
List Update Posets

Draft, February 6, 1996
(Appendix added December, 2004)

Susanne Albers1, Bernhard von Stengel2, Ralph Werchner3

1. Introduction

This note discusses partially ordered sets (posets) as a structural device for proving or
disproving 3/2 as the optimal competitive factor of a randomized on-line algorithm for
the list update problemagainst an oblivious adversary. It represents incomplete work
meant for communication to others interested in this problem. This work started in the
fall of 1994 when the authors were at ICSI Berkeley. In discussions with Bernhard von
Stengel in July 1995 in Berlin, Stefan Felsner raised many of the questions on posets
mentioned below.

We use the conventions about the list update problem in [2]: The list is static and has
n items. We try to deal only with free exchanges where a requested item may be moved
free of charge further to the front after it has been requested. (Any other transposition
of two items incurs cost one and is called a paid exchange.) We consider thei−1 cost
model (also called partial cost model) where the cost of accessing theith item in the list
is i−1. With this cost model, the best known lower bound [5] for the competitive factor
is exactly 3/2. In thei (or full) cost model, the cost of accessing theith item in the list
is i. There, 3/2 is only an asymptotic lower bound for long lists, since we have to subtract
a term proportional to1/n for a list of n items. We focus on the partial cost model since
it is easier to analyze.

Finally, we try to base our analysis on pairs of items. Deleting all but the requests
to two given itemsx andy from a request sequenceσ yields the request sequenceσxy.
Considered for all such pairs, there is a lower boundOPT(σ) for the cost of the optimal

1 Max-Planck-Institut f̈ur Informatik, Im Stadtwald, 66123 Saarbrücken, Germany. Email: albers@mpi-
sb.mpg.de

2 Institut für Theoretische Informatik, ETH Z̈urich, CH-8092 Z̈urich, Switzerland. Email: sten-
gel@inf.ethz.ch

3 FB Mathematik, Universiẗat Frankfurt, Postfach 11 19 32, 60054 Frankfurt/Main, Germany. Email:
werchner@informatik.uni-frankfurt.de

1

offline algorithmOPT when servingσ . The costOPT(σxy) is simple to compute: When
only two items are requested, it is optimal to move an item to the front whenever it is
requested twice or more in succession.

Consider a list of two itemsx and y, and a sequence of requests to these items.
Supposex precedesy in the list, and there is a request toy. Then an optimal offline
algorithm knows the optimal treatment (movingy to the front or not), whereas the online
algorithm makes a “mistake” with probability at least 1/2. If it is possible to keep this
mistake probability at 1/2, then we stay 3/2-competitive, sinceOPT pays only 1 (for the
first request toy), whereas the online algorithm, at the next request tox or y, pays an extra
expected cost of 1/2 since it mistakenly exchangedy with x or not. This can be made
precise by partial orders.

2. Posets generated by request sequences

We define a partial order by an initial listL and a request sequenceσ as follows. This
partial order is denoted〈σ], and is defined inductively, starting with the empty request
sequence/0, for all itemsy,zwith y 6= z (we always compare only distinct elements):

y〈 /0]z :⇐⇒ y precedesz in L.

The sequence obtained by extendingσ with an additional request to the itemx is denoted
σx. Then

y〈σx]z :⇐⇒ (y〈σ]z and z 6= x) or (y = x and not z〈σ]x)

In other words, a request to an itemx changes only the relationship ofx to the other
elements of the poset. Thenx is moved in front of all itemsz except wherez < x held
before (in the partial order〈σ]); in those cases,x becomes parallel (uncomparable) to
z in 〈σx]. In particular,x is always minimal in〈σx]. Since the relationship between
unrequested items is unchanged, this poset represents a pairwise property, i.e.

x〈σ]y ⇐⇒ x〈σxy]y.

The use of this poset for a 3/2-competitive online algorithm follows from the fol-
lowing result.

Lemma 1. Consider an online algorithm that uses only free exchanges and after any
request sequenceσ maintains the list such that at for any two itemsx,y

x precedesy with probability





1 if x〈σ]y
0 if y〈σ]x
1/2 otherwise.

2

Then this algorithm is 3/2-competitive.

Proof. By pairwise analysis. Suppose initiallyx is in front of y. Projected to this pair
of items, any request sequenceσxy can be split into subsequences after which the order
of the two items is determined for both offline and online algorithm, namely after two
successive requests to one item. There are only two kinds of such subsequences:xl (yx)kx
or xl (yx)k−1yy for somel ≥ 0 andk≥ 1. Then the projected expected cost of serving either
sequence isk for OPTand3k/2 for an online algorithm with the described properties: For
example, the request sequenceyxyxxincurs cost 2 forOPT (y is never moved). Before
serving the requestsy,x,y,x,x, the partial order relation betweenx andy is, respectively:
x < y, x||y (x andy are uncomparable),x < y, x||y, x < y. The corresponding expected
costs are1,1/2,1,1/2,0, with sum 3. In general, the relationshipx < y determines an
expected cost3/2 for each pair of requestsyx in (yx)k and in the final requestsyy for the
second sequence, but only cost 1 forOPT.

Is there an algorithm with the properties in Lemma 1? The answer is yes for a
list with four items, and possibly for a list with five items. Any four-element poset is
two-dimensional, that is, it can be represented as an intersection of two linear orders.
With a single random choice, the (barely) random algorithm selects one of these linear
orders which it maintains as the list, but remembers the other order. Any request to an
item changes the partial order, which can be implemented as a free exchange on both
linear extensions in some way; one of these changes is usually a move to the front of the
requested item, in the other dimension the item is often (but not always) left in place. For
example, Fig. 1 shows a posetP where the four items area,b,c,d, and its change after
a request to itemd. The posetP is represented as the intersection of two linear orders
b< a< d < c anda< c< d < b. By requestingd, the new linear orders ared < b< a< c
anda < d < c < b. The first of these is obtained by a move to the front of the requested
item d, the second by a partial forward move ofd in front of c but behinda. This partial
move is not necessary if itemc, which is symmetric tod in P, is requested (thenc is
merely moved to the front in the first list), but for one of these items it is necessary.

A
A

A

¢
¢
¢

a

c d

b
requestd

-

Figure 1.

@
@

@

a d

c b

Some care has to be taken to represent the poset: For example, if the only com-
parable items area andb with a < b, then this poset should not be represented as the
intersection of the two linear orders withc < a < b < d andd < a < b < c. Namely, in
this case a request tob has to moveb in front of c in the first list and in front ofd in
the second list, and thus in front ofa in both. However,a andb should be parallel. A

3

representation that works isa< b< c< d intersected withd < c< a< b. Then a request
to b is implemented by a move to the front in the second list.

By enumeration, one can examine the partial orders that occur and the possible
requests to any item, and show the new representation (see the appendix). A systematic
way of describing this approach would be desirable, also to extend it ton = 5 if possible.

A natural question is the following: Which partial orders can be generated in this
way? This may be a restricted class of posets. For example, if all elements of the initial
list are requested once in ascending order (by the request sequenceα), they are all in-
comparable in the resulting poset〈α]. Starting from this symmetric situation, a request
sequenceσ requesting every element exactly twice generates aninterval order, which is
a poset where elementsx,y are represented by intervalsX,Y on the real line, withx < y
iff X is completely to the left ofY. The endpoints of the intervals representing〈ασ] are
the negative request times to the two requests to an item inσ . However, we can show the
following.

Lemma 2. Any posetP with n elements can be generated as〈σ] for a request sequence
σ to the items in ann-element list.

Proof. Consider a linear orderL on then items, wherex1 < x2 < · · · < xn. Let Λ(L) be
the sequence of double requests to these items in reverse order:

Λ(L) = xnxn . . .x2x2x1x1 .

Clearly,〈Λ(L)] = L irrespective of the initial list. Furthermore, letλ (L) be the sequence
of requests requesting these items once in reverse order:

λ (L) = xnxn−1 . . .x2x1 .

If P is the poset〈σ], then requesting all items once as inλ (L) does the following: Clearly,
if x||y in P, then this relationship is unchanged by the requestsλ (L) since they containx
andy once. Similarly, ifx < y in bothP andL, thenλ (L) contains first a request toy after
which x||y, which is changed back tox < y after the request tox. However, ifx < y in P
but x > y in L, thenx is requested first inλ (L) without effect, but the subsequent request
to y producesx||y. In other words,

〈σλ (L)] = 〈σ]∩L .

In particular,λ (L) leavesP unchanged iffL is a linear extension ofP (that is,x < y in P
impliesx < y in L).

Representing any givenP as an intersection ofd linear extensions ofP (for example,
all linear extensions),

P = L1∩L2∩ . . .∩Ld ,

we obtain
P = 〈Λ(L1)λ (L2) . . .λ (Ld)]

which proves the claim.

4

The minimum numberd of linear orders whose intersection represents a partial order
P is the dimension ofP (see, for example, [4]). The preceding proof suggests that partial
orders of high dimension need long request sequences to represent them. However, for the
standard example of ad-dimensional order a much shorter request sequence suffices. This
standard example is the orderP whose graph is the complement of a perfect matching on
2d elementsx1,x2, . . . ,x2d. That is, the comparable elements inP are given byxi < xd+ j

for 1≤ i, j ≤ n with i 6= j. Assume that the order of items in the initial list isxd+1 < x1 <

xd+2 < x2 < · · ·< x2d < xd. ThenP = 〈σ] for the request sequence

σ = x2xd+2x3xd+3 . . .xdx2d x1x2 . . .xd .

As an example, letd = 3 and writea,b,c,d,e, f for x1, . . . ,x6. Starting from the initial list
d < a < e< b < f < c, the request sequencebec f generates the poset in Fig. 2, and the
subsequent requestsabcthe three-dimensional poset in Fig. 3.

a b c

d e f

Figure 2.

¡
¡

¡

¡
¡

¡

@
@

@

@
@

@

a b c

f e d

Figure 3.

The poset in Fig. 2 is two-dimensional, and its representation as an intersection of
two linear orders is unique up to isomorphism: Namely, one of the minimal elements
d,e, f , sayd, has to be the smallest element of one of these linear orders. Sinced is
incomparable with all elements excepta, these have to preceded in the other linear order.
So the first linear order starts asd < a< · · · and the other ends as· · ·< d < a. Continuing
this argument, the two orders are (up to symmetry)d < a< e< b< f < c and f < c< e<

b < d < a. This causes the approach that worked for four-element lists to fail, where the
two dimensions have probability 1/2 and one of them represents the actual list maintained
by the algorithm. Namely, requesting the itemb means it has to be moved in front of
a,c,d, f in both lists, and thereby will be moved in front ofe althoughb should precede
e in only one of these lists. This happens although the request tob (or similarly a or
c) in the poset in Fig. 2 still results in a poset that is two-dimensional (although not for
long, since Fig. 3 appears shortly). That is, even when we consider request sequences
that generate only two-dimensional partial orders, it seems that these cannot be used to
achieve a 3/2-competitive online algorithm according to Lemma 1.

5

3. Expected position of items

At first sight, Lemma 1 is stronger than it has to be. In proving a competitive factor of
3/2, it suffices that theexpectedposition of an item is the same as prescribed by the partial
order, as follows: LetP= 〈σ]. Then the expected positionp(x) according toP of an item
x is defined as (< referring to the partial orderP and|| to incomparability inP as above)

p(x) = |{y | y < x}|+ |{y | y||x}|/2.

This expected position (in terms of accessing cost, that is, as a number between 0 and
n−1) results from a list where the relative position of items is distributed as in Lemma 1.
It is this expected position that enters the cost comparison betweenOPT and the online
algorithm (using pairwise analysis, see [2]).

Thus, it suffices to generate a distribution on lists that achieves the expected position
p(x) determined by the partial orderP. Is this generally possible ifP is arbitrary? The an-
swer is yes if arbitrary linear orders can be used. The set of expected positions(v1, . . . ,vn)
resulting from a distribution on linear orders is a polytope known as thepermutahedron
(see, for example, [3]). It is characterized by the linear constraints

n

∑
i=1

vi =
(

n
2

)

and

∑
i∈A

vi ≥
(|A|

2

)
for all A⊆ {1, . . . ,n} .

With vi := p(xi) for the itemsx1, . . . ,xn, these constraints hold, because

∑
i∈A

p(xi)≥ ∑
i∈A

(
|{ j ∈ A | x j < xi}|+ |{ j ∈ A | x j ||xi}|/2

)

= 1/2·
(

∑
i, j∈A : x j<xi

1+ ∑
i, j∈A : x j>xi

1+ ∑
i, j∈A : x j ||xi

1
)

=
(|A|

2

)

where equality holds forA = {1, . . . ,n}.
However, this is no longer true if only linear extensions ofP are allowed. Consider

the posetP in Fig. 3. Each minimal element is parallel to three other elements, sop(a) =
p(b) = p(c) = 3/2 andp(d) = p(e) = p(f) = 7/2. In any linear extension ofP or a subset
of P, minimal elements have to come first, so two of the minimal elementsa,b,c have to
be on the first two positions (counting 0 and 1) of the linear extension, similarly two
elements ofd,e, f occupy the last two positions (counting 4 and 5), and only positions
2 and 3 can be chosen as either a minimal or a maximal element ofP. So the average
position ofa,b,c among linear extensions ofP is at most(0+1+3)/3 = 4/3, anda,b,c
cannot all have expected position3/2.

6

Why do we consider only linear extensions ofP? This is justified by the use of free
exchanges. For example, it is easy to show the following: Assume an initial list defining
a linear order is given, and a single itemx is requested. Then the lists obtainable by
free exchanges after this request are exactly the linear extensions of〈x]. This statement
does no longer hold for sequencesσ consisting of more than a single request, because
an algorithm that does nothing uses also only free exchanges, but no longer keeps a list
extending〈σ]. However, the expected positionp(x) of an itemx given by a partial order
P can only be maintained all the time if the algorithm behaves as in Lemma 1:

Lemma 3. Suppose a randomized online algorithm uses only free exchanges and main-
tains an expected positionp(x) for each itemx as prescribed by the partial order〈σ] for
all request sequencesσ . Then after servingσ ,

x precedesy with probability





1 if x〈σ]y
0 if y〈σ]x
1/2 otherwise.

In particular, the algorithm gives positive probability only to lists that are linear exten-
sions of〈σ].

Proof. First observe that an algorithm with the described property indeed maintains only
lists that are linear extensions of〈σ] with positive probability. The initial list defines a
linear order〈 /0]. The expected positionp(x) = 0 of the first item in that list can only be
represented as a convex combination of positions in lists wherex is at the first position.
The same holds for the second up to thenth item, so the linear order representing these
expected positions must have probability one (in other words, every linear order represents
a vertex of the permutahedron). This shows the claim forσ = /0.

As inductive hypothesis, assume the claim is true for the request sequenceσ , and
itemx is requested afterwards. We want to show

y precedesz with probability





1 if y〈σx]z
0 if z〈σx]y
1/2 otherwise.

The probability thaty precedesz in the list for itemsy andz other thanx is not affected,
since their transposition would require a paid exchange. So letz = x. If x〈σ]y, then
x〈σx]y and x precedesy with probability one as before sincey cannot be moved. If
y〈σ]x, thenx andy are incomparable in〈σx], so p(y) is increased by 1/2. Since onlyx
(and no other item) can be moved in front ofy by a free exchange, this has to happen with
probability 1/2, and afterwardsy is indeed in front ofx with probability 1/2. Ifx andy are
incomparable in〈σ], thenx〈σx]y, so p(y) is again increased by 1/2. In those lists (with
combined probability 1/2) wherex is in front of y after servingσ , the position ofy is not
increased by movingx with a free exchange. This requires to movex in front of y in all
other lists wherex is behindy, thus placingx in front of y everywhere. This shows the
claim for σx.

7

The above argument and Lemma 3 show that the partial order in Fig. 3 defines
expected positionsp(x) that cannot be achieved for all itemsx when only free exchanges
are used.

4. Musings

Clearly, the above represents only a collection of partial results. The goal is, of course,
to use this for getting a better upper or lower bound for the competitive factor. We have
several conjectures in this direction.

One possibility would to be to improve the lower bound 3/2 by constructing a dis-
tribution on request sequences where the expected position of at least one itemx is larger
thanp(x), as indicated at end of Section 3, and then requesting that item. This has to be
done in a repetitive fashion such as to actually generate the higher cost. These repetitions
are maybe possible by requesting each item once as in the sequencesλ (L) used in the
proof of Lemma 2 withL being linear extensions of the used partial orders. Assuming
this works, which is speculative, we have only constructed a lower bound toOPT and
have to show thatOPT can actually serve these requests with this low offline cost. Fur-
thermore, this lower bound is established for the partial cost model only. The approach
would then have to be extended to lists of arbitrary lengthn for getting this result (3/2
is not the optimal competitive factor) for the full cost model. Finally, one would have to
consider paid exchanges as well.

Alternatively, partial orders may have something to do — this is even more specu-
lative — with the relationship ofOPT andOPT. That is, whenever the partial order is
such that the expected costs of the online algorithm are necessarily larger than 3/2 times
the cost ofOPT for some items, thenOPT cannot request these items likeOPT but has
to pay extra. In that way, the online algorithm can again catch up withOPT, and we can
stay 3/2-competitive. There is no reason why this should be the case, but it may be worth
trying.

It may also be useful to study the current algorithms with respect to the partial or-
ders presented here. For example, the behavior of the BIT algorithm is not far from that
described in Lemma 1: A requested itemx passes with probability 1/2 items in front of it
since it is moved to the front at every other request. However, this represents the partial
order incompletely. The TIMESTAMP algorithm [1] is more sophisticated by not moving
items completely to the front of the list. It may also be interesting to study its behavior
with respect to the partial order.

References

[1] S. Albers, Improved randomized on-line algorithms for the list update problem,Proc.
6th Annual ACM-SIAM Symposium on Discrete Algorithms(1995) 412–419.

8

[2] S. Albers, B. von Stengel, and R. Werchner, A combined BIT and TIMESTAMP
algorithm for the list update problem.Information Processing Letters56 (1995) 135–
139.

[3] A. von Arnim, U. Faigle, and R. Schrader, The permutahedron of series-parallel
posets.Discrete Applied Mathematics28 (1990) 3–9.

[4] I. Rival, Linear extensions of finite ordered sets. In: Orders: Description and Roles,
eds. M. Pouzet and D. Richard, North-Holland,Annals of Discrete Mathematics23
(1984) 355–370.

[5] B. Teia, A lower bound for randomized list update algorithms,Information Process-
ing Letters47 (1993) 5–9.

Appendix

In this appendix, we list the 3- and 4-element posets, all of which are two-dimensional,
and show how to represent any access to a list element as on operation on one or both
of the lists representing them. The first table shows the possible 3-element orders, also
as intersections of two linear orders, on the elementsa,b,c, and the effect of a request to
eithera, b, or c.

order as dim 2 a b c

a < b < c abc∩abc abc∩abc abc∩bac abc∩cab

(a||b) < c abc∩bac abc∩abc bac∩bac abc∩cba

a < (b||c) abc∩acb abc∩acb bac∩abc cab∩acb

(a < b) ||c abc∩cab abc∩acb abc∩bca cab∩cab

a||b||c abc∩cba abc∩acb bac∩bca cab∩cba

The next table shows this for posets with 4 elementsa,b,c,d. Not all entries are given.
The posets are listed in breadth-first order of appearance after requests to list items, start-
ing from the linear order. Some requests require that the item is moved partially forward
in one list, not all the way to the front. This occurs for the requests toc for the two partial
orders(a< (b||c)) ||d anda< (b||c||d). The “N” shaped poset(a||b) < c,b< d causes
no difficulty.

9

order as dim 2 a b c d

a < b < c < d abcd∩abcd abcd∩abcd abcd∩bacd abcd∩cabd abcd∩dabc

(a||b) < c < d abcd∩bacd abcd∩abcd bacd∩bacd abcd∩cbad abcd∩dbac

((a < b) ||c) < d abcd∩cabd abcd∩acbd abcd∩bacd cabd∩cabd abcd∩dcab

(a < b < c) ||d
(a||b||c) < d

((a||b) < c) ||d
a < (b||c) < d

(a < b) ||c||d
a < ((b < c) ||d)

(a||b) < c,b < d abcd∩bdac

(a < b) ||(c < d)

a||b||c||d
(a < (b||c)) ||d abcd∩dacb abcd∩adcb abcd∩bdac acbd∩cdab dabc∩dacb

a < (b||c||d) abcd∩adcb abcd∩adcb abcd∩badc acbd∩cadb dabc∩adcb

(a||b) < (c||d)

a < b < (c||d)

10

