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Abstract 

We study the computational complexity of certain search-hide games on a graph. There are 
two players, called searcher and hider. The hider is immobile and hides in one of the nodes 
of the graph. The searcher selects a starting node and a search path of length at most k. His 
objective is to detect the hider, which he does with certainty if he visits the node chosen for 
hiding. Finding the optimal randomized strategies in this zero-sum game defines a fractional 
path covering problem and its dual, a fractional packing problem. If the length k of the search 
path is arbitrary, then the problem is NP-hard. The problem remains NP-hard if the searcher 
may freely revisit nodes that he has seen before. In that case, the searcher selects a connected 
subgraph of k nodes rather than a path of k nodes. If k is logarithmic in the number of nodes 
of the graph, then the problem can be solved in polynomial time. This is shown using a recent 
technique called color-coding due to Alon, Yuster and Zwick. The same results hold for edges 
instead of nodes, that is, if the hider hides in an edge and the searcher searches k edges on a 
path or on a connected subgraph. 

Keywords: Covering and packing; Game theory; Graph search; NP-completeness 

1. Introduction 

Communication networks are vulnerable to privacy violations. Surveillance of the 

network is one way to deter eavesdroppers. This gives rise to various models of pursuit 

and evasion on graphs and corresponding complexity considerations. One problem that 

has been examined in depth (see [5,18] and references) is the search of a graph by 

a team of searchers traversing the edges of the graph in pursuit of a mobile fugitive. 

The minimum number of searchers necessary to detect the fugitive with certainty is 

called the search number of the graph. Computing it is easy for trees but NP-hard for 

general graphs [ 181. Extensions of this approach to models of privacy in distributed 

environments are studied in [IO]. 
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We consider a similar, but more static situation: The hider selects an arbitrary node 

of the graph for hiding and must stay there. The searcher selects a starting node and 

traverses the graph along a path, and his search terminates after he has visited k nodes. 

The search is successful if and only if the searcher visits the node chosen for hiding. 

Both searcher and hider may randomize. The searcher tries to maximize the probability 

of detection and the hider tries to minimize it. We also study this game if the hiding 

location is an edge of the graph. Furthermore, we consider - for both node- and edge- 

searching - a variant of the game where the searcher may freely revisit a location that 

he has already searched. In that case the searcher searches a connected subgraph of 

size k rather than a path of length k. 

The optimal searcher path problem has been investigated in the literature as one- 

sided search, where a prior hiding location distribution is given [24]. This is an im- 

portant subcase for several reasons. Firstly, the uniform hiding distribution is opti- 

mal for the hider if the searcher can search all locations (nodes or edges of the 

graph) with equal maximal probability. With no restriction on the search length and 

search on nodes, deciding this question is NP-hard by reduction from the Hamilto- 

nian path problem, as shown in [24] and repeated in Proposition 3.1 below. This 

argument fails if nodes can be revisited freely or if edges are searched, which is 

one reason why we study these alternative search models. Secondly, the two-sided 

search problem will in practice be solved by linear programming with delayed col- 

umn generation (see Section 2; for heuristics see [6]). Thereby, a profitable column 

represents a new search path that improves the detection probability against the cur- 

rently computed hiding distribution, just as for one-sided search. In Section 4, we 

describe an algorithm for that subproblem, specified for theoretical reasons as the sep- 

aration problem. This algorithm works by dynamic programming with color-coding, 

and has polynomial running time if the search length is logarithmic in the size of the 

graph. In contrast, the standard dynamic programming method is not polynomial in that 

case. 

One-sided search has also been studied for the more general case that the hider is 

overlooked with a certain probability when his location is inspected [24]. Additional 

generalizations are costs to the searcher for switching from one location to the next 

[16]. These are even harder problems of Markovian dynamic programming [25]. We 

have refrained from such generalizations since a chance of overlooking the hider makes 

it worthwhile to revisit a location, which complicates the game matrix substantially. 

Switch costs suggest the adoption of methods used for the Traveling Salesman Problem, 

which is a wide area of research [15]. Of course, these problems are interesting, and 

our approach should provide a starting point to tackle them. Our results extend trivially 

to the case where search can only start from a restricted set of locations, which we 

therefore do not discuss. 

Our two-sided search model is a strong simplification of network surveillance. The 

bound on inspection resources, here given by the parameter k, is however typical of 

surveillance models (also studied in the context of inspection games, see [3]). The 

number of locations that can be searched is usually limited, due to budget constraints 
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or, say, the time that an intruder stays in place and can be detected during a search. 

We have - somewhat arbitrarily - restricted the searcher’s movement by the structure 

of the graph. Another application of our model may be police patrols in a road net- 

work, where k is the typical number of road segments that can be patrolled while a 

crime to be detected takes place. In arms control, the number k of inspection sites is 

typically limited by the terms of a disarmament treaty, for example the 1990 Treaty 

on Conventional Forces in Europe. Here our model applies if the searcher’s movement 

is restricted due to geographic and organizational conditions that can be described by 

a graph. In these circumstances, the optimal detection probability is of interest as a 

measure of deterrence from illegal activity. 

Books on search theory are [l, 111. A recent general survey is [4], which would 

classify our work as two-sided search with immobile target. A continuous search of 

the edges of a graph is discussed in [12]. A discrete game where both hider and 

searcher choose a node and try to maximize respectively minimize their distance is 

studied in [8]. For further references see [4], except for articles related to the search 

number of a graph, which are cited in 1: IO]. 

In Section 2, we define our problem as a zero-sum game and describe an equivalent 

linear program (LP). If the length k of the search path is unrestricted, then solving the 

game ~ in any of its variants - is NP-hard, as shown in Section 3. For search paths 

of logarithmic length in the size of the graph, we provide in Section 4 a polynomial- 

time algorithm, based on a recent color-coding technique [2] applied to the separation 

problem of the LP in question. 

2. LP formulation 

The input to our problem is a graph G with node set V and edge set E, and a 

positive integer k, called the search length. This gives rise to the described zero-sum 

game between two players, called searcher and hider. Both act simultaneously and 

will use randomized strategies. Either the nodes or the edges of G serve as locations 

for hiding which are inspected by the searcher. If the game is played on V, where 

the hider selects a node for hiding, we call it the node search game. If the game is 

played on E, we speak of edge search. The searcher selects a starting node and from 

there a path with up to k nodes in the case of node search, or up to k edges in the 

case of edge search. If a location that is repeated on the path is counted towards the 

allowed length k, then we call it a search on paths. Alternatively, the searcher may 

freely revisit a location on a path. This is called a search on connected subgraphs. That 

is, the deterministic strategies of the searcher are, respectively, the paths or connected 

subgraphs of G of size k, which we often just call search paths for brevity. Thus, the 

four variants of the game are node and edge search on paths and connected subgraphs, 

respectively. 

We can assume that G is connected. Otherwise, it is easy to see that the game is just 

played on each connected component of G, and that the players choose the component 
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for hiding and searching with a probability that is inversely proportional to the optimal 

detection probability in the respective component. 

The game can be regarded as a matrix game with, say, the hider as row player and 

the searcher as column player. For node search the rows i are indexed by 1,. . . ,I V(, 

for edge search by 1,. . . , IE(. The columns j correspond to the possible search paths Sj 

(paths or connected subgraphs). The column vectors of the game matrix A (with entries 

aij zero or one) are the respective incidence vectors of these search paths. Each vector 

has at most k entries equal to one, the rest is zero. For search on connected subgraphs, 

every column has exactly k ones since then the searcher can always visit the maximal 

number of locations, assuming k d 1 VI (k < IEI). 

Let the game matrix A be of dimension Y x s where r is the number of locations 

(1. = ( VI for node search, r = /El for edge search), and s the number of search paths. An 

optimal strategy of the searcher, the maximizing column player, is given by probabilities 

pl,...,ps so that 

s 

c aijpj > d, i= l,...,~, (2.1) 
j=l 

and so that d is maximal. The inequalities (2.1) say that the search paths are chosen 

according to a probability distribution so that each location has at least detection prob- 

ability d. This detection probability is optimal if and only if there are probabilities 

41,. . . , qr for the hider with the analogous property: The hider hides in location i with 

probability qi so that for each search path Sj the detection probability is at most d. In 

other words, we have d = d’ in the constraints 

qiaij d d’, j=l,...,s. (2.2) 
i=l 

Such optimal strategies and the optimal detection probability d define the solution 

of the game. 

As an example, node search with k =2 for the graph in Fig. 1 has the optimal 

detection probability f. The hider hides with probability i in one of the nodes 2, 3, 

4. The searcher selects, for example, one of the search paths { 1,2}, { 1,3}, {4,5} with 

equal probability to have each node inspected with probability at least f . 

The constraints (2.1), c pj = 1, and pj 2 0 for j = 1,. . . , s define a linear program 

(LP) with variables pj and d, where d is to be maximized. The corresponding dual 

LP has the variables qi and d’, where d’ is to be minimized, subject to the constraints 

(2.2), Cqi = 1, and qi 2 0 for i= 1,. . . , r. The identical optimal value d or d’ of 

either LP defines the optimal detection probability of the game, which is obviously 

positive. 

We simplify these LPs since the variables d and d’ can be omitted: Instead of 

the primal variables pi, consider instead the variables xi defined by xi = pi/d. Then 

cJ=l xj = c/“=l pjld= IId, so maximizing d is equivalent to minimizing cJ=, Xi. 



B. con Stengel, R. Werchnerl Discrete Applied Mathematics 7X (1997) 235 249 239 

1 

2 0 3 4 

5 

Fig. I. 

This leads to the LP 

minimize 5x1 
j=l 

subject to 2 aijxj 3 1, i= l,...,r, 
J=l 

Xj 3 0, j=l,...,S. 

The dual of this LP is 

maximize EYl 
I=1 

(2.3) 

(2.4) 

(2.5) 

subject to c Y&j G 1, j= l,...,S, 
1x1 

yi 3 0, i= l,...,r. (2.6) 

The optimal value w of both LPs is the inverse of the optimal detection probability 

d of the game. The variables Xj and y, at optimum define the optimal strategies of 

the game: normalized, by multiplication with l/w, they represent the probabilities p, 

and qr, respectively. The linear programs (2.3)-(2.6) for a general O-l-matrix A are 

known as fractional covering and fractional packing problems [21, p. 5621. 

If the search length k is constant, then the game can be solved in polynomial time 

by enumeration, since the LP is of polynomial size. Node search for k = 2 has a direct 

solution based on bipartite matching (described in detail in [7]): If G is represented as 

a bipartite graph (with edges in V x V), then a minimum edge cover yields an optimal 

solution to (2.3) (2.4); see [20] and [17, pp. 213-2161. 

If the search length k is allowed to grow sufficiently fast with the size of the graph, 

then solving the game is NP-hard, as we will show in the next section. In general, it is 

even difficult to uerifv the optimality of a pair of strategies (pi,. , ps) and (ql, , qr ) 

for searcher and hider. Although the number s of search paths is very large, only r 

of the probabilities pj have to be positive, taking a basic solution of the LP (2.1). 

Thus, an optimal search strategy can be specified in space polynomial in the size of 
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G. With these probabilities pi, the smallest of the detection probabilities for the nodes 

(edges) of G gives a lower bound for the optimal detection probability. However, 

verifying directly a claimed maximal detection probability d’ in (2.2) for all s search 

paths is not possible in polynomial time since s is too large. There is one exception: 

If the hider hides with equal probability in each location, that is, qi = l/r, then the 

detection probability for each search path is obviously at most k/r. If this upper bound 

for the optimal detection probability can be achieved by a suitable randomized search 

strategy, then the game is solved. In this best possible case for the searcher, which can 

be verified in polynomial time, we say that the graph G is uniformly searchable. 

A graph G is uniformly searchable for node search if it has a Hamiltonian cycle: In 

that case, the searcher can select any node with equal probability and search k nodes 

in one direction of the cycle. This is only a sufficient condition (for generalizations 

see [7]): The graph G in Fig. 1 has no Hamiltonian cycle but is uniformly node- 

searchable for k = 3, by selecting one of the search paths { 1,2,3}, { 1,2,4}, { 1,3,5}, 

{2,4,5}, or {3,4,5} with equal probability. (We have seen above that G is not uni- 

formly node-searchable for k = 2.) Similarly, a sufficient condition that G is uniformly 

edge-searchable for any k is that G has an Euler cycle (visiting all edges). 

In practice, the LP (2.3), (2.4) is very suitable for the revised simplex algorithm 

with implicit column generation, which can be used to compute a search strategy until 

the detection probability is sufficiently high (compared to its upper bound k/r, for 

example). The revised simplex algorithm stores only the LP columns Aj of the current 

basic solution. For the pivoting step, a projitable column has to be found, which is 

generated directly from the graph, using suitable heuristics if necessary [6]. 

The separation problem for the dual LP is equivalent to this problem of finding 

a profitable column [23, p. 1481. It says: Given a vector y = (yi,. . . ,y,), decide if 

all inequalities (2.6) are valid, and if not, produce an inquality that is violated. If 

some yi is negative, then a violated inequality is given directly. If y 3 0, then the 

separation problem amounts to finding a search path Sj with maximum weight yAj, 

interpreting the nonnegative numbers yt , . . . , yr as weights on the nodes (edges) of G. 

The separation problem is theoretically important since with the ellipsoid algorithm for 

linear programming one can solve the entire LP using a polynomial number of calls 

to a ‘subroutine’ that solves the separation problem [13]: 

Theorem 2.1. With a polynomial-time algorithm for the separation problem, the LP 

can be solved in polynomial time. 

For node search on connected subgraphs, the separation problem is that of finding 

a maximum weight k-cardinality subtree of G. If G is a tree, this problem can be 

solved in polynomial time (see [6,9] and the references therein), so then the game can 

be solved in polynomial time. If G is a general graph, then this separation problem 

is NP-hard [9]. This would entail the NP-hardness of solving the LP if the objective 

function could be chosen arbitrarily, because in that case the converse of Theorem 2.1 

holds as well [13]. However, the objective function is special. In the next section, we 
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will prove directly that solving the search game on connected subgraphs is NP-hard. 

In Section 4, we will use Theorem 2.1 to show that the search game can be solved in 

polynomial time for search paths of logarithmic length. 

3. NP-hardness for general search length 

We have seen that solving the search game for a graph G and search length k is 

equivalent to solving the primal LP (2.3) (2.4) and its dual LP (2.5), (2.6). In this 

section, we will prove that solving the primal LP is NP-hard (so that solving the game 

is also NP-hard). We will do this by showing that it is NP-complete to decide if there 

is a solution xi,. ,x, to the constraints (2.4) so that xxi < r/k. If the objective func- 

tion in (2.3) can reach this bound, we have also reached optimum, since there is a 

dual feasible solution, namely yi = l/k in (2.6), with dual objective function value r/k. 

This describes the case where the hider hides in each location with equal probability, 

and the searcher can achieve the maximum detection probability k/r for each loca- 

tion. In other words, we will show that it is NP-complete to decide if G is uniformly 

searchable. 

Proposition 3.1. For node seurch on paths and search length k = /VI, a graph G is 

un@ml~~ searchable if and only if G has a Hamiltonian path. 

Proof. If G has a Hamiltonian path, then this search path S, visits all nodes, that is, 

x, = 1 (and all other variables zero) is an optimal solution to the LP (2.3) (2.4) with 

value 1. If G has no Hamiltonian path, then any search path can visit at most k - 1 

nodes. Thus, y, = l/(k - 1) is a feasible solution to the dual LP (2.6) with objective 

function value k/(k - 1) > 1, so the primal LP does not have value 1. E: 

This result has been shown earlier, also for more general detection probabilities [24]. 

It shows that solving the node search game on paths with general search length k is 

NP-complete. Even if k is bounded by / L’l’ for some positive constant E, then one 

can also show easily that the Hamiltonian path problem for a graph G’ = (V’, E’) can 

be polynomially reduced to the question if a graph G is uniformly node-searchable 

with paths of length k. In that construction, k = 1 V’1 and G consists of about ( V’! ’ “‘L’ 

suitably connected copies of G’; for details see [7]. 

Next, we consider edge search on paths. If the search length is k = lEl, then the graph 

G is uniformly searchable if and only if it has an Euler path (proved analogously to 

Proposition 3.1). However, that question is easy to decide. We therefore need a different 

argument. For a given graph G’, we will reduce, in polynomial time, the question if 

G’ has a Hamiltonian path to the question if a graph G is uniformly edge-searchable. 

In this construction of G from G’, we will append certain paths to nodes u of G’. 

Such a path P consists of 1 new nodes and 1 - 1 new edges and an additional edge 

joining an endpoint of P to u. We will call P a tail of the new graph G. Its purpose 
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is that in a uniform search, it is either searched entirely or not at all, as stated in the 

following lemma. 

Lemma 3.2. Suppose that the graph G has a tail P of length I and that G is uniformly 

searchable for node or edge search on paths or connected subgraphs, for search length 

k > 1. Then any search path used with positive probability either contains all nodes 

and edges of P or none. 

Proof. If G is uniformly searchable, then the corresponding solution to the LP (2.3), 

(2.4) defines an exact fractional cover of all nodes (edges) of G by certain search 

paths Sj (those with Xj > 0, that is, those chosen with positive probability). All these 

search paths have k nodes (edges). Since k > 1, any such search path Sj starting at a 

node v of P contains the part of P connecting to the rest of G. Since all nodes (edges) 

of P are covered equally, v must be the endpoint of P. 0 

Proposition 3.3. For edge search on paths and search length k = IE1/2, it is NP- 

complete to decide if a graph G = (V, E) is uniformly searchable. 

Proof. Given a connected graph G’ and two nodes u and u’ of G’, we construct a 

graph G of polynomial size such that G’ has a Hamiltonian path from u to U’ if and 

only if G is uniformly searchable for edge search on paths. This will prove the claim. 

Let n and m denote the number of nodes and edges of G’. As indicated in Fig. 2, G 

is obtained from G’ as follows: Duplicate every edge of G’. Put a new node on each 

edge (this makes the graph simple, in case we want to consider the search game only 

on simple graphs). Let G” be the resulting graph, which has 4m edges, and where 

every node has even degree. For every original node v of G’ except u and u’, take a 

new path with 4m nodes and connect both endpoints to v. This creates a circle C, of 

length 4m + 1 connected only by v to the rest of the graph. Append paths P and P’ of 

length 4m + 2 to u and u’, respectively. Let k = n(4m + 3). Finally, append a path P” 

of length k - (4m - 2(n - 1)) to U. The number IEl of edges of the resulting graph G 

is therefore 4m + (n - 2)(4m + 1) + 2(4m + 2) + k - (4m - 2(n - 1)) = 2k. 

Assume that G’ has a Hamiltonian path from u to u’, which defines a path in G”. 

In G, we take that path, which visits all nodes v of G’ and has 2(n - 1) edges, extend 

it by the two tails P and P’, and insert at every node v the path around the circle C,. 

This is our first search path, which has k edges. After we remove these edges from 

G, the remaining graph has k edges, is connected (since G’ is connected and we have 

duplicated the edges of G’), and all nodes have even degree except u and the endpoint 

of the tail P”. Thus, this graph has an Euler path, which is our second search path. 

The edges of G are covered exactly once by these two paths, that is, G is uniformly 

searchable. 

Conversely, let G be uniformly searchable and consider an exact fractional cover 

of the edges of G by paths of length k. One of these paths has edges and nodes 

in the tail P. By Lemma 3.2, that path starts at the endpoint of P. The path cannot 
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Fig. 2 

visit P” since it is too short to reach the endpoint of P”. The path must fit into 

G without revisiting edges (otherwise, edges would be wasted and we had no exact 

cover). Therefore, it must visit all circles C, and thus all nodes u of the original graph 

G’, and end in the tail P’. However, in order to reach the endpoint of P’, the path can 

use only 2(n - 1) edges of G”. Thus, it defines a Hamiltonian path of G’. 0 

At first glance, search on connected subgraphs looks like an easier problem since it 

is not related to Hamiltonian paths. For node search and k = IV(, a connected graph G 

is always uniformly searchable using any spanning tree as search path. The argument of 

Proposition 3.1 therefore no longer applies. However, the problem is still NP-hard. We 

will reduce the NP-complete problem of finding an exact three-cover to the question 

if a graph G is uniformly searchable. The construction of G is similar to the reduction 

of the exact three-cover problem to the Steiner tree problem [14], with additional tails 

appended to the graph so that we can apply Lemma 3.2. The same proof works for 

both node and edge search. 

Proposition 3.4. For node (edge) search on connected subgraphs and search length 

k = IV1/2 (k = lE(/2), it is NP-complete to decide if a graph G = (V,E) is uniformly 
searchable. 

Proof. We show a reduction from the exact three-cover problem. An instance of 

this problem is given by a set U = { 1,. . . ,n}, where n is a multiple of three, and 

a collection C = { ct , . . . , c,} of three-element subsets c, of U. The problem is to 

decide whether there are n/3 of these sets that cover U. Given U and C, we con- 

struct the graph G as follows (see Fig. 3). G consists of a graph G’ with node set 

{%U’,Ul,. ..,ti,,W1)...) wn}, and certain paths appended to some nodes of G’. The edges 

in G’ join ui to the nodes u, u’, and wj for the three elements j of ci, for i = 1,. ,m. 

Thus G’ has 5m edges. To obtain G from G’, we append new paths P, P’, PI,. , P,, 
with one of their endpoints to the nodes u, u’, WI,. . , w,, respectively, all of which have 



244 B. van Stengel, R WerchnerlDiscrete Applied Mathematics 78 (1997) 235-249 

_----------. ,,-- ‘..\ G' 
,’ . . 

.’ %. 

Fig. 3. 

length 6m except P’; the length of the tail P’ depends on whether we consider node 

or edge search. Let us consider node search first, where k = (n + 1) 6m + in + 1. In 

that case, P’ has length k - m + n/3 - 1, and G has 2k nodes. 

Suppose D is an exact cover of U, that is, D C C, ID/ = 43, and U D = U. Then the 

nodes of G can be partitioned into two trees T and T’: The tree T is the unique span- 

ning tree on the nodes u, WI,. . . , w,,, the nodes Vi with ci ED, and the paths P, PI,. . . , P,,. 

The tree T’ contains u’, the nodes v; with ci $4 C, and the tail P’. Both T and T’ consist 

of k edges. 

Conversely, assume that G is uniformly searchable, that is, there is an exact fractional 

cover of the nodes of G with connected subgraphs of size k. Let T be one of these 

subgraphs (with positive weight) that includes a node of P. By Lemma 3.2, T includes 

the endpoint of P. Since T is too small to reach the endpoint of P’, it is disjoint from 

P’. Since T has more than (n + 1) 6m nodes it contains all of PI,. . . , n, P and thus the 

nodes u and wi,...,w,,. So T contains at most n/3 of the nodes ai. The corresponding 

sets ci define a cover of U since every node wj for j E U belongs to T. 

In the case of edge search, let k = (n+ 1) 6m+ in, and let P’ have length k-5m+ $n. 

Then G has 2k edges. In the same way as before, an exact cover D defines a tree T in 

G, where T and its complement T’ in G partition the edges of G into two connected 

subgraphs of size k. Conversely, if G is uniformly searchable, then an exact fractional 

cover of the edges of G has one connected subgraph T that includes all edges of 

p, 9 , . . . ,P,,. Thus, T contains :n edges of G’. Since T is connected, it contains at 

most 1 + in nodes of G’, including all nodes U, WI,. . . , w,,. It thus contains at most 

n/3 of the nodes vi. As before, the corresponding sets ci cover U. This completes the 

proof that the reduction is correct. 0 

If the game is played on the nodes of the graph, then connected subgraphs with k 

nodes are equivalent to trees with k nodes. One could also consider edge search on 
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trees (instead of connected subgraphs), although this is not very natural. The preceding 

proof shows that solving this game is also NP-hard. 

4. Polynomial-time algorithms for logarithmic search length 

Solving the search game is NP-hard if the search length k is arbitrary. For constant 

k, the problem can be solved in polynomial time by enumeration. In this section, we 

show that if k is proportional to the logarithm of the size of the graph G, then the 

search game can still be solved in polynomial time. By Theorem 2.1, it suffices to 

show that the separation problem can be solved in polynomial time, which says: Given 

nonnegative weights on the nodes (edges) of G, find a search path of maximum weight. 

Note that the weight of a location that is revisited by the searcher is counted only once. 

We solve this separation problem by modifying an algorithm for &ding a simple 

path of length k in G. Alon et al. [2] recently presented a technique called color-coding 

that solves this problem in polynomial time if k = O(log /VI), answering a long open 

question. The standard dynamic programming approach requires to store intermediate 

results for all paths with up to k nodes. If k = (VI, then there are in total about 2i”l 

such paths, so that the total running time is 0( 1 VI2 21’1) [15, p. 401. If k is much 

smaller than / V/, however, then there are 0( ( Vlk) such paths. With color-coding, in 

contrast, each node is given a random color and only sets of colors need to be stored 

intermediately, in total about 2k if k colors are used. One has to try different colorings, 

but if these are taken from a suitable family of hash functions, not too many are 

needed to succeed. We adapt the color-coding algorithm to finding a (not necessarily 

simple) path of maximum weight. Edge search and search on connected subgraphs can 

be solved similarly. 

Proposition 4.1. Consider node (edge) seurch on paths or connected subgraphs for 

graphs G =(V, E), search length k, and nonnegative weights on the nodes (edges) 

of G. Then u search path of maximum weight can be found in time 2°(k)lEl log / VI. 

For k = O(log ( Vi), this is polynomial in the size of G. 

Proof. We show first the algorithm for node search on paths. We proceed in rounds, 

where in each round, every node v is assigned a color c(u) in { 1,. . , k}. We will make 

sure that every set of k nodes is colorful in at least one round, that is, all its nodes have 

different colors. Within each round, we are looking for a colorful path of maximum 

weight. This is done by dynamic programming, as follows: For i = 0,. . , k - 1 and 

all nodes t’, we consider paths that can be walked in i steps and end in v (for i = 0. 

such a path consists of the single node u). For each set C of colors, C C{ 1,. , k}, 
let M(v, C,i) denote the maximum weight of these paths that have C as the set of 

colors of their nodes, where for each color, only the weight of the first node with 

that color is counted. (Let M(v, C, i) = - cc if there is no such path, for example 

if c(v) $! C or if ICI > i + 1.) The initialization M(v,C,O) is trivial. If y(u) is the 
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weight of v, then M(v, C, i + 1) (for c(v) E C) is computed as the maximum of the 

numbers y(v)+M(u, C - {c(u)}, i) and M(u, C, i) for all edges (0,~) of G. In a round, 

computing the numbers M(v, C, i) takes a constant amount of work for every edge, 

every C, and every i. So the running time for each round is 0( IEl 2k k). 

The maximum weight of a search path is the maximal M(v, C, i) ever computed in 

all rounds. The search path itself is easily found, for example by keeping track of the 

computation. For the correctness of the algorithm, we have to make sure that every 

set of k nodes is colored with k different colors in at least one round. There is such 

a k-perfect family of colorings consisting of only 2 Ock) log 1 V( colorings (see [2]; a 

k-perfect family of 2’ck) log’ / VJ colorings is somewhat simpler to construct). Each 

of those colorings can be generated in 0( 1 VI) time. Thus the total running time for 

finding a path of maximum weight is 2°(k)lE] log IVI. 

For edge search on paths, the edges (u,v) of G have weights J(u,u). We use the 

same approach, coloring each edge with one of k possible colors c(u,u). The number 

M(u, C, i) represents the maximum weight on a path that ends in the node u, has the 

set C of colors of its edges, and is walked in i steps; again, we count only the weight 

of the first edge of a color. Inductively for i = 1,. ..,k-1, we computeM(u,C,i+l) as 

the maximum of the numbers J(U, u)+M(u, C- (~(0, u)}, i) and M(u, C, i) for all edges 

(u, u) with c(u, u) E C. Each round has again running time 0( IE] 2k k). Performing these 

rounds for a k-perfect family of colorings of edges, the overall running time is again 

2°(k)IEl log IV/ since log I.!? is proportional to log IV]. 

For search on connected subgraphs, a search path of maximum weight contains 

always k locations. Thus, in each round with given coloring, we can omit the parameter 

i above since i = (Cl. We define M(u, C) to be the maximum weight of a subgraph 

that contains the node u and has exactly one node (edge) of each color in C. For node 

search, M(u, C) is computed as the maximum of M(v,D) +M(u,C -0) for all edges 

(u,u) and proper subsets D of C. For edge search, that maximum is taken over the 

numbers M(u,D) + y(u, u) + M(u, C - D - {c(u, u)}) where c(u, U) E C - D. Since we 

consider all subsets C of { 1,. . , k} and their subsets D, these numbers M(u, C) are 

computed with O(3k) = 2 ‘ck) steps per edge. Thus, the running time for one round is 

20(k) [El. 

For all four versions of the search game, the total running time of the algorithm is 

thus 2°(k)IEl log IV]. This is polynomial in the size of G if k = O(log /VI). 0 

It is natural to ask if the game can be solved in polynomial time for graphs G = ( V,E) 

and a search length k that is asymptotically larger than log ) VI. Suppose this holds for 

node search on paths and, say, for all k = O(log” I VI) for some c( > 1. We claim that 

this would give us an algorithm to solve an instance of 3SAT with n clauses in time 

2’(““‘), which would be a rather unexpected result. Namely, the satisfiability of such 

an instance of 3SAT can be reduced to the question if a graph G’ with k= O(n) 

nodes has a Hamiltonian path [22, p. 1931. We append a very long path to the starting 

node of the Hamiltonian path whose length is a multiple of k to mm G’ into a graph 

G=(V,E) so that k=loga IV1 and thus [VI =2k’i(. Then Lemma 3.2 implies that G’ has 
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a Hamiltonian path if and only if G is uniformly searchable. Since we can decide this 

in running time that is polynomial in 1 VI, this would give us the mentioned algorithm 

for solving the 3SAT instance. 

In practice, an algorithm for the separation problem will not be used with the 

ellipsoid method but rather for finding a profitable column when using the revised 

simplex algorithm. It is typical to generate such a column by dynamic programming. 

In the case of node search on paths, for example, a path of maximum weight is com- 

puted for successively longer paths. In order to decide if the weight of a new node 

11 can be added to the current path of maximum weight, it is necessary to know if I‘ 

belongs to that path or not. In the proof of Proposition 4.1, this information is repre- 

sented by sets of colors, instead of storing directly the possible sets of nodes on the 

current paths. However, this requires storing 0( 1 Vlk) such sets instead of only O(2’ ) 

color sets. Prior to the color-coding technique of [2], Monien [19] proposed an algo- 

rithm for finding a simple path of length k in time O(k! IE]). He showed that for the 

dynamic programming step, much fewer sets of nodes have to be stored than with the 

naive approach. This algorithm can also be modified to solve the separation problem 

for node and edge search on paths. Even though its running time is asymptotically 

worse than when using color-coding, it may be superior for small values of k. and 

simpler to implement. We conclude our study with an outline of this method. 

Consider node search on paths, search length k, and nonnegative weights on the 

nodes of G. For each node v and i = 1,. , k, let F( c‘, i) denote the family of node sets 

S so that there is a path ending in c that is walked in i - I steps and visits exactly 

the nodes in S (so /S] < i). The families F(v, i) can be constructed inductively for 

successively larger values of i, starting with i = 1. Analogously to [19], we only store 

a certain wpresentative subfamily F’(a, i) of F( z:, i) that has the following property: 

For any set A of k - i or fewer nodes and a set S in F( c, i) disjoint to A of maximum 

weight, there exists some S’ in F’(c, i) that is also disjoint to A and has the same 

maximum weight. The reason for this condition is that some S in F(u,i) is eventually 

extended by a set A of nodes, where A is disjoint to S and iA\ < k - i, to obtain 

a search path of maximum weight. For that purpose, S can be replaced by a set S’ 

from F’( c, i). 

The sets of the representative family F’(v, i) are organized in a rooted tree 7’( 1:. i) 

with node and edge labels, defined as follows: Every node of T(v, i) is either labeled 

with a set S from F(v, i) or with a special symbol iL (it is also useful to store the 

weight of S). Every edge of T(u,i) is labeled with a node of G. If A is the set of 

edge labels on the path from the root of T(v, i) to some node t of T(a, i), then t is 

labeled with a set from F(v,i) disjoint to A of maximum weight. If there is no set in 

F(v, i) disjoint to A (for example if 2: E A), then t is labeled with 3,. If a node t of 

T(v, i) has depth less than k - i (with the root at depth 0) and is labeled with a set 

S E F(v, i), then t has ISI direct successors connected to t by edges labeled with the 

elements from S. All other nodes of r(r,i) are terminal nodes. 

Note that the tree T(v, i) has depth at most k - i and consists of O((i - 1 )“-I) nodes. 

The labels of these nodes form a representative family F’( L’, i): If A C V and \A( < k-i. 
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then a set S’ E F(v, i) disjoint to A of maximum weight (if such a set exists) is found 

as follows: Start with the root of T(v,i) as the current node t in T(v,i). If the label 

of t is 1, then there is no set S’ E F(v, i) disjoint to A. If the label S of t is disjoint 

to A, the result is S’ =S. Otherwise, descend in T(v, i) along an edge labeled with 

some element of S n A and repeat the step with the respective successor of t as the 

new current node. This procedure terminates with a node t of T(v, i) where the set of 

edge labels on the path from the root of T(v, i) to t is a subset A’ of A. The label S’ 

of t has maximum weight among the sets in F(v, i) disjoint to A’, so it certainly has 

maximum weight among the sets disjoint to A. 

The trees T(v, i) can be computed successively for i = 1,. , . , k. Let y(u) denote the 

weight of v and let y(S) denote the weight of a set S c V. For i < k and v E V, the 

tree T(v, i + 1) is constructed from the trees T(u, i) for the neighbors u of v in G. Let 

S, be the label of the root of T(u, i), and, if v ES,, let SL be the label of its successor 

along the edge labeled with v. To determine the label of the root of T(v, i + l), one 

has to compute the maximum of v(v) + y(S,) if v @ S,, and of v(v) + y(SL) and y(S,) 

if v E S,, for all neighbors u of v. The construction of T(v, i + 1) continues in that 

manner, descending along the same edge labels in the trees T(u, i) as in T(v, i + 1). 

Finally, the search path of maximum weight is one of the labels of the one-node trees 

T(v, k). The total running time of this algorithm is O(k! JEJ) which follows from the 

bound Cf=,(i - l)k-’ = O((k - l)!) and the time O(k) required for testing disjointness. 

A straightforward modification of this algorithm solves the separation problem for 

edge search on paths in the same running time. It is an open question if the approach 

of [19] can be applied to the separation problem for node or edge search on connected 

subgraphs. 
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