMATCHING. Given the la-
belingl : [n] — [d], construct the (multi-)grap& with vertex seV = [d] and up to
n (possibly parallel) edges with endpoin(s$),I(i + 1) for i € [n] whenever these
endpoints are distinct (S8 has no loops); here we let+1 =1 (“modulon”) so
thatn,n+ 1 is to be understood as1. Then a completely labeled Gale strisig
G(d, n) splits into a number of runs which are uniquely split igt® pairsi,i+ 1
so that the labell(i) andl (i + 1) are distinct, and all labels, 1 .,n occur among
them. So this defines a perfect matching@r

Conversely, a perfect matchirlg of G defines a Gale string wheres(i) =
s(i+1) = 1if the edge that joing(i) andl (i + 1) is in M ands(i) = 0 otherwise, so
sis completely labeled. This shows how@PLETELY LABELED GALE STRING
reduces to PBRFECTMATCHING. Finding a perfect matching, or deciding ti@at
has none, can be done in polynomial tinsg [

The reduction for AOTHER COMPLETELY LABELED GALE STRING iS an ex-
tension of this. Consider the given completely labeled Gaiegs and the match-
ing M for it. If G has multiple edges between two nodes and one of them\k in
simply replace that edge by a parallel edge to obtain anathepletely labeled
Gale strings'. Hence, we can assume tiathas no edges that have a parallel edge.



Another completely labeled Gale striggexists by Theorem.2 The correspond-
ing matchingM’ does not use at least one edgeMn Hence, at least one of the
d/2 graphsG which have one of the edges bf removed has a perfect matching
M’, which is a perfect matching @&, and which defines a completely labeled Gale
strings different froms. The search foM’ takes again polynomial time. ]

The significance of Theorem3is to be understood in the context of equilib-
rium computation for games, which we discuss next. The red&aiof this paper
contains only known results.

2 Labeled polytopes and equilibria in games

For a matrixA its transpose id" . We treat vectors, vin R as column vectors, so
u'vis their scalar product. B§we denote a vector of all 0’s, of suitable dimension,
by 1 a vector of all 1's. A unit vector, which has a 1 in ith component and 0
otherwise, is denoted bgy. Inequalities likeu > 0 hold for all components. For a
set of pointsSwe denote its convex hull by co&v

A (d-dimensional)simplicial polytope P is the convex hull of a set of at least
d+ 1 pointsvin RY in general position, that is, b+ 1 of them are on a common
hyperplane. Ifv cannot be omitted from these points without chandttenv is
called avertex of P. A facet of P is the convex hull conk of a setF of d vertices
of P that lie on a hyperplanéx € RY | a'x = ag} so thata"u < ag for all other
verticesu of P; if ag > 0 we chooseyy = 1 and calla the normal vector of the
facet. We often identify the facet with its set of vertides

A cyclic polytope P in dimensiond with n vertices is the convex hull of
points p(tj) on themoment curve : t — (t,t%,...,t9)T for j € [n]. Suppose that
t) <ty <--- <ty Then the facets d? are encoded b(d, n), that is,

Fisafaceto <« F =conj{u(t)|ie 1(s)} for somese G(d,n),

as shown by Gale7]. For this cyclic polytopeP, a labelingl : [n] — [d] can be
understood as a labk(j) for each vertexu(tj) for j € [n]. A completely labeled
Gale strings therefore represents a fa¢ebf P that is completely labeled.

The following theorem, due to Balthasar and von Steng@][ establishes a
connection between general labeled polytopes and eqaibbcertaind x n bima-
trix games(U, B).

Theorem 2.1 Consider a labeled d-dimensional simplicial polytope Q with O in
itsinterior, with vertices —ey, ..., —€y,C1,...,Cn, SO that Fp = cony{ —ey, ..., —€4}
is a facet of Q. Let —e have label i for i € [d], and let c; have label |(j) € [d]



for j € [n]. Let (U,B) be the d x n bimatrix game with U = [g)--- ()| and
B=[by - by], whereb; = cj/(1+1"c;j) for j € [n]. Then the completely labeled
facets F of Q, with the exception of Fy, are in one-to-one correspondence to the
Nash equilibria (x,y) of the game (U, B) asfollows: if visthe normal vector of F,
thenx = (v+1)/1"(v+1), and x; = Oif and only if —g € F for i € [d]; any j so
that c; isa vertex of F represents a pure best reply to x. The mixed strategy y is the
uniform distribution on the set of pure best replies to x.

In the preceding theorem, any simplicial polytope can taketle ofQ as long
as it has one completely labeled faégt Then an affine transformation, which
does not change the incidences of the facet®,0€an be used to mal to the
negative unit vectors-ey, ..., —eq as described, witlQ if necessary expanded in
the directionl so thatO is in its interior.

A d x n bimatrix gamegU, B) is aunit vector game if all columns ofU are unit
vectors. For such a ganiwith B = [by---by|, the columng; for j € [n] can be
obtained front; as in Theoren2.1if b; > 0and1'b; < 1. This is always possible
via a positive-affine transformation of the payoffsBnwhich does not change the
game. The unit vectorg;, that constitute the columns bf define the label(j)
of the verticesc;. The corresponding polytope with these vertices is simglli€
the gamgU, B) is nondegeneratd b], which here means that no mixed strategy
of the row player has more thafi € [d] | x; > O}| pure best replies. Any game can
be made nondegenerate by a suitable “lexicographic” geation ofB, which can
be implemented symbolically.

Unit vector games encode arbitrary bimatrix games:nAr n bimatrix game
(A,B) with (w.l.o.g.) positive payoff matriced, B can be symmetrized so that its
Nash equilibria are in one-to-correspondence to the symenequilibria of the
(m+n) x (m+n) symmetric gamé¢C ' ,C) where

0B
C=< )
AT 0

In turn, as shown by McLennan and TourkyO], the symmetric equilibrigx, X)
of any symmetric gaméC',C) are in one-to-one correspondence to the Nash
equilibria (x,y) of the “imitation game”(l,C) wherel is the identity matrix; the
mixed strategy of the second player is simply the uniform distribution oa Het
{i| xi > 0}. Clearly,| is a matrix of unit vectors, s@,C) is a special unit vector
game.

Special games are obtained by using cyclic polytopes in fE@me@.1, suit-
ably affinely transformed with a completely labeled faEgt WhenQ is a cyclic



polytope in dimensiom with d + n vertices, then the string of labdlgl)---1(n)

in Theorem2.1 defines a labeling : [d 4 n] — [d] wherel’(i) =i for i € [d] and
I’(d+ j) =1(j) for j € [n]. In other words, the string of label§l)---1(n) is just
prefixed with the string 12 -d to givel’. Thenl’ has a trivial completely labeled
Gale string 0" which defines the facd%. Then the problem AOTHER COM-
PLETELY LABELED GALE STRING defines exactly the problem of finding a Nash
equilibrium of the unit vector gam@, B). Note again thaB is here not a general
matrix (which would define a general game) but obtained froenlastn of d +n
vertices of a cyclic polytope in dimensiah

3 Lemke—Howson and PPAD

The algorithm due to Lemke and Howsdj,[here called the LH algorithm, finds
one Nash equilibrium of a bimatrix game. It can be transladddbeled simplicial
polytopes as follows. Start with a completely labeled fgdsath ad- above). Se-
lect one label that is allowed to be missing (or “dropped”) and move fregno

the unique adjacent facet that shares all vertices igigexcept the one with label
This is computationally implemented apiaoting step as in the simplex algorithm,
which is a local transformation of the current normal vectonsidering the other
vertices not on the current facet. The newly obtained fegetay, has a new vertex
with a labelj; if j =1, thenF; is completely labeled and the algorithm stops. Other-
wise, take the vertex of F; that had labej so far and move to the unique adjacent
facetF, that has all vertices d¥, exceptv, and continue as before. This defines a
unique “path” of facets that must eventually terminate atrmpgletely labeled facet
different fromFy. Applied to cyclic polytopes, this proves Theordm.

The result of Morris 11] implies that for suitably labeled cyclic polytopes in
dimensiond with 2d vertices, the described path can be exponentially long, for
any initially dropped label. His labeling for d = 6 is given by the string of la-
bels 123456 645321, fat = 8 it is 1234567886745231, which shows the general
pattern. With the help of imitation game&(], this defines exponentially long LH
paths for bimatrix games. Savani and von Sten§8] pbtained this result differ-
ently by considering payoff matrices that for both playems defined via cyclic
polytopes, rather than a matrix of unit vectors for the roaypl as in Theorerf. 1

The problemn-NAsH of computing Nash equilibrium of amplayer game be-
longs to the complexity class PPARJ]. It comprises function problems that are
known to have a solution via a “polynomial parity argumerttwdirection”. For 2-
NASH, this argument is provided by the LH algorithm. FormallyABRconsists of
problems that reduce to the problem®&oF THE LINE, given by two polynomial-
sized Boolean circuite andrrwith k input andk output bits. This paio, rrdefines



an implicit digraph withk-bit strings as vertices and ar@s v) whenevero (u) = v
andrm(v) = u. If o(m(u)) # uthenuis a source and ift(o(v)) # vthenvis a sink

of this digraph. It is assumed thdt 8 a source. The sought output is any sink, or
source other than®0 It exists because the digraph is a collection of directetipa
and cycles, with at least one path which starts‘at 0

Daskalakis, Goldberg and Papadimitriat) fnd Chen and Dend3], respec-
tively, have shown that 3-NsH and 2-NasH are PPAD-complete. As indicated in
Section2, the PPAD-completeness of 2ANH due to B] shows that the following
problem is PPAD-complete: Given a labeled polyt@pas in Theoren2.1with a
completely labeled facd®, find another completely labeled facet. (If the games
in [3] are degenerate theQ is not simplicial; this can be treated by a suitable
extension of the LH algorithm.)

The orientation of the path (the “D” in PPAD) can be proved bguitable
orientation of the facets of the polytope, via the determired theird vertices in
the order of the labels[14].

For the special cyclic polytopes, the LH algorithm can becdbed very simply
in terms of the Gale evenness strings, s&. [The orientation can also be defined
simpler via signs of permutations rather than of deterntsyamhich we omit for
reasons of space.

Another abstraction of the LH algorithm is provided by Eut®@mplexes or
“oiks” introduced by Edmondsg]. A special case are abstract manifolds, defined
by a family ofd-element sets callegboms so that anywall, obtained by removing
one vertex from a room, is the wall of exactly one other roonive® a labeling
(called coloring in §]) of the vertices, any manifold has an even number of com-
pletely labeled rooms, in analogy to Theordn2 If the manifold is orientable,
the orientation argument of Lemke and Grotzing&rdpplies; in particular, the
endpoints of the LH paths are rooms of opposite orientation.

What is important in our context is that the manifold is not edi as an explicit
list of rooms but implicitly with rooms as facets of a simpdicpolytope, given by
its vertices. For the cyclic polytope withvertices in dimension, the rooms are
even more simply specified as the sefs) for s€ G(d,n).

Our Theoreni.3 shows: even though cyclic polytopes may give rise to expo-
nentially long LH paths, the respective computational fgobof finding another
completely labeled facet is solvable in polynomial time. nele, Gale evenness
strings are most likely too simple to define a PPAD-completdiem.
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