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The Nash equilibria of a two-person, non-zero-sum game are the solutions of a certail
linear complementarity problem (LCP). In order to use this for solving a game in extensive
form, the game must first be converted to a strategic description such as the normal forn
The classical normal form, however, is often exponentially large in the size of the game
tree. If the game has perfect recall, a linear-sized strategic description is the sequence forr
For the resulting small LCP, we show that an equilibrium is found efficiently by Lemke’s
algorithm, a generalization of the Lemke—Howson metlodrnal of Economic Literature
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1. INTRODUCTION

In this paper, we consider extensive two-person games with general pa
where the players have perfect recall. Until recently, most methods for comf
equilibria for extensive games involved converting the game to its normal f

* E-mail: koller@cs.stanford.edu.
T E-mail: megiddo@almaden.ibm.com.
¥ E-mail: stengel@inf.ethz.ch.

247

0899-8256/96 $18.0(
Copyright © 1996 by Academic Press, Inc
All rights of reproduction in any form reserved



248 KOLLER, MEGIDDO, AND VON STENGEL

While efficient solution algorithms exist for normal-form games, the convers
itself typically incurs an exponential blowup, since the number of pure stratec
even in the reduced normal form, is often exponential in the size of the g
tree.

The normal form and the associated blowup can be avoided by conside
sequencesf choices instead of pure strategies. Instead of mixed strategy p
abilities, the realization probabilities for playing these sequences can sen
strategic variables of a player. The number of these variables is linear ins
of exponential in the size of the game tree. They were introduced by Koller
Megiddo (1992), who used them for one of the players in the gamesddueence
form of an extensive game, described in the paper by von Stengel (1996) ir
journal issue, is a strategic description where all players are treated symn
cally. The equilibria of a two-person non-zero-sum game are the solution
a smalllinear complementarity problerfl. CP) corresponding to the sequenc
form. (For a summary of these and other results, including some material o
present paper, see Kollet al. 1994.)

The LCP arising from a (normal form) bimatrix game can be solved by
algorithm by Lemke and Howson (1964), which is said to be efficient in practi
for a nice exposition see Shapley (1974). That algorithm finds a solution
certain LCP with arbitrary nonnegative variables. The LCP solutions corresy
to equilibria of the bimatrix game if the variables are normalized so that they |
resent mixed strategy probabilities. Unfortunately, the standard Lemke—Hov
algorithm cannot be applied to the LCP resulting from the sequence form, s
realization probabilities for sequences are defined by more complicated €
tions. This problem is solved in the present paper. Instead of the Lemke—Ho\
method, we use the related but more general algorithm by Lemke (1965). S
Lemke's algorithm is also said to be efficient in practice, this provides an ef
tive algorithm for finding equilibria of general two-person games in extens
form.

The present paper is self-contained and partly expository. In Section 2
briefly define the sequence form for an extensive two-person game, and d
the corresponding LCP. In Section 3, we give an exposition of Lemke’s al
rithm since it is not widely known to game theorists, and since the treatmer
degenerate problems has to be supplemented. We have drawn most of the
nical material on linear complementarity from the book by Catlal. (1992).
In Section 4, we prove that Lemke’s algorithm terminates with a solution
our application. In the concluding Section 5, we compare our result with ea
work.
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2. THE SEQUENCE FORM FOR EXTENSIVE TWO-PERSON GAMES

We use the following conventions for extensive games; for details see
Stengel (1996). An extensive game is given by a tree, payoffs at the le
chance moves, and information sets partitioning the set of decision node:
choiceof a player are denoted by labels on tree edges. We assume for sim
that any labels corresponding to different choices are distinct. For a part
player, any node of the tree definesemuencef choices given by the respecti
labels (for his moves only) on the path from the root to the node. We as:
that both players haveerfect recall By definition, this means that all nodes
an information seti of a player define for him the same sequeagef choices.
Under that assumption, each choaca u is the last choice of a unique sequer
oyC. This defines all possible sequences except for the empty seqgdence

Thesequence formf an extensive game is a strategic description simila
the normal form, but where sequences replace pure strategies. The proba
for playing these sequences and the resulting payoffs are specified as foll

For player 1, a nonnegative vectarcalled arealization plan represents the
realization probabilities for the sequences of player 1 when he plays a r
strategy. These can be characterized by the equati@hs= 1 and

—X(ou) + Y X(0u€) =0
ceCy
forall information setsi of player 1, where (%) andx (o, c) for all sequences,c
are the components of, andC, is the set of choices at (A realization plan
X satisfying these equations corresponds tdogavior strategyhat makes the
choicec at u with probability x(o,€)/x(0y) if the denominator of this term i
positive, and arbitrarily otherwise.) A realization plgrior player 2 is charac:
terized analogously. We abbreviate these equations for the nonnegative \
x andy using theconstraint matrices EandF and right-hand sidesand f by

Ex=e and Fy=f. (2.1)

The first row of these matrix equations represents the realization probabilit
for the empty sequence, soand f are equal to the vectail, 0, ...,0)" of
appropriate dimension. The other rows correspond to the information sets
respective player. A typical constraint matrix is

1
-1 11
E = 11 2.2)
-1 111

for a player 1 with three information sets which have two, two, and three chc
respectively, and where the first choice at the first information set precede:
the second and third information set.
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The payoffsto player 1 and 2 are represented by matAeaslB, respectively.
Each row corresponds to a sequence of player 1, each column to a seque
player 2. Each leaf of the game tree defines a pair of sequences. Pairs of seqt
not defined by a leaf have matrix entry zero. For a pair of sequences define
a leaf, the player’s payoff is his payoff at the leaf if there are no chance mo
If there are chance moves, a pair of sequences may correspond to more
one leaf. The payoff entry is then the sum, over all leaves that define the g
pair of sequences, of the payoff at the respective leaf times the probability
chance moves allow reaching it. The resulting payoff matricardB are sparse
and have a linear number of nonzero entries. For realization plansly, the
expected payoffs to player 1 and 2 are tlxéy andx" By, respectively.

Using these expected payoffs and the linear constraints (2.1), we can ch
terize arequilibriumof the game as a solution to a certain LCP. An equilibriu
is a pairx, y of mutual best responses. In particular, if the realization glén
fixed, thenx is a best response 1oif and only if it is an optimal solution of the
linear program

maximize x' (Ay)
X
subjecttox"ET = e, (2.3
X > 0.
The dual LP to (2.3) has an unconstrained vegtof variables and reads

minimize €' p
P 2.4
subjecttoE"p > Ay.

Feasible solutionx, p of these two LPs are optimal if and only if the twi
objective function values are equal, thatx$(Ay) = e p. By the constraints
in (2.3) this is equivalent ta" (Ay) = x"ET p or

x"(~Ay+E"p) =0. (2.5

This condition is known as “complementary slackness” in linear programmi
It states that two nonnegative vectors are orthogonal, which means that the
complementary in the sense that they cannot both have a positive compon
the same position.

Inthe same wayy is a best response xdf and only if it satisfies the constraints

Fy=f, y>0 (2.6)
and there exists a vectqgrsuch that

F'qg>BTx 2.7
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and
y'(—BTx+ FTg)=0. (2.8

The expected payoff to player 2y (BT x).

Thus, any equilibriunx, y is part of a solutiorx, y, p, g to the constraints
in (2.3)—(2.8). These constraints define an LCP. An LCP in standard for
specified by a paip, M with a vectob in R" and am x n matrix M (see Cottle
etal, 1992, p. 1). The problem is to firde R" so that

z>0
b+ Mz > 0 (2.9)
Z'(b+ Mz) = 0.

In order to translate our LCP into this standard form, we introduce nonneg
vectorsp’, p” andq’, q” of the same dimension as the unconstrained vegic
andq, respectively, and represent the latterfppy= p' — p” andq =q' — q”.
The nonnegative vectar of LCP variables is thea = (x,y, p/, p”.q,9")".
Furthermore, we let

-A ET -—ET 0

—BT FT—FT 0
M = _E and b= _g.
—F f

F —f

(2.10
Then,b + Mz > 0 is obviously equivalent to the constraing’ p > Ay as in
(2.4), (2.7), and (2.1). Finally, the complementarity conditbtb+Mz) = 0in
(2.9)is equivalentto (2.5) and (2.8) since the remaining conditoh@— Ex) =
0 etc. are implied by (2.1). To this LCP, we will apply Lemke’s algorithm.

3. LEMKE’'S ALGORITHM

Lemke (1965) described a complementary pivoting algorithm for findir
solution to an LCP of the general form (2.9). We describe it briefly in
section; for more detailed expositions see Murty (1988, pp. 63—-84) and (
etal (1992, pp. 270-280 and 336-342).

For Lemke’s method, the system (2.9) is rewritten and generalized as fol
Let | be then x nidentity matrix andl be ann-vector with positive component
(forexampled = (1, ...,1)"). Using an auxiliary variablg,, the termb + Mz
in (2.9) is replaced by + dz + Mz, which is denoted by the-vectorw. The
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problem generalizing (2.9) is that of finding > 0, zy > 0, andz > 0 so that
lw—dzp—Mz=b 3.D

andz"w = 0 hold. A solutionw, zo, zto this problem defines a solution to (2.9
if and only if zy = 0.

In (3.1), the vectob is represented as a nonnegative linear combinat
of certain columns of the matrixl [ —d, —M]. Like the simplex algorithm
for linear programming, Lemke’s algorithm traverdessic solutions of this
system. These are nonnegative solutions where orlipearly independent
columns, calledasic columnsof the matrix are linearly combined. The corre
sponding coefficients ame basic variableand represent thigasis a subset of
{w, ..., wn, Zo, Z1, . . ., Zn}. Allnonbasic variables have value zero. The syste
(3.1) is callechondegeneraté basic variables are always positive.

Basic solutions are changed by the followjmigoting operation Then basic
columns of |, —d, —M] define a nonsingulan x n submatrixB, so that the
vectorvg of basic variables isg = B~b. The algorithm chooses (see below
some nonbasic variablg asenteringvariable; leth denote the corresponding
matrix column. The algorithm then moves to a new basic solution wihdsea
basic variable. It lets; become positive and preserves the equation (3.1), 1
is, Buvg + hvj = b, or equivalently

vg = B~'b — B7thy;. (3.2)

In the standard case, the entering coluBmth has at least one positive compc
nent. Then there is a maximum choiceypin (3.2) so thabvg stays nonnegative,
while some component of this vector becomes zero. This is madedhimng
variable. It leaves the basis and is replaced by the entering variafilbat op-
eration is called pivotand is easily computed fro®~'b andB~h. It requires
an update of the basis and Bf ..

For 1 <i < n, the variables; andw; are calledcomplementaryLemke’s
algorithm computes withlmost complementabasic solutions, where the basi
contains at most one variable of each complementaryzpair; for 1 <i < n,
and may also contaim. For an almost complementary basic solutiphy =
0. (A nonbasic solutionw, zy, z to (3.1) withz"w = 0 is also called almost
complementary.) I, is nonbasic, then the LCP is solved zifis one of then
basic variables, then there is a complementary paip; where both variables
are nonbasic, and either can be made an entering variable. This leads 1
following algorithm.

For initialization, letz = 0, soz"w = 0. If w = b+ dz andz, is sufficiently
large, therw is nonnegative sinceg > 0, and (3.1) is satisfied. The set of thes
almost complementary solutions is called ghrémary ray. Let zo be minimal
such thatw = b+ dz, > 0. Unlessb > 0 (in which case the LCP is solvec
immediately),z, is positive and some componeani of w is zero. The resulting
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basis{wi, ..., wi_1, wit1 ..., wn, Zp} defines the initial almost complementa
basic solution to (3.1). Decreasirzg from infinity until the endpoint of the
primary ray is reached wheng; becomes zero can be thought of as a pi
wherezg has entered and then leaves the basis. Next, the complemgnof

the variablew; that has just left is chosen to enter the basis; this starts the
loop of the algorithm.

In the main step of the algorithm, the entering variablis increased in (3.2
until some basic variable becomes zero, which is made the leaving variable.
a pivot is performed. If the leaving variable wasthen the LCP is solved. If th
leaving variable was na, choose itcomplemenas the new entering variabl
and repeat the step. (This is known as the “complementary” pivoting rule.)

This algorithm solves the LCP (2.9) except for two possible probleas:
terminationanddegeneracyGeometrically, the nonnegative solutions to (3
define a polyhedron where the basic solutions represent vertices. Increa:
in (3.2) means moving along an edge to an adjacent vertex. In that wa
algorithm traces a path consisting of almost complementary edges begi
with the primary ray. Asecondary rayesults if the entering columB~1h in
(3.2) has no positive component since thenan be increased indefinitely. (Tt
analogous phenomenon occurs with the simplex algorithm for an unbound
objective function.) For certain LCPs, ray termination can be excluded, w
will be the case in our application.

The second problem isycling that is, an almost complementary basis
repeated in the computation. In that case, the corresponding vertex on the
puted path is met by three or more almost complementary edges (two on th
where the vertex appeared the first time, the third when it is encountered a
At such a vertex, several edges can be followed, so that there must be &
to which variable should leave the basis. Since only one of them can be ¢
to leave the basis, after pivoting the other will still be basic but have zero v
This means (3.1) is degenerate. Thus, if we can eliminate degeneracy, the |
variable is unique, no basis is revisited, and the algorithm must terminate.

Degeneracy is avoided if the vectois slightly perturbed by replacing it b
b(e) = b+ (e, ..., M7, wheres is positive but very small. As in (3.2), th
value of the entering variablg is then chosen to be the maximum subject t

B+B1l (....eN" =B thy >0. (3.3)

We will show that the increase ajf is blocked (if at all) by a unique rov
in (3.3): Consider any two row§$ andk of the inequalities (3.3) where th
components; andcy, say, of the entering columB~*h are positive (only suct
rows matter). Denote thgth andkth row of [B=b, B=1] by (a0, &1, - - -, @jn)

and(axo, a1, - - - , &n), respectively. The corresponding inequalities in (3.3)

aj0+a,-18+a,-282+~~~+ajn8”—Cj v > 0,
a0 + aae + ae’ + -+ ane” — oy > 0.
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It is easy to see that if is sufficiently small, then row blocks the increase
of v; earlier than rowk if and only if the row vector I - (&0, &1, ..., &n) iS
lexicographically smallethan 1€y - (axg, &, - . . » &n), that is, it is smaller in
the first component where the vectors differ; furthermore, these vectors ar
equal sinceB1 is nonsingular. In that way, the leaving variable is uniquely ¢
termined by a “lexico-minimum ratio test” (which is also known for the simpl
algorithm; see, for example, Chtdl 1983, p. 36). Thereby,can be treated as
if it is “just vanishing” (that is, zero), so that the computed solutions are |
changed. Interpreted for the perturbed system, the lexicographic rule pres
the invariant that all basic variables are positive (which implies nondegener:
although some of them may be vanishingly small.

4. SOLVING THE LCP FOR THE SEQUENCE FORM

We will apply Lemke’s algorithm to the LCP derived from the sequence for
Inorder to show that the algorithm terminates with a solution in this case, wer
show that it cannot terminate with a secondary ray. This latter possibility cal
excluded when the vector and matrix defining the LCP have certain proper
such “matrix classes” have been widely researched in the literature on LCF
our application, we use such a property stated in Theorem 4.4.13 by Etle
(1992, p. 277); this theorem is also implicit in earlier work by Lemke (19¢
and Cottle and Dantzig (1968). We state this result in Theorem 4.1 below.
proof is not new, but we present it here in a single piece as a convenient
the reader; in the literature, various LCP matrix classes, ray termination,
degeneracy are often studied separately and with their own terminology th
not necessary here. Furthermore, we have slightly generalized the theore
degeneraté.CPs.

For a degenerate LCP, cycling is avoided by the lexicographic method. H
ever, the mentioned Theorem 4.4.13 could, at first glance, fail because its |
considers a basic solution (the endpoint of a secondary ray) vwhesea ba-
sic variable with positive value. In a degenerate problegrmay be zero, and
the conclusion of the theorem is invalid if degeneracy is ignored completely
Example 4.4.16 in Cottlet al. (1992, p. 279) shows. This poses no difficult
since in a basic solution where the variahjés basic but zero, it can be chose
to leave the basis (before invoking the lexicographic rule) and a solution to
LCP is at hand. As a slight generalization of known results, we show tha
harm is done if the lexicographic rule is used alone; other than in this resj
the following proof is not new.

THEOREMA4.1. If (i) z"Mz > Ofor all z > 0,and(ii) z > 0, Mz > 0 and
z"Mz = 0imply Z'b > 0, then Lemke’s algorithm computes a solution of tt
LCP (2.9)and does not terminate with a secondary.ray
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Proof. SupposeM andb satisfy (i) and (ii), and assume to the contrary t
Lemke’s algorithm terminates with a secondary ray. et zy, Z) denote the
endpoint of the ray. This is a basic solution of (3.1), where the vegtof basic
variables includeg, since it would otherwise solve the LCP. We assume |
thatz, is positive.

Ray termination means that the entering colugmth in Eq. (3.2) is nonpos:
itive. The elements of the secondary ray resulj; ifn that equation takes an
nonnegative value. They can be writteras zy, z) + A (w, Zy, Z) for A > 0 (with
A = v;). The vectow, Z,, Z) is nonnegative; its components are the compon
of —B~1h, a one in the place of the entering variable, and zero otherwise.

Since the elements of the secondary ray are solutions to (3.1), this eqt
for » = 0 andx = 1 implies

w=dz+ MZ (4.1

Furthermore, itis easy to see tliag 0 since the secondary ray is not the primz
ray (Cottleet al. 1992, p. 275). Because its elements are almost complemel
one can infer

0=7"w=2"dz+ 2" Mz

This equation has been stated by Lemke (1965, p. 687, Eq. (20yvithug,
Z = u), and by Cottle and Dantzig (1968, p. 116, Eq. (37)). Itimgties: 0 since
Z is nonnegative and nonzero add> 0, and since the last term is honnegat
by assumption (i). Thug'Mz = 0, and by (4.1);o = MZ > 0. Assumption
(ii) therefore impliesz™b > 0. We derive a contradiction to this conclusion
follows, where the inequality follows from (i):

0= (z+22)T(w+ Ad)

(z4+ 12T (b+dz+ M(z+ 12)
> (z+22)" (b +dz)

= 2" (b+dz) + 22" (b + d o).

The lastterm is nonpositive for all> 0 only if T (b+dz) < 0, or equivalently,
Z"b < —2"(dz) < 0, contradicting (ii).

Permitting degeneracy, let the endpdint z,, z) of the secondary ray be suc
thatzg is a basic variable but has value zero. Because this basic solution ha
computed using lexicographic degeneracy resolution, there is a perturbat
(3.1) whereb is replaced byp(e) = b+ (e, ..., e")T for some small positive,
and the same basis defines a (perturbed) solution that is nondegenerate
Zg is positive. For the perturbed system, there is still a secondary ray sinc
nonpositive entering columB~h in (3.2) does not depend dm With the
same argument as before, we can now conclildgs) < 0, which is again &
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contradictionto (i) sincé&"b(e) = Z"b+2" (e, ..., e"T > z"b. This shows that
the theorem holds even if Lemke’s algorithm encounters degenerate solut
provided it uses the lexicographic methodm

We apply this theorem to the LCP defined by (2.10) using the following t
lemmas, where the firstisimmediate from the structure of the constraint matr
as example (2.2) illustrates.

LEMMA 4.2. The only nonnegative solutions x and y to EX0and Fy= 0
arex=0and y=0.

LEMMA 4.3. IfETp>0and F'g>0thenéd p>0and fTq> 0.

Proof. Consider the following LP: maximize O subjectix = e, x > 0.
It is feasible, so the value 0 of its objective function is a lower bound for |
objective function of the dual LP: minimiz& p subject toE™ p > 0. Hence, if
ETp > Othene’ p > 0. Similarly, FTq > OimpliesfTq>0. =

THEOREM4.4. If A < O0and B < 0, then M and b in(2.10) satisfy all
assumptions of Theorednl.

Proof Letz=(x,y,p,p’q,9)" >0andp=p —p’.q=0q —q”
as above. Thea"Mz = x"(—A — B)y > 0, satisfying (i). For (ii),Mz > 0
is equivalent to-Ay + ETp > 0,—-B"x + F'q > 0, Ex = 0 andFy = 0.
This implies, by Lemma 4.2 = 0 andy = 0, and thereforé&€™p > 0 and
FTq > 0, so that by Lemma 4.2"p > 0 and fTq > 0. We conclude that
Z’b =b'z=¢€e"p+ fTq > 0. (Note that we did not use the assumptic
Z’Mz=0.) =

The conditionsA < 0 andB < 0 can be assumed without loss of generali
by subtracting a constant from the payoffs to the players at the leaves o
tree so that these become nonpositive. This transformation does not chant
game. The same assumption is made for the algorithm by Lemke and Hou
(1964). Without this condition, easy examples show that Lemke’s algorithm 1
terminate with a secondary ray instead of an LCP solution.

5. CONCLUSIONS AND COMPARISON WITH RELATED WORK

We have shown that Lemke’s algorithm, applied to our LCP, terminates v
a solution. Since all solutions to the LCP are equilibria, this shows that oul
gorithm finds some equilibrium of the game in extensive form. Our algorit
can also be used to solve bimatrix (i.e., normal form) games. The game is
resented as an extensive game in the standard way, where each player he
one information set and his choices are his strategies. The sequence form ¢
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game has essentially the same payoff matrices as the normal form. Clearly
is a direct correspondence between the equilibria in the two representati
the game, so that our algorithm, applied to the sequence form, also cons
an equilibrium for the bimatrix game. For such games, however, the algol
by Lemke and Howson (1964) also finds an equilibrium. It is known that ce
equilibria of bimatrix games may be “elusive” to the Lemke—Howson met
(Aggarwal, 1973). Since the two algorithms operate similarly, we conclude
certain equilibria may be elusive to our method as well.

The size of the sequence form is linear in the size of the extensive ¢
whereas the size of the normal form is generally exponential. Therefore
algorithm is exponentially faster than the standard Lemke—Howson methc
plied to the normal form. Our method also needs exponentially less space
entire normal form is stored. There are two other algorithms for solving
person extensive-form games that avoid the conversion to normal form ar
associated exponential blowup. These are based not on the idea of seqt
but on the idea of mixed strategies with small supports. Stpportof a mixed
strategy is the number of pure strategies to which it gives positive probabi

Wilson (1972) presented a variant of the Lemke—Howson algorithm for sol
atwo-player game with perfect recall that uses the extensive form directly.
are two important differences between Wilson’s variant and the original Ler
Howson algorithm. First, Wilson’s method never deals with the entire L
Rather, it generates pivoting columns for the Lemke—Howson algorithm dir
from the game tree. These columns are best-response pure strategies, an
found by backward induction, using the perfectrecall structure of the inform:
sets. This leaves the problem of storing an intermediate solution during the ¢
for an equilibrium, which still requires exponential space in the size of the g
tree. In order to avoid this problem, Wilson’s algorithm only maintains a su
of the basic variables at each point, namely those variables correspond
mixed-strategy probabilities. The basic variables corresponding to the “
variables” are not stored explicitly, but are recomputed as needed.

Wilson did not prove formally why his algorithm should provide signific:
savings. He just observed empirically that “the frequency of equilibria u
only a very few of the available pure strategies is very high.” Koller and Megi
(1996) proved that Wilson’s approach (or a slight variant of it) is efficient bec
it suffices to consider mixed strategies with small support. They showec
two mixed strategies with the same realization probabilities for the leave
realization equivalent. This implies that any mixed strategy has a realiz
equivalent mixed strategy whose support is at most the number of po:
sequences (and is hence linear in the size of the game tree). In addit
showing that Wilson’s empirical observation was justified, Koller and Megi
constructed an algorithm for finding all equilibria of an extensive two-pel
game that runs in exponential time in the size of the game treen@iid the
large size of the normal form). Their algorithm enumerates all small suppor
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both of the players, and attempts to construct an equilibrium over that sug
pair. Unlike Wilson’s algorithm and the method presented here, their algori
constructs all equilibria, and works in exponential time even if the game
imperfect recall. However, since itis based on complete enumeration, its run
time is exponential in all cases, not just in the worst case.

The sequence form can also be used in an algorithm that enumerates all
libria. It can be shown that all equilibria of a game can be found by enumera
the complementary basic solutions to (3.1) (where- 0). Thereby, each of the
2" sets of variables containing one variable of each complementary;pair
for1 <i < nis tested for being a nonnegative basic solution to (3.1). If this
the case, it solves the LCP (2.9). Mangasarian (1964) showed that in the ce
bimatrix games this suffices to derive all equilibria. It is possible to show t
the same argument applies also to the LCP defined by the sequence form.

The running time of our algorithm is also at worst exponential in the size of
extensive game (this is known for Lemke’s algorithm even if applied to zero-s
games). However, this seems to be a rare case, like the exponential wors
behavior of the simplex algorithm. In practice, it is likely that our method, li
the simplex method, will be much faster. The complexity of constructing sc
equilibrium of a bimatrix game is currently unknown; this is a difficult ope
question (Papadimitriou, 1994). Related problems, such as finding an equilib
with maximum payoff for a player, were shown to be NP-hard by Gilboa &
Zemel (1989). The problems they discussed can be solved by a proces:
enumerates all equilibria.

As a topic for further research, it may be interesting to study further the c
putation by Lemke’s algorithm in terms of the extensive game. Wilson (19
interpreted the entering columns in the Lemke—Howson algorithm as bes
sponses against the current pair of mixed strategies. In the case of the seq
form, the components gf andq in (2.4) and (2.7) can be interpreted as payc
contributions of optimal choices at information sets (von Stengel 1996, S
tion 6). It is therefore quite possible that, as in Wilson’s algorithm, the enter
columns can be interpreted as choices at information sets that are best resy
against the current pair of realization plans. This might allow us to use the
guence form to construct equilibria satisfying certain local optimality conditio
such as subgame perfection.
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