
ELSEVIER Information Processing Letters 56 (1995) 135-139

Information
Processing
Letters

A combined BIT and TIMESTAMP algorithm
for the list update problem

Susanne Albers ‘, Bernhard von Stengel *pl, Ralph Werchner ’
International Computer Science Institute, 1947 Center Street, Berkeley. CA 94704, USA

Received 5 May 1995; revised 7 August 1995
Communicated by W.M. Turski

Abstract

We present a randomized on-line algorithm for the list update problem which achieves a competitive factor of 1.6, the best
known so far. The algorithm makes an initial random choice between two known algorithms that have different worst-case
request sequences. The first is the BIT algorithm that, for each item in the list, alternates between moving it to the front of
the list and leaving it at its place after it has been requested. The second is a TIMESTAMP algorithm that moves an item
in front of less often requested items within the list.

Keywords: On-line algorithms; Analysis of algorithms; Competitive analysis; List-update

1. Description of the algorithm

The list update problem is one of the first on-line

problems that have been studied with respect to com-

petitiveness (see [51 and references). The problem
is to maintain an unsorted list of items so that access
costs are kept small. An initial list of items is given.

A sequence of requests must be served in that order.

A request specifies an item in the list. The request is

served by accessing the item, incurring a cost equal

to the position of the item in the current list. In order
to reduce the cost of future requests, an item may be

moved free of charge further to the front after it has
been requested. This is called a free exchange. Any

other exchange of two consecutive items in the list in-

curs cost one and is called a paid exchange. The goal

* Corresponding author.

’ Email: {aIbers,stengel,werchner}@icsi.berkeIey.edu.

is to serve the request sequence so that the total cost
is as small as possible.

An on-fine algorithm has to serve requests with-

out knowledge of future requests. An optimal off-line
algorithm knows the entire sequence (+ of requested

items in advance and can serve it with minimum cost
OPT(a). We are interested in the competitiveness of

an on-line algorithm. Let A(U) be the cost incurred
by the on-line algorithm A for serving the sequence

CT. Then the algorithm is called c-competitive if there

is a constant b so that A (a) < c. OPT(g) + b for all
request sequences u. The smallest c with this property

is called the competitivefactor of the algorithm.
The well-known MOVE-TO-FRONT rule is 2-

competitive, which is optimal for deterministic al-

gorithms [561. The performance of a randomized
on-line algorithm A can be better if it is evaluated
against the oblivious adversary [2]. The oblivious
adversary specifies a request sequence CT in advance

0020-0190/95/.$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSDI 0020-0190(95)00142-5

136 S. Albers et al./Information Processing L.etiers 56 (1995) 135-139

and is not allowed to see the random choices made

by the on-line algorithm A. Let E[A(u)] denote

the corresponding expected cost. The algorithm is

called c-competitive if there is a constant b so that

E [A (a)] < c. OPT((T) + b for all request sequences

cr. Against this adversary, which is considered in this
paper, the optimal competitive factor of a randomized

on-line algorithm for the list update problem is not

yet known.

The cost of accessing the ith item in the list is i.

However, to simplify our analysis, we assume this

cost to be i - 1 instead. Clearly, a c-competitive
on-line algorithm for this (i - 1)-cost model is also

c-competitive in the i-model. With either cost model,

it is known that no randomized on-line algorithm

for the list update problem can be better than 1.5-

competitive [71.
We will combine two on-line algorithms for the list

update problem that store with each item some infor-

mation about past requests. Both algorithms use only

free exchanges.

The first algorithm is the 1.75competitive BIT al-
gorithm due to Reingold, Westbrook, and Sleator [51.
The algorithm maintains a bit for each item in the list.

Initially, the bit is set at random to 0 or 1 with equal

probability so that the bits of the items are pairwise

independent.

Algorithm BIT. Each time an item is requested, its bit

is complemented. When the value of the bit changes

to 1, the requested item is moved to the front of the list.

Otherwise the position of the item remains unchanged.

The second algorithm is an instance of the TIMES-

TAMP algorithm recently introduced by Albers [11.

This algorithm maintains for each item the last two

times it has been requested. An item is treated in one
of two ways (which can be determined once at the
beginning by a random experiment, so that the algo-

rithm is barely random, that is, it uses only a bounded
number of random bits independent of the number of
requests [51). With probability p, the item is moved
to the front of the list after it has been requested. With
probability 1 - p, it is treated in a different way. The
TIMESTAMP algorithm with parameter p has a com-
petitiveness of max{2-p, 1 +p(2-p)}. The optimal
choice of p gives a &competitive algorithm, where
4 = (1 + 6) /2 M 1.62 is the Golden Ratio.

We use the TIMESTAMP algorithm with parameter
p = 0, so that it is deterministic. The resulting 2-

competitive algorithm can be formulated as follows.

Algorithm TS. After each request, the accessed item

x is inserted immediately in front of the first item y

that precedes x in the list and was requested at most

once since the last request to X. If there is no such
item y or if x is requested for the first time, then the

position of x remains unchanged.

Our new algorithm is a combination of these two

algorithms.

Algorithm COMB. With probability 4/5 the algo-

rithm serves a request sequence using BIT, and

probability l/5 it serves the sequence using TS.

Theorem 1. The on-line algorithm COMB is
competitive.

with

1.6-

In the following, we will prove Theorem 1 using a

well-known technique [3,4] of analyzing separately

the movement of any pair of items in the list. The

algorithms BITand TSpermit such a pairwise analysis.

2. Projection on pairs of items

Our goal is to look only at two items at a time when

we consider a request sequence, the list maintained by
the on-line algorithm, and the cost of the off-line al-

gorithm. Let (T be a sequence of m requests, and let

o(t) be the item requested at time t for t = 1,. . . , m.
Let L be the set of items of the list. Consider any de-

terministic algorithm A that processes (T. At time t,
requesting a(t) incurs a cost that depends on the cur-
rent list maintained by A. This cost can be represented
as the sum

c A(t,x),
XEL

where A(t, x) is equal to one if item x precedes cr(t)
in the list at time t, and zero otherwise. The cost A ((+)
of serving the entire sequence u has then the following

form,usingA(t,n) =Oforx=a(t):

A(U)= c EN&x)
t=l,...,“r XEL

S. Albers et al. /Information Processing Letters 56 (1995) 135-139 137

=c c A(t,x)
XEL t=l,...,nt

=c c c A(t,x)
XEL JCL f:n(f)=y

= c c (A(t,x) +A(t,y)).
{x,y}CL:x+p t:a(r)E{x,y}

With the abbreviation

Ax!.(u) = c (A(t,x) +A(t,y)), (1)

we can write this as

A(v) =): Axy(g). (2)

Let (T,! be the request sequence u with all items other

than x or y deleted. Only these requests are considered

in (1). In the sum there, A (t, x) + A(t, y) is the cost

of accessing c(t) in the two-element list that consists
of the items x and y in the same relative order as in

the full list. In that way, the term A,,(a) denotes the
cost of the algorithm “projected” to the unordered pair

{x, y} of items.

The algorithms BIT and TS are compatible with the

projection on pairs. That is, when these algorithms

serve a request sequence CT, then at any time the rela-
tive order of two items x and y in the list depends only

on the projected request sequence uxv and the initial

order of x and y. This is obvious for the algorithm

BIT which moves an item independently of any other

item. For the algorithm TS, this follows from the foi-
lowing lemma, applied to the request sequence u or

any prefix of it.

Lemma 2. In the list obtained after algorithm TS

has served the request sequence u, item x precedes
item y if and only if the sequence uxv terminates in

the subsequence xx, xyx, or xxy, or if x preceded y

initially and y was requested at most once in u.

Proof. Suppose uXY terminates in xx or xyx, and let y
precede x in the list at the time of the last request to x.
Then y is among the items that have been requested at
most once since the preceding request to x. Since x is
inserted in front of the first of such items, x precedes

y in the final fist.

Let uXg terminate in the subsequence xxy, and let

tl, t2, and t3 be the times of these last three requests
to x or y. After the request to x at time t2, item x

is moved somewhere in front of y. Suppose that after

the request to y at time t3, item y is, contrary to our

claim, moved somewhere in front of x, and suppose
further that y is the first of the items in u that has

not been requested between tl and t2 and is requested

after t2 and then moved in front of x. Let to be the

time of the preceding request to y (item y must be

requested at least twice to be moved), where to < tl .

Then y is inserted immediately in front of an item z
that has been requested at most once between to and

t3, so z f x, and z is in front of x at time tg. If z was

requested before t2, then uXz ends in xx or xzx, where
we have shown that x is in front of z. after t2. So z

is an item that has not been requested between tl and
t2 and is requested after t2 and then moved in front of

x, but before the request to y at time t3, contradicting

our assumption that y is the first of such items. Thus

x precedes y in the final list as claimed.

If uXY terminates in one of the subsequences yy,
yxy, or yyx, then by the same argument with x and y

interchanged, y precedes x in the final list.

The only remaining cases are when both x and y

are requested at most once in u. Then neither item

is moved, so their relative order is as in the initial

list. ci

By Lemma 2, the relative order of any two items x

and y in the list when TS serves u is the same as when
TS serves uXxv on the two-element list consisting of

x and y. In other words, TS,,(u) = TS(u,,.), where

TS(u,,) denotes the cost of TS serving ai,. on the

two-element list (with x and y in the same iniiial order

as in the long list). Similarly, the projected cost of

the algorithm BIT fulfills BIT,,(u) = BIT(gxl.). Note

that this cost is a random variable.
For the optimal off-line algorithm OPT, we work

with the inequality

OPT,, (u) b OPT(uxY) 3 (3)

which states that the projected cost of OPT process-
ing u is at least as high as the optimal off-line cost
OPT(uxY) of serving u,.. on the two-element list. An
optimal off-line algorithm OPT for only two items
can be easily specified. However, (3) may not always
hold with equality. In that case, the moves of OPT

138 S. Albers et al./Information Processing Letters 56 (1995) 13.5-139

for all pairs of items cannot be combined to yield
an algorithm for the entire list. The different notation

OPT emphasizes that this algorithm may perform bet-

ter than the projection of OPT serving requests on a

longer list.

A randomized algorithm can be regarded as a proba-

bility distributionon deterministic algorithms A. Then,

(2) carries over to expected values. For the expected
cost of our on-line algorithm COMB we will prove in

Section 3 the inequality

E[COMB,,((+)] < 1.6.OPT(a,,) (4)

for all pairs {x, y} of items. By the preceding discus-
sion, this implies E[COMB(o)] < 1.6.OPT(o) and

thus shows Theorem 1.

3. Competitiveness of the algorithm

As shown in the previous section, the competitive-

ness of the algorithm COMB can be analyzed consid-

ering only request sequences gXy to the items x and

y in a two-element list. We partition uXy into subse-

quences, each of which is terminated by two consec-

utive requests to the same item. Assuming that x pre-
cedes y in the initial list, the first subsequence is of the

form x’yy, X’ (yx) kyy, or xr (yx) ‘X for some 1 2 0 and
k 2 1. If that subsequence terminates in xx, the next

subsequence is of the same form. If it terminates in

yy, we consider next the subsequence of one of these

forms with x and y interchanged. Continuing in this

manner, (T is partitioned uniquely. We can assume that

the last subsequence is also of this form by appending

the requests yy to gX,,, which affects costs negligibly.

It suffices to prove (4) for each subsequence. The
cost for such a subsequence of uX1’ is the same as when

the subsequence is served by itself, for the following
reason: Whenever an item has been requested twice

in a row, it is moved to the front by BIT and TS. For
OPT, we can assume the same behavior, because it is
optimal to move the item, say X, to the front after the
first of two or more consecutive requests to x. Thus,
after a subsequence of(+,y ending with xx has been
served by BIT, TS, or OPT, these algorithms start on
the next subsequence with item x at the front of the
list. When algorithm BIT is used, the bits of some
items may have changed, but the expected cost is not

affected; algorithm TS treats any request to y after the
requests XX as if y is requested for the first time.

The cost for serving a subsequence varies with the

algorithm. We first prove a lemma for the BIT algo-

rithm.

Lemma 3. Suppose that BIT has served the request
sequence xyx, or the sequence yx on a list where
initially x preceded y. Then x is in front of y with
probability 314.

Proof. We show that after BIT has served either se-

quence, item y is in front of x if and only if the bit of x

is 0 and the bit of y is 1: Namely, if the bit of x was set

to 1 at the last request to x, then x was moved to the
front. Otherwise, x’s bit is 0, so the bit was set to 1 at

the preceding request to x (in the sequence xyx) and

x is front of y at the time of the request to y (which
holds by assumption for the sequence yx). Thus, y’s

bit must have been set to 1 after the request to y to

move y in front. The bits of both items are indepen-
dent, so y is in front of x with probability l/4. 0

Lemma 4. In the initial list of two items, let x be in
front of y. The following table descn’bes the expected
costforserving the indicated request sequences, where
1 > 0 and k 2 1, by the algorithms BIT, TS, and OPT.

request sequence BIT TS OPT

X’YY 2
2 2 1

X’(Y#YY ;k+l 2k k+l

x’(yx)kx ;k+a 2k- 1 k

Proof. The initial 1 requests to x incur no cost for any
of the algorithms. Consider the request sequence x’yy.
Since x precedes y before the first request to y, the
cost of serving that request is 1. After that request, al-
gorithm BIT moves item y to the front with probability
l/2 so that the expected cost for the service by BIT is

3/2. Algorithm TS incurs cost I at both requests to y
by Lemma 2. Clearly, the optimal off-line algorithm
OPT moves y to the front after the first request to y.

The sequence x’(y~)~yy is served by BIT as fol-
lows: The first subsequence yx incurs expected cost
3/2 since the first request costs 1, after which y is
moved to the front with probability l/2, so the re-

quest to x has expected cost l/2. Any further request
to y or x in the subsequence (y~)~ incurs expected

S. Albers et al. /Information Processing Letters 56 (1995) 135-139 139

cost 3/4 by Lemma 3 (and Lemma 3 with x and y

interchanged). Lemma 3 also shows that the final two
requests to y have expected cost 3/4 and l/4, respec-
tively. Thus, the BIT algorithm serves x’(yx) ‘yy with

expected cost i k + i + i. By the same reasoning, that

cost for the sequence x’(yx) k~ is i k + i.

When algorithm TS serves the sequence x’(yn) kyy,

then the first two requests of the form yx incur costs

1 and 0, respectively, since y is left behind x after the

first request to y. All subsequently requested items are
moved to the front of the list by Lemma 2. The result-

ing costs are therefore 2k (note k 3 1). Similarly, TS

serves x1 (yx) kx with cost 2k - 1.

The optimal off-line cost for serving the sequence

x’(yx) kyy is k + 1 since for each of the k pairs yx
of requests, at least one has cost 1, and an extra cost

unit is caused by the final double request to y. It is

optimal to move y to the front at any time before the

last request to y. The optimal off-line cost for serving

the sequence x’(yx) kx is k. It is optimal to leave x
always at the front of the list. Cl

The performance of algorithm COMB, which se-
lects BIT with probability 4/5 and TS with probabil-

ity l/5, follows from Lemma 4. COMB serves the

request sequence x’yy with expected cost 1.6, the se-
quence x’(yx) kyy with cost 1.6k + 0.8, and the se-

quence XI (yx) k~ with cost 1.6k. In each case, this is

at most 1.6 times the cost of OPT. This proves (4)

and thus Theorem 1.

The probabilities for deciding between BIT and
TS are optimal: The critical sequences are x’yy and

x’(yx) kx (for x’(yx) kyy COMB performs better),
were the simplest cases are yy with expected cost 1.5

for BIT and 2 for TS, and yxx with expected cost

1.75 for BIT and 1 for TS. If a randomizing adver-
sary chooses yy with probability 3/5 and yxx with

probability 215, then both BIT and TS have expected

cost 1.6, or 1.6 times the cost of OPT. Thus, by Yao’s

Theorem [81 (or a simple direct argument), no ran-

domized combination of BIT and TS can have cost

less than 1.6 on both sequences (and their repetitions
in longer sequences).

4. Conclusions

We have presented a simple randomized on-line al-
gorithm for the list update problem that has a compet-

itive factor of 1.6. The best known lower bound for

that factor is 1.5 [71. The remaining gap is small, but
the best possible competitive factor remains to be de-

termined. We have found a 1.5-competitive algorithm

(not presented in this paper) for serving requests on

a list of up to four items, but it cannot be generalized

to longer lists.

References

[2l

131

141

[51

[61

[71

[81

S. Albers, Improved randomized on-line algorithms for the
list update problem, in: Proc. 6th Ann. ACM-SIAM Symp. on
Discrete Algorithms (1995) 412-419.
S. Ben-David, A. Borodin, R. Karp, G. Tardos and A.

Wigderson, On the power of randomization in on-line

algorithms, Algorithmica 11 (1994) 2- 14.

J.L. Bentley and C.C. McGeoch, Amortized analyses of

self-organizing sequential search heuristics, Comm. ACM 28

(1985) 404-411.

S. Irani, Two results on the list update problem, Inform.
Process. Lett. 38 (1991) 301-306.
N. Reingold, J. Westbrook and D.D. Sleator, Randomizei

competitive algorithms for the list update problem,

Algorithmica 11 (1994) 15-32.

D.D. Sleator and R.E. Tarjan, Amortized efficiency of list

update and paging rules, Comm. ACM 28 (1985) 202-208.
B. Teia, A lower bound for randomized list update algorithms,

Inform. Process. L.ett. 47 (1993) 5-9.
AC. Yao, Probabilistic computations: Towards a unified

measure of complexity, in: Proc. 18th Ann. /EEE Symp. on
Foundations of Computer Science (1977) 222-227.

