List Update Posets

Draft, February 6, 1996
(Appendix added December, 2004)

Susanne Alber$, Bernhard von Stengé| Ralph Werchne?

1. Introduction

This note discusses partially ordered sets (posets) as a structural device for proving or
disproving 3/2 as the optimal competitive factor of a randomized on-line algorithm for
the list update problemagainst an oblivious adversary. It represents incomplete work
meant for communication to others interested in this problem. This work started in the
fall of 1994 when the authors were at ICSI Berkeley. In discussions with Bernhard von
Stengel in July 1995 in Berlin, Stefan Felsner raised many of the questions on posets
mentioned below.

We use the conventions about the list update problem in [2]: The listis static and has
nitems. We try to deal only with free exchanges where a requested item may be moved
free of charge further to the front after it has been requested. (Any other transposition
of two items incurs cost one and is called a paid exchange.) We consider theost
model (also called partial cost model) where the cost of accessinthtitem in the list
Isi— 1. With this cost model, the best known lower bound [5] for the competitive factor
is exactly 3/2. In the (or full) cost model, the cost of accessing iltle item in the list
isi. There, 3/2 is only an asymptotic lower bound for long lists, since we have to subtract
a term proportional td/n for a list of n items. We focus on the partial cost model since
it is easier to analyze.

Finally, we try to base our analysis on pairs of items. Deleting all but the requests

to two given items< andy from a request sequeneeyields the request sequenag,.
Considered for all such pairs, there is a lower bo@®RIT(o) for the cost of the optimal

1 Max-Planck-Institutiir Informatik, Im Stadtwald, 66123 Saaiizken, Germany. Email: albers@mpi-

sh.mpg.de
2 |nstitut fir Theoretische Informatik, ETH i#ich, CH-8092 Zirich, Switzerland. Email: sten-

gel@inf.ethz.ch
3 FB Mathematik, Universitt Frankfurt, Postfach 11 19 32, 60054 Frankfurt/Main, Germany. Email:

werchner@informatik.uni-frankfurt.de

offline algorithmOPT when servings. The costOPT(oyy) is simple to compute: When
only two items are requested, it is optimal to move an item to the front whenever it is
requested twice or more in succession.

Consider a list of two items andy, and a sequence of requests to these items.
Supposex precedes in the list, and there is a requestyo Then an optimal offline
algorithm knows the optimal treatment (movipgp the front or not), whereas the online
algorithm makes a “mistake” with probability at least 1/2. If it is possible to keep this
mistake probability at 1/2, then we stay 3/2-competitive, S@Q&F pays only 1 (for the
first request ty), whereas the online algorithm, at the next requestdoy, pays an extra
expected cost of 1/2 since it mistakenly exchangedth x or not. This can be made
precise by partial orders.

2. Posets generated by request sequences

We define a partial order by an initial listand a request sequenceas follows. This
partial order is denotedo|, and is defined inductively, starting with the empty request
sequenc®, for all itemsy, zwith y # z (we always compare only distinct elements):

y(0|z: <= yprecedegin L.

The sequence obtained by extendmgvith an additional request to the itexis denoted
ox. Then

y(oX|z: <= (y(o]z and z#Xx) or (y=x and not z(o|X)

In other words, a request to an itexnchanges only the relationship &fto the other
elements of the poset. Thernis moved in front of all itemsz except where < x held
before (in the partial ordefo]); in those casess becomes parallel (uncomparable) to
zin (ox]. In particular,x is always minimal in(ox]. Since the relationship between
unrequested items is unchanged, this poset represents a pairwise property, i.e.

x(a]y <= x(oxy.

The use of this poset for a 3/2-competitive online algorithm follows from the fol-
lowing result.

Lemma 1. Consider an online algorithm that uses only free exchanges and after any
request sequenag maintains the list such that at for any two itemy

1 if x(o]y
X precedey with probability < 0 if y(o]x
1/2 otherwise.

Then this algorithm is 3/2-competitive.

Proof. By pairwise analysis. Suppose initiallyis in front of y. Projected to this pair

of items, any request sequenag, can be split into subsequences after which the order
of the two items is determined for both offline and online algorithm, namely after two
successive requests to one item. There are only two kinds of such subsequiysEs

orX (yx)*lyyfor some > 0andk > 1. Then the projected expected cost of serving either
sequence ik for OPT and3k/2 for an online algorithm with the described properties: For
example, the request sequernyegxxincurs cost 2 folOPT (y is never moved). Before
serving the requestsx, y, X, X, the partial order relation betwearandy is, respectively:

X <Y, X||y (xandy are uncomparable) <y, X||y, x < y. The corresponding expected
costs arel,1/2,1,1/2,0, with sum 3. In general, the relationship< y determines an
expected cosd/2 for each pair of requesisxin (yx)k and in the final requestgy for the
second sequence, but only cost 1 @PT. O

Is there an algorithm with the properties in Lemma 1? The answer is yes for a
list with four items, and possibly for a list with five items. Any four-element poset is
two-dimensional, that is, it can be represented as an intersection of two linear orders.
With a single random choice, the (barely) random algorithm selects one of these linear
orders which it maintains as the list, but remembers the other order. Any request to an
item changes the partial order, which can be implemented as a free exchange on both
linear extensions in some way; one of these changes is usually a move to the front of the
requested item, in the other dimension the item is often (but not always) left in place. For
example, Fig. 1 shows a podetwhere the four items are, b, c,d, and its change after
a request to itend. The poseP is represented as the intersection of two linear orders
b<a<d<canda<c<d<b. By requestingl, the new linear ordersatk< b<a<c
anda < d < c < b. The first of these is obtained by a move to the front of the requested
item d, the second by a partial forward movedin front of ¢ but behinda. This partial
move is not necessary if itemy which is symmetric tad in P, is requested (thea is
merely moved to the front in the first list), but for one of these items it is necessary.

c d C b
requesd

Vo — N

a a d
Figure 1.

Some care has to be taken to represent the poset: For example, if the only com-
parable items ara andb with a < b, then this poset should not be represented as the
intersection of the two linear orders with a < b < d andd < a < b < c¢. Namely, in
this case a request tohas to moveb in front of ¢ in the first list and in front od in
the second list, and thus in front afin both. Howevera andb should be parallel. A

representation that worksas< b < ¢ < d intersected withl < ¢ < a < b. Then a request
to bis implemented by a move to the front in the second list.

By enumeration, one can examine the partial orders that occur and the possible
requests to any item, and show the new representation (see the appendix). A systematic
way of describing this approach would be desirable, also to extena it6 if possible.

A natural question is the following: Which partial orders can be generated in this
way? This may be a restricted class of posets. For example, if all elements of the initial
list are requested once in ascending order (by the request sequgntey are all in-
comparable in the resulting posgt]. Starting from this symmetric situation, a request
sequence requesting every element exactly twice generatesi@nval order, which is
a poset where elementsy are represented by interva¥sY on the real line, withk <y
iff X is completely to the left of. The endpoints of the intervals representiagr] are
the negative request times to the two requests to an itemn khowever, we can show the
following.

Lemma 2. Any poseP with n elements can be generated @g for a request sequence
o to the items in am-element list.

Proof. Consider a linear orddr on then items, whereg < Xp < -+ < X,. LetA(L) be
the sequence of double requests to these items in reverse order:

A(L) = XnXn . . . XoXoX1X1 .

Clearly, (\(L)] = L irrespective of the initial list. Furthermore, 12{L) be the sequence
of requests requesting these items once in reverse order:

A(L) = XnXn—1-..XoX1 .

If Pis the poseta], then requesting all items once as\ifL) does the following: Clearly,

if x||y in P, then this relationship is unchanged by the requésts since they contaix
andy once. Similarly, ifx < y in bothP andL, thenA (L) contains first a request joafter
which x||y, which is changed back to< y after the request te. However, ifx <yin P
butx > yin L, thenx is requested first inA (L) without effect, but the subsequent request
toy produce||y. In other words,

(0A(L)] = (ag]NL.
In particular,A (L) leavesP unchanged ifL is a linear extension d® (that is,x < yin P
impliesx < yinL).
Representing any givadhas an intersection af linear extensions d? (for example,

all linear extensions),
P=LiNnLxN...NLy,

we obtain
P=(A(L1)A(L2)...A(Lg)]

which proves the claim.]

The minimum numbed of linear orders whose intersection represents a partial order
P is the dimension oP (see, for example, [4]). The preceding proof suggests that partial
orders of high dimension need long request sequences to represent them. However, for the
standard example ofdrdimensional order a much shorter request sequence suffices. This
standard example is the ord@whose graph is the complement of a perfect matching on
2d elements«y, Xo,...,Xoq. That is, the comparable elementsHrare given byx; < Xg.4 |
for 1 <i,j <nwithi# j. Assume that the order of items in the initial listdg, 1 < X1 <
Xgi2 < X2 < -+ < Xpq < Xq. ThenP = (o] for the request sequence

O = XoXd+2X3Xd+3 - - - XdX2d X1X2 - . . X -

As an example, lai = 3and writea,b,c,d, e, f for x1,...,Xs. Starting from the initial list
d<a<e<b< f<c, the request sequenbec f generates the poset in Fig. 2, and the
subsequent requesdbcthe three-dimensional poset in Fig. 3.

a b C f e d
d e f a b C
Figure 2. Figure 3.

The poset in Fig. 2 is two-dimensional, and its representation as an intersection of
two linear orders is unique up to isomorphism: Namely, one of the minimal elements
d,e f, sayd, has to be the smallest element of one of these linear orders. &iisce
incomparable with all elements excepthese have to precedan the other linear order.

So the first linear order starts ds< a< - -- and the other ends as < d < a. Continuing

this argument, the two orders are (up to symmalry)a<e<b< f <candf <c<e<

b < d < a. This causes the approach that worked for four-element lists to fail, where the
two dimensions have probability 1/2 and one of them represents the actual list maintained
by the algorithm. Namely, requesting the itdonmeans it has to be moved in front of
a,c,d, f in both lists, and thereby will be moved in front e<houghb should precede

e in only one of these lists. This happens although the requdst(¢m similarly a or

) in the poset in Fig. 2 still results in a poset that is two-dimensional (although not for
long, since Fig. 3 appears shortly). That is, even when we consider request sequences
that generate only two-dimensional partial orders, it seems that these cannot be used to
achieve a 3/2-competitive online algorithm according to Lemma 1.

3. Expected position of items

At first sight, Lemma 1 is stronger than it has to be. In proving a competitive factor of
3/2, it suffices that thexpectegosition of an item is the same as prescribed by the partial
order, as follows: LeP = (g]. Then the expected positig{x) according td® of an item
x is defined as< referring to the partial ordd? and|| to incomparability inP as above)

P(X) = Ky ly <x}[+Hylyl[x}/2.

This expected position (in terms of accessing cost, that is, as a number between 0 and
n— 1) results from a list where the relative position of items is distributed as in Lemma 1.

It is this expected position that enters the cost comparison bet@Pdrand the online
algorithm (using pairwise analysis, see [2]).

Thus, it suffices to generate a distribution on lists that achieves the expected position
p(x) determined by the partial order Is this generally possible R is arbitrary? The an-
swer is yes if arbitrary linear orders can be used. The set of expected positions, vy)
resulting from a distribution on linear orders is a polytope known agp#reutahedron
(see, for example, [3]). It is characterized by the linear constraints

50-(c)

|A|)
viz(forall AC{1,...,n}.
2=

With v; := p(x;) for the itemsxy,, X,, these constraints hold, because

3 pix) > _ZA(I{J EAlX <X} +{i €AlxlIx}]/2)

—12(Yy 1+ Yy 1+ Y 1):(’2')

i,JEATXj<Xi iL,JEATX>Xi i, JEATX)||X

and

where equality holds foA = {1,...,n}.

However, this is no longer true if only linear extensiond’adre allowed. Consider
the poseP in Fig. 3. Each minimal element is parallel to three other elementg(ao=
p(b) = p(c) =3/2andp(d) = p(e) = p(f) =7/2. In any linear extension d? or a subset
of P, minimal elements have to come first, so two of the minimal elemeits have to
be on the first two positions (counting O and 1) of the linear extension, similarly two
elements ofd, e, f occupy the last two positions (counting 4 and 5), and only positions
2 and 3 can be chosen as either a minimal or a maximal elemdnt 8b the average
position ofa, b,c among linear extensions &fis at most0+ 1+ 3) /3= 4/3, anda,b,c
cannot all have expected positi8p2.

Why do we consider only linear extensionsRs# This is justified by the use of free
exchanges. For example, it is easy to show the following: Assume an initial list defining
a linear order is given, and a single itemms requested. Then the lists obtainable by
free exchanges after this request are exactly the linear extensidkls @his statement
does no longer hold for sequencesconsisting of more than a single request, because
an algorithm that does nothing uses also only free exchanges, but no longer keeps a list
extending(o]. However, the expected positigrix) of an itemx given by a partial order
P can only be maintained all the time if the algorithm behaves as in Lemma 1:

Lemma 3. Suppose a randomized online algorithm uses only free exchanges and main-
tains an expected positignx) for each itemx as prescribed by the partial ordeo]| for
all request sequences. Then after serving,

1 if x(oly
x precedey with probability < 0 if y(o]x
1/2 otherwise.

In particular, the algorithm gives positive probability only to lists that are linear exten-
sions of(a].

Proof. First observe that an algorithm with the described property indeed maintains only
lists that are linear extensions @] with positive probability. The initial list defines a
linear order(0]. The expected positiop(x) = 0 of the first item in that list can only be
represented as a convex combination of positions in lists wherat the first position.

The same holds for the second up to thie item, so the linear order representing these
expected positions must have probability one (in other words, every linear order represents
a vertex of the permutahedron). This shows the clainofer 0.

As inductive hypothesis, assume the claim is true for the request seqoeacel
item x is requested afterwards. We want to show

1 if y(ox|z
y precedeg with probability < 0 if z(ox]y
1/2 otherwise.

The probability thay precedez in the list for itemsy andz other tharx is not affected,
since their transposition would require a paid exchange. Sp4ek. If x(o]y, then
x(ox]y andx precedes/ with probability one as before singecannot be moved. If
y(a]x, thenx andy are incomparable iKox|, sop(y) is increased by 1/2. Since onky
(and no other item) can be moved in frontydfy a free exchange, this has to happen with
probability 1/2, and afterwardsis indeed in front ok with probability 1/2. Ifx andy are
incomparable ino], thenx(ox]y, sop(y) is again increased by 1/2. In those lists (with
combined probability 1/2) whereis in front ofy after servingo, the position ofy is not
increased by moving with a free exchange. This requires to movi front of y in all
other lists where< is behindy, thus placingx in front of y everywhere. This shows the
claim for ox. O

The above argument and Lemma 3 show that the partial order in Fig. 3 defines
expected positionp(X) that cannot be achieved for all itermsvhen only free exchanges
are used.

4. Musings

Clearly, the above represents only a collection of partial results. The goal is, of course,
to use this for getting a better upper or lower bound for the competitive factor. We have
several conjectures in this direction.

One possibility would to be to improve the lower bound 3/2 by constructing a dis-
tribution on request sequences where the expected position of at least oxadtiemyer
than p(x), as indicated at end of Section 3, and then requesting that item. This has to be
done in a repetitive fashion such as to actually generate the higher cost. These repetitions
are maybe possible by requesting each item once as in the sequéhgassed in the
proof of Lemma 2 withL being linear extensions of the used partial orders. Assuming
this works, which is speculative, we have only constructed a lower bou@Pand
have to show thaDPT can actually serve these requests with this low offline cost. Fur-
thermore, this lower bound is established for the partial cost model only. The approach
would then have to be extended to lists of arbitrary lengfor getting this result (3/2
is not the optimal competitive factor) for the full cost model. Finally, one would have to
consider paid exchanges as well.

Alternatively, partial orders may have something to do — this is even more specu-
lative — with the relationship oOPT andOPT. That is, whenever the partial order is
such that the expected costs of the online algorithm are necessarily larger than 3/2 times
the cost ofOPT for some items, the@PT cannot request these items li®PT but has
to pay extra. In that way, the online algorithm can again catch up @M, and we can
stay 3/2-competitive. There is no reason why this should be the case, but it may be worth
trying.

It may also be useful to study the current algorithms with respect to the partial or-
ders presented here. For example, the behavior of the BIT algorithm is not far from that
described in Lemma 1: A requested iterpasses with probability 1/2 items in front of it
since it is moved to the front at every other request. However, this represents the partial
order incompletely. The TIMESTAMP algorithm [1] is more sophisticated by not moving
items completely to the front of the list. It may also be interesting to study its behavior
with respect to the partial order.

References

[1] S. Albers, Improved randomized on-line algorithms for the list update proli*eoc,
6th Annual ACM-SIAM Symposium on Discrete Algoritlifrg95) 412—-419.

8

[2] S. Albers, B. von Stengel, and R. Werchner, A combined BIT and TIMESTAMP
algorithm for the list update problerimformation Processing Lettefs6 (1995) 135—
139.

[3] A. von Arnim, U. Faigle, and R. Schrader, The permutahedron of series-parallel
posetsDiscrete Applied Mathematic8 (1990) 3-9.

[4] I. Rival, Linear extensions of finite ordered sets. In: Orders: Description and Roles,
eds. M. Pouzet and D. Richard, North-Hollafdnals of Discrete Mathemati&3
(1984) 355-370.

[5] B. Teia, A lower bound for randomized list update algorithtiméprmation Process-
ing Letters47(1993) 5-9.

Appendix

In this appendix, we list the 3- and 4-element posets, all of which are two-dimensional,
and show how to represent any access to a list element as on operation on one or both
of the lists representing them. The first table shows the possible 3-element orders, also
as intersections of two linear orders, on the elemariisc, and the effect of a request to
eithera, b, orc.

order

as dim 2

a

b

c

a<b<c
(allb) <c
a<(bllc)
(a<b)|lc
al|bllc

abcnabc
abcnbac
abcnachb
abcncab
abcncbha

abcnabc
abcnabc
abcnacb
abcnacb
abcnacb

abcnbac
bacnbac
bacnabc
abcnbca
bacnbca

abcncab
abcncba
cabnach
cabncab
cabncbha

The next table shows this for posets with 4 elementsc,d. Not all entries are given.

The posets are listed in breadth-first order of appearance after requests to list items, start-
ing from the linear order. Some requests require that the item is moved partially forward
in one list, not all the way to the front. This occurs for the requestsoo the two partial
orders(a< (b||c))||d anda < (b||c||d). The “N” shaped posdt||b) < c,b < d causes

no difficulty.

order

as dim 2

a

b

c

d

a<b<c<d
(allb)<c<d
(a<b)|lc)<d
a<b<o)lld
allbl|c) <d
(al[b) <c)|d
a< (bllc)<d
(a<b)llcl/d
a<((b<c)l|d)
(al]|b) <c,b<d
(a<b)|l(c<d)
al|bjlc||d
(a<(bl[c))|ld
a<(bl[c|/d)
(al[b) < (c|ld)
a<b<(c||d)

(
(
(
(

abcdnabcd
abcdnbacd
abcdncabd

abcdnbdac

abcdndacb
abcdnadcb

abcdnabcd
abcdnabcd
abcdnachd

abcdnadcb
abcdnadcb

abcdnbacd
bacdnbacd
abcdnbacd

abcdnbdac
abcdnbadc

abcdncabd
abcdncbhad
cabdncabd

acbdncdab
acbdncadb

abcdndabc
abcdndbac
abcdndcab

dabcndach
dabcnadcb

10

