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1. Introduction

Finding Nash equilibria of strategic form or extensive form games can be difficult and

tedious. A computer program for this task would allow greater detail of game-theoretic

models, and enhance their applicability. Algorithms for solving games have been stud-
ied since the beginnings of game theory, and have proved useful for other problems in
mathematical optimization, like linear complementarity problems.

This paper is a survey and expositionliokar methods for finding Nash equilibria.
Above all, these apply to games with two players. In an equilibrium of a two-person
game, the mixed strategy probabilities of one player equalize the expected payoffs for
the pure strategies used by the other player. This defines an optimization problem with
linear constraints. We do not consider nonlinear methods like simplicial subdivision for
approximating fixed points, or systems of inequalities for higher-degree polynomials as
they arise for noncooperative games with more than two players. These are surveyed in
McKelvey and McLennan (1996).

First, we consider two-person games in strategic form (see also Parthasarathy and
Raghavan, 1971; Raghavan, 1994, 2002). The classical algorithm by Lemke and Howson
(1964) finds one equilibrium of a bimatrix game. It provides an elementary, constructive
proof that such a game has an equilibrium, and shows that the number of equilibria is
odd, except for degenerate cases. We follow Shapley’s (1974) very intuitive geometric
exposition of this algorithm. The maximization over linear payoff functions defines two
polyhedrawhich provide further geometric insight. A complementary pivoting scheme
describes the computation algebraically. Then we clarify the notiolegéneracywhich
appears in the literature in various forms, most of which are equivalent. The lexico-
graphic method extends pivoting algorithms to degenerate games. The problem of finding
all equilibria of a bimatrix game can be phrased as a vertex enumeration problem for
polytopes.

Second, we look at two methods for finding equilibria of strategic form games
with additional refinement properties (see van Damme, 1987, 2002; Hillas and Kohlberg,
2002). Wilson (1992) modifies the Lemke—Howson algorithm for compugingply sta-
ble equilibria. These equilibria survive certain perturbations of the game that are easily
represented by lexicographic methods for degeneracy resolution. Van den Elzen and Tal-
man (1991) present a complementary pivoting method for findipgréectequilibrium
of a bimatrix game.

Third, we review methods for games in extensive form (see Hart, 1992). In princi-
ple, such game trees can be solved by converting them to the reduced strategic form and
then applying the appropriate algorithms. However, this typically increases the size of
the game description and the computation time exponentially, and is therefore infeasible.
Approaches to avoiding this problem compute with a small fraction of the pure strategies,
which are generated from the game tree as needed (Wilson, 1972; Koller and Megiddo,
1996). A strategic description of an extensive game that does not increase in size is the
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sequence formThe central idea, set forth independently by Romanovskii (1962), Selten
(1988), Koller and Megiddo (1992), and von Stengel (1996a), is to consider only se-
guences of moves instead of pure strategies, which are arbitrary combinations of moves.
We will develop the problem of equilibrium computation for the strategic form in a way
that can also be applied to the sequence form. In particular, the algorithm by van den
Elzen and Talman (1991) for finding a perfect equilibrium carries over to the sequence
form (von Stengel, van den Elzen and Talman, 2002).

The concluding section addresses issues of computational complexity, and mentions
ongoing implementations of the algorithms.

2. Bimatrix games

We first introduce our notation, and recall notions from polytope theory and linear pro-
gramming. Equilibria of a bimatrix game are the solutions to a linear complementarity
problem. This problem is solved by the Lemke—Howson algorithm, which we explain

in graph-theoretic, geometric, and algebraic terms. Then we consider degenerate games,
and review enumeration methods.

2.1. Preliminaries

We use the following notation throughout. L@, B) be a bimatrix game, wher& and

B arem x n matrices of payoffs to the row player 1 and column player 2, respectively.
All vectors are column vectors, so amvectorx is treated as am x 1 matrix. A mixed
strategyx for player 1 is a probability distribution on rows, written as mrvector of
probabilities. Similarly, a mixed strategyfor player 2 is ann-vector of probabilities

for playing columns. Theupportof a mixed strategy is the set of pure strategies that
have positive probability. A vector or matrix with all components zero is denfted
Inequalities likex > 0 between two vectors hold for all componenBs. is the matrixB
transposed.

Let M be the set of then pure strategies of player 1 and Mtbe the set of the
pure strategies of player 2. It is sometimes useful to assume that these sets are disjoint, as
in
M={1,....,m} N={m+1,...,m+n}. (2.1)
Thenx e RM andy € RN, which means, in particular, that the componentg afeyj for
j € N. Similarly, the payoff matrice& andB belong to RN,

Denote the rows of by a for i € M, and the rows oB' by bj for j € N (so each
bjT is a column ofB). Thengy is the expected payoff to player 1 for the pure strategy
when player 2 plays the mixed strategyandbjx is the expected payoff to player 2 for
when player 1 plays.

A best responst the mixed strategy of player 2 is a mixed strategyof player 1
that maximizes his expected payoff Ay. Similarly, a best responsg of player 2 to
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x maximizes her expected payoff By. A Nash equilibriumis a pair (x,y) of mixed
strategies that are best responses to each other. Clearly, a mixed strategy is a best response
to an opponent strategy if and only if it only plays pure strategies that are best responses
with positive probability:

Theorem 2.1. (Nash, 1951.) The mixed strategy p&xy) is a Nash equilibrium of
(A,B) if and only if for all pure strategieisin M andj in N

Xi>0 = ay=maxay, (2.2)
keM

yj>0 = bjx=maxbx. (2.3)
keN

We recall some notions from the theory of (convex) polytopes (see Ziegler, 1995).
An affine combinatiomf pointsz, ...,z in some Euclidean space is of the fogﬁlzi)\i
whereAq, ..., A¢ are reals withzg‘zl}\i =1. Itis called aconvex combinatioif A; >0
for all i. A set of points isconvexif it is closed under forming convex combinations.
Given points aralffinely independerif none of these points is an affine combination of
the others. A convex set hdsmensiond if and only if it hasd + 1, but no more, affinely
independent points.

A polyhedronP in RY is a set{ze RY| Cz< g} for some matrixC and vector.
It is calledfull-dimensionalif it has dimensiord. It is called apolytopeif it is bounded.
A faceof Pis aset{ze P|c'z=qp} for somec € RY, go € R so that the inequality
¢’z < qo holds for allzin P. A vertexof P is the unique element of a O-dimensional
face of P. An edgeof P is a one-dimensional face &f. A facetof a d-dimensional
polyhedronP is a face of dimensiom — 1. It can be shown that any nonempty face
F of P can be obtained by turning some of the inequalities defiftrigto equalities,
which are then calledindinginequalities. ThatiskF ={z€ P |cz=q, i €1}, where
ciz<q fori €1l are some of the rows i€z< g. A facet is characterized by a single
binding inequality which isrredundant that is, the inequality cannot be omitted without
changing the polyhedron (Ziegler, 1995, p. 72)dAlimensional polyhedroR is called
simpleif no point belongs to more thash facets ofP, which is true if there are no special
dependencies between the facet-defining inequalities.

A linear program(LP) is the problem of maximizing a linear function over some
polyhedron. The following notation is independent of the considered bimatrix game. Let
M and N be finite sets] CM, JCN, Aec RN pbe RM ce RN. Consider the
polyhedron

P={xeRN| Zwainj =b, ieM-I,
j

S
Z\‘aijxj <b, iel,
JE

X.

JZO, JE‘J}



Any x belonging toP is calledprimal feasible Theprimal LPis the problem
maximize c¢'x subjecttox e P. (2.4)
The correspondindual LP has the feasible set
D={yeR"| Y viaj=¢j, jeN-J,
i€
Yidij > Cj, J € ‘]7
ic
yi>0, iel}

and is the problem
minimize y'b subjecttoyeD. (2.5)

Here the indices ih denote primal inequalities and corresponding nonnegative dual vari-
ables, whereas those M — | denote primal equality constraints and corresponding un-
constrained dual variables. The sdtandN — J play the same role with “primal” and
“dual” interchanged. By reversing signs, the dual of the dual LP is again the primal. We
recall theduality theorenof linear programming, which states (a) that for any primal and
dual feasible solutions, the corresponding objective functions are mutual bounds, and (b)
if the primal and the dual LP both have feasible solutions, then they have optimal solutions
with the same value of their objective functions.

Theorem 2.2. Consider the primal-dual pair of LPs (2.4), (2.5). Then
(a) (Weak duality.)c"x <y'b for all x € P andy € D.
(b) (Strong duality.) IfP # @ andD # @ thenc'x=y"b for somex € P andy € D.

For a proof see Schrijver (1986). As an introduction to linear programming we
recommend Chatal (1983).

2.2. Linear constraints and complementarity

Mixed strategies< andy of the two players are nonnegative vectors whose components
sum up to one. These are linear constraints, which we define using

E=[...,]eRPM e=1 F=[1,...,]eRPN =1 (2.6)
Then the setX andY of mixed strategies are
X={xeRM|Ex=¢e x>0}, Y={yeRV|Fy=f y>0}. (2.7)

With the extra notation in (2.6), the following considerations apply alsé @ndY are

more general polyhedra, whelex= e andFy = f may consist of more than a single row

of equations. Such polyhedrally constrained games, first studied by Charnes (1953) for
the zero-sum case, are useful for finding equilibria of extensive games (see Section 4).
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Given afixedy in Y, a best response of player 1ytcs a vectorx in X that maximizes
the expression' (Ay). That is,x is a solution to the LP

maximize x' (Ay) subjectto Ex=e, x> 0. (2.8)
The dual of this LP with variables (by (2.6) only a single variable) states
minimize e'u subjectto E'u> Ay. (2.9)

Both LPs are feasible. By Theorem 2.2(b), they have the same optimal value.

Consider now aero-sum gamevhereB = —A. Player 2, when choosing has to
assume that her opponent plays rationally and maximizés. This maximum payoff
to player 1 is the optimal value of the LP (2.8), which is equal to the optimal \&lue
of the dual LP (2.9). Player 2 is interested in minimiziagu by her choice ofy. The
constraints of (2.9) are linear im andy even ify is treated as a variable, which must
belong toY. So a minmax strategy of player 2 (minimizing the maximum amount she
has to pay) is a solution to the LP

minuiryize e'u subjecttoFy=f, ETu—Ay>0, y>0. (2.10)

Figure 2.1 shows an example.

>0 >0

u ya ¥s

0 1 1|=]1 v 0| 1 1 1

1] 0 -6 0 >0 X3 | 1| 0 —6 0

1/-1-4>1|0 >0 X2 | 1 |—-1 —4 0

1|-3 -3 0 >0 X3| 1 |—-3 -3 0
I Al l

1[0 O|— min 1,10 O max

Figure 2.1. Left: Example of the LP (2.10) for3ax 2 zero-sum game. The objective
function is separated by a line, nonnegative variables are marked 9.
Right: The dual LP (2.11), to be read vertically.

The dual of the LP (2.10) has variablesand x corresponding to the primal con-
straintsFy = f andE"u— Ay > 0, respectively. It has the form

maximize f'v subjecttoEx=e, F'v—A'x<0, x>0. (2.11)
It is easy to verify that this LP describes the problem of finding a maxmin strat@gih
maxmin payofff "v) for player 1. We have shown the following.
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Theorem 2.3. A zero-sum game with payoff matrik for player 1 has the equilibrium
(x,y) if and only if u,y is an optimal solution to the LP (2.10) angk is an optimal
solution to its dual LP (2.11). Thereby, u is the maxmin payoff to player 1 arfd v is

the minmax payoff to player 2. Both payoffs are equal and denote the value of the game.

Thus, the “maxmin = minmax” theorem for zero-sum games follows directly from
LP duality (see also Raghavan, 1994). This connection was noted by von Neumann and
Dantzig in the late 1940s when linear programming took its shape. Conversely, linear
programs can be expressed as zero-sum games (see Dantzig, 1963, p. 277). There are
standard algorithms for solving LPs, in particular Dantzig’s Simplex algorithm. Usually,
they compute a primal solution together with a dual solution which proves that the opti-
mum is reached.

A best responsg of player 1 against the mixed strategyf player 2 is a solution
to the LP (2.8). This is also useful for games that are not zero-sum. By strong duality, a
feasible solutiorx is optimal if and only if there is a dual solutianfulfilling E"u > Ay
andx' (Ay) = e'u, thatis,x" (Ay) = (x"E")u or equivalently

x"(E"u—Ay) =0. (2.12)

Because the vectossand E"u— Ay are nonnegative, (2.12) states that they have to be
complementaryn the sense that they cannot both have positive components in the same
position. This characterization of an optimal primal-dual pair of feasible solutions is
known ascomplementary slacknesslinear programming. Since has at least one pos-

itive component, the respective componentEofu — Ay is zero andu is by (2.6) the
maximum of the components @fy. Any pure strategy in M of player 1 is a best re-
sponse ta if and only if theith component of the slack vect&™ u— Ay is zero. That is,
(2.12) is equivalent to (2.2).

For player 2, strategy is a best response toif and only if it maximizes(x' B)y
subject toy € Y. The dual of this LP is the following LP analogous to (2.9): minimize
f Tv subject toF v > B x. Here, a primal-dual paiy,v of feasible solutions is optimal
if and only if, analogous to (2.12),

y'(F'v—B'x)=0. (2.13)
Considering these conditions for both players, this shows the following.
Theorem 2.4. The gameA,B) has the Nash equilibriurgx,y) if and only if for suitable

u,v
Ex =e

Fy=f

E'u —Ay>0 (2.14)
F'v—B'x >0
X, y>0



and (2.12), (2.13) hold.

The conditions in Theorem 2.4 define a so-called mikedar complementarity
problem(LCP). There are various solutions methods for LCPs. For a comprehensive
treatment see Cottle, Pang, and Stone (1992). The most important method for finding one
solution of the LCP in Theorem 2.4 is the Lemke—Howson algorithm.

2.3. The Lemke—Howson algorithm

In their seminal paper, Lemke and Howson (1964) describe an algorithm for finding one
equilibrium of a bimatrix game. We follow Shapley’s (1974) exposition of this algorithm.

It requires disjoint pure strategy sésandN of the two players as in (2.1). Any mixed
strategyx in X andy in Y is labeledwith certain elements oM UN. These labels
denote the unplayed pure strategies of the player and the pure best responses of his or her
opponent. Fore M and j € N, let

X(i)={xeX|x =0},

X(j) ={xeX|bjx>bkx forall ke N},

Y(i)={yeY |ay>ay forallke M},

Y(j)={yeY]|y;=0}
Thenx has labek if x € X(k) andy has labek if y € Y(k), for k€ MUN. Clearly, the
best-response regioixy j) for j € N are polytopes whose unionX6. Similarly,Y is the
union of the set¥ (i) for i € M. Then a Nash equilibrium is eompletely labelegair

(x,y) since then by Theorem 2.1, any pure stratk@gyf a player is either a best response
or played with probability zero, so it appears as a labed of y.

Theorem 2.5. A mixed strategy paifx,y) in X xY is a Nash equilibrium ofA,B) if
and only if for allk e MUN eitherx € X(k) ory € Y(k) (or both).

For the3 x 2 bimatrix game(A, B) with

0 6 10
A=|2 5|, B=|0 2{, (2.15)
3 3 4 3

the labels ofX andY are shown in Figure 2.2. The equilibria dré,y') = <(O, 0,1)",(1, O)T)
(33

wherex! has the labels 1, 2, 4 (aryd the remaining labels 3 and §x?,y?) = <(O, 197,

with labels 1, 4, 5 fox?, and (3, y3) = ((%,%,O)T, (%,%)T) with labels 3, 4, 5 fon®.

This geometric-qualitative inspection is very suitable for finding equilibria of games
of up to size3 x 3. It works by inspecting any point in X with m labels and checking
if there is a pointy in Y having the remaining labels. Usually, anyk in X has at
mostm labels, and any in Y has at mosh labels. A game with this property is called
nondegenerateas stated in the following equivalent definition.
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Figure 2.2. Mixed strategy se¥ andY of the players for the bimatrix gam@\, B) in
(2.15). The label4,2, 3, drawn as circled numbers, are the pure strategies of
player 1 and marked iX where they have probability zero, Yhwhere they
are best responses. The pure strategies of player 2 are similar4dabelhe
dots mark pointx andy with a maximum number of labels.

Definition 2.6. A bimatrix game is callechondegenerat& the number of pure best re-
sponses to a mixed strategy never exceeds the size of its support.

A game is usually nondegenerate since every additional label introduces an equation
that reduces the dimension of the set of points having these labels by one. Then only single
pointsx in X havem given labels and single pointsin Y haven given labels, and no
point has more labels. Nondegeneracy is discussed in greater detail in Section 2.6 below.
Until further notice, we assume that the game is nondegenerate.

Theorem 2.7. In a nondegenerat® x n bimatrix game(A, B), only finitely many points
in X havem labels and only finitely many points ¥1 haven labels.

Proof. LetK andL be subsets dfl UN with |K| = mand|L| = n. There are only finitely
many such sets. Consider the set of pointXimaving the labels irK, and the set of
points inY having the labels in.. By Theorem 2.10(c) below, these sets are empty or
singletons. O

The finitely many points in the preceding theorem are used to define two g&@phs
andG,. Let G; be the graph whose vertices are those points X that havem labels,
with an additional verte® in RM that has all labelsin M. Any two such vertices and
X' are joined by an edge if they differ in one label, that is, if they hawve 1 labels in
common. Similarly, letG, be the graph with verticegin Y that haven labels, with the
extra vertex0 in RN having all labelsj in N, and edges joining those vertices that have
n—1 labels in common. Theroduct graphG; x Gy of G; and G has verticegx,y)
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wherex is a vertex ofGz, andy is a vertex ofG,. Its edges are given bix} x {y,y'} for
verticesx of G; and edgedy,y'} of Gy, or by {x,X'} x {y} for edges{x,x'} of G; and
verticesy of G.

The Lemke—Howson algorithm can be defined combinatorially in terms of these
graphs. Letk € MUN, and call a vertex paifx,y) of G; x Gy k-almost completely
labeledif any | in MUN — {k} is either a label ok or of y. Since two adjacent vertices
x, X' in Gy, say, haven— 1 labels in common, the edge, X'} x {y} of G1 x Gy is also
called k-almost completely labeled i has the remaining labels excepk. The same
applies to edge$x} x {y,y'} of G x Gy.

Then any equilibriun(x,y) is in G1 x G, adjacent to exactly one vertex pax',y’)
that isk-almost completely labeled: Namely,kfis the label ofx, thenx is joined to the
vertexx' in G; sharing the remainingh— 1 labels, and/ =Y. If k is the label ofy, then
y is similarly joined toy’ in G, andx = xX'. In the same manner,kkalmost completely
labeled pair(x,y) that is completely labeled has exactly two neighborGinx G,. These
are obtained by dropping the unique duplicate labelxtaidy have in common, joining
to an adjacent vertex either & and keeping fixed, or inG, and keeping fixed. This
defines a uniqui&-almost completely labeled path @y x G, connecting one equilibrium
to another. The algorithm is started from #méficial equilibrium(0,0) that has all labels,
follows the path where labéd is missing, and terminates at a Nash equilibrium of the
game.

Figure 2.3. The graphS; andG; for the game in (2.15). The set of 2-almost completely
labeled pairs is formed by the paths with edges@Gnx Gp) I-lI-IlI-1V,
connecting the artificial equilibriur(0,0) and(x3,y®), and V-VI, connecting
the equilibria(x,y*) and (x?,y?).

Figure 2.3 demonstrates this method for the above example2 betthe missing
label k. The algorithm starts wittx = (0,0,0)" andy = (0,0)". Step I:y stays fixed
andx is changed irG; to (0,1,0) ", picking up label 5, which is now duplicate. Step II:
dropping label 5 inG, changes/ to (0,1) ", picking up label 1. Step IlI: dropping label 1
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in G1 changesx to x3, picking up label 4. Step IV: dropping label 4 @, changesy
to y2 which has the missing label 2, terminating at the equilibrigghy®). In a similar
way, steps V and VI indicated in Figure 2.3 join the equilibfid,y*) and (x?,y?) on a
2-almost completely labeled path. In general, one can show the following.

Theorem 2.8. (Lemke and Howson, 1964; Shapley, 1974.) (&B) be a nondegenerate
bimatrix game andk be a label irlM UN. Then the set ok-almost completely labeled
vertices and edges B1 x Gy consists of disjoint paths and cycles. The endpoints of the
paths are the equilibria of the game and the atrtificial equilibriOm®). The number of
Nash equilibria of the game is odd.

This theorem provides a constructive, elementary proof that every nondegenerate
game has an equilibrium, independently of the result of Nash (1951). By different kabels
that are dropped initially, it may be possible to find different equilibria. However, this does
not necessarily generate all equilibria, that is, the union oktaenost completely labeled
paths in Theorem 2.8 for ak € MUN may be disconnected (Shapley, 1974, p. 183,
reports an example due to R. Wilson). For similar observations see Aggarwal (1973),
Bastian (1976), Todd (1976, 1978). Shapley (1981) discusses more general methods as a
potential way to overcome this problem.

2.4. Representation by polyhedra

The vertices and edges of the grapghs and G, used in the definition of the Lemke—
Howson algorithm can be represented as vertices and edges of certain polyhedra. Let

Hi={(x,v) e RMxR|xe X, B'x<F v},

N (2.16)
Ho={(y,u) e RNxR|yeY, Ay<E'u}.

The elements oH1 x Hy represent the solutions to (2.14). Figure 2.4 shaysfor
the example (2.15). The horizontal plane contafnas a subset. The scalay drawn
vertically, is at least the maximum of the functioay for the rowsa; of A and fory

in Y. The maximum itself shows which strategy of player 1 is a best responge to
Consequently, projectingl, to Y by mapping(y,u) to y, in Figure 2.4 shown a¢y,0),
reveals the subdivision of into best-response regioigi) for i € M as in Figure 2.2.
Figure 2.4 shows also that the unbounded facetd.oproject to the subsetg(j) of Y

for j € N. Furthermore, the maximally labeled pointsYnmarked by dots appear as
projections of the vertices dfl,. Similarly, the facets oH; project to the subset® (k)
of X for ke MUN.

The graph structure dfi; andH, with its vertices and edges is therefore identical
to that of G; and Gy, except for them unbounded edges ¢i; and then unbounded
edges oH, that connect to “infinity” rather than to the additional vertegf G; andGy,
respectively.
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0 1

Figure 2.4. The polyhedraH, for the game in (2.15), and its projection to the §gt, 0) |
(y,u) € Ho}. The vertical scale is displayed shorter. The circled numbers
label the facets o, analogous to Figure 2.2.

The constraints (2.14) definirdy andH> can be simplified by eliminating the pay-
off variablesu andv, which works if these are always positive. For that purpose, assume
that
A andB' are nonnegative and have no zero column. (2.17)

This assumption can be made without loss of generality since a constant can be added to
all payoffs without changing the game in a material way, so that, for exaApleQ and

B > 0. For examples like (2.15), zero matrix entries are also admitted in (2.17). By (2.6),

u andv are scalars anB'" andF " are single columns with all components equal to one,
which we denote by the vectotls, in RM and1y in RN, respectively. Let

PL={XeRM|X >0 B'X <1y},
P={y eR"|AY <1u,y >0}.
It is easy to see that (2.17) implies tHatand P, are full-dimensional polytopes, unlike
H; andH,.
The setH; is in one-to-one correspondence wih— {0} with the map(x,v) —

x-(1/v). Similarly, (y,u) — y-(1/u) defines a bijectioH, — P, — {0}. These maps
have the respective inverse functiotis— (x,v) andy — (y,u) with

(2.18)

x=x-v, v=1/1yX, y=y-u, u=1/1y. (2.19)
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These bijections are not linear. However, they preserve the face incidences since a binding
inequality inHy corresponds to a binding inequality s and vice versa. In particular,
vertices have the santabelsdefined by the binding inequalities, which are some of the
m- n inequalities definind®, andP; in (2.18).

Ha
: |
TR SR ‘ 3
1 %
0 ;/ - L
0 v Yi T
] ] 1P
0 — Y4

Figure 2.5. The mapi, — P,, (y,u) — Y =y-(1/u) as a projective transformation with
projection point(0,0). The left-hand side shows this for a single component
yj of y, the right-hand side shows haw arises in this way fronH, in the
example (2.15).

Figure 2.5 shows a geometric interpretation of the bijectign) — y- (1/u) as
a projective transformatiorisee Ziegler, 1995, Sect. 2.6). On the left-hand side, the pair
(yj,u) is shown as part afy, u) in H, for any componeny; of y. The line connecting this
pair to (0,0) contains the pointy;, 1) with y; =y;j /u. Thus,P, x {1} is the intersection of
the lines connecting anfy, u) in Hy with (0,0) in RN x R with the set{(y,1) | Y € RN}.
The vertice® of P, andP, do not arise as such projections, but corresportditandH,
“at infinity”.

2.5. Complementary pivoting

Traversing a polyhedron along its edges has a simple algebraic implementation known
aspivoting The constraints defining the polyhedron are thereby represented as linear
equations with nonnegative variables. Rorx P, these have the form

AY+r1r =1y

2.20
B'x +s=1\ (2:20)
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with X,y,r,s> 0 wherer ¢ RM ands e RN are vectors o§lackvariables. The system
(2.20) is of the form
Cz=q (2.21)

for a matrixC, right-hand sidey, and a vectore of nonnegative variables. The matfx

has full rank, so that) belongs always to the space spanned by the colutpmg C. A
basisf is given by a basi§C; | j € B} of this column space, so that the square matrix
Cg formed by these columns is invertible. The corresponté@gjc solutioris the unique
vectorzg = (2j)jcp With Cgzg = g, where the variableg; for j in 3 are calledbasic
variables andzj = 0 for all nonbasicvariableszj, j & B, so that (2.21) holds. If this
solution fulfills alsoz > 0, then the basig§ is calledfeasible If 3 is a basis for (2.21),

then the corresponding basic solution can be read directly from the equivalent system
C?Cz: C-'q, called atableay since the columns d;'C for the basic variables form

the identity matrix. The tableau and thus (2.21) is equivalent to the system

z3=Czla- 3 C;'Ciz (2.22)
j€B
which shows how the basic variables depend on the nonbasic variables.

Pivotingis a change of the basis where a nonbasic variapfer somej not in 3
entersand a basic variablg for somei in 3 leavesthe set of basic variables. The pivot
step is possible if and only if the coefficient gf in the ith row of the current tableau is
nonzero, and is performed by solving tik equation forz; and then replacing; by the
resulting expression in each of the remaining equations.

For a given entering variablg, the leaving variable is chosen to preserve feasibility

of the basis. Let the components(bglq beq; and OfCEle betj, for i € B. Then the

largest value of; such that in (2.22)zz = Cglq—Cglcjzj IS nonnegative is obviously
given by

min{q;/cij |i € B, Tjj >0}. (2.23)
This is called aninimum ratio testExcept in degenerate cases (see below), the minimum

in (2.23) is unique and determines the leaving variableniquely. After pivoting, the
new basis iU {j}—i}.

The choice of the entering variable depends on the solution that one wants to find.
The Simplex method for linear programming is defined by pivoting with an entering vari-
able that improves the value of the objective function. In the system (2.20), one looks for
acomplementargolution where

X'r=0, y's=0 (2.24)
because it implies with (2.19) the complementarity conditions (2.12) and (2.13) so that

(x,y) is a Nash equilibrium by Theorem 2.4. In a basic solution to (2.20), every nonbasic
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variable has value zero and represents a binding inequality, that is, a facet of the poly-
tope. Hence, each basis defines a vertex which is labeled with the indices of the nonbasic
variables. The variables of the system comeamplementary pair$x;,r;) for the in-

dicesi € M and (yj,sj) for j € N. Recall that the Lemke—Howson algorithm follows a
path of solutions that have all labels MU N except for a missing labéd. Thus ak-

almost completely labeled vertex is a basis that has exactly one basic variable from each
complementary pair, except for a pair of variableg, ry), say (if k € M) that are both

basic. Correspondingly, there is another pair of complementary variables that are both
nonbasic, representing the duplicate label. One of them is chosen as the entering variable,
depending on the direction of the computed path. The two possibilities represent the two
k-almost completely labeled edges incident to that vertex. The algorithm is started with
all components of ands as basic variables and nonbasic variali}és/) = (0,0). This

initial solution fulfills (2.24) and represents the artificial equilibrium.

Algorithm 2.9. (Complementary pivoting.) For a bimatrix gart® B) fulfilling (2.17),
compute a sequence of basic feasible solutions to the system (2.20) as follows.
(a) Initialize with basic variables = 1y, s= 1n. Chooseék € MUN, and let the first
entering variable bg_if ke M andy, if ke N.
(b) Pivot such as to maintain feasibility using the minimum ratio test.
(c) Ifthe variablez that has just left the basis has indexstop. Then (2.24) holds and

(x,y) defined by (2.19) is a Nash equilibrium. Otherwise, choose the complement
of z; as the next entering variable and gq.

We demonstrate Algorithm 2.9 for the example (2.15). The initial basic solution in
the form (2.22) is given by

rn=1 —6)/5
rp=1— 2y, —5yk (2.25)
rg=1-3y,—3ys
and s=1-X — 4X.
I (2.26)
s=1  —2X—3%;.

Pivoting can be performed separately for these two systems since they have no variables
in common. With the missing label 2 as in Figure 2.3, the first entering variablg is

Then the second equation of (2.26) is rewritterxiis= 3 — 3x; — 3s5 and'ss leaves the

basis. Next, the complemey}j of s; enters the basis. The minimum ratio (2.23) in (2.25)

is 1/6, so thatr; leaves the basis and (2.25) is replaced by the system

_1

}/5:% 5rl
rr=3%—2y4+3r (2.27)
rg=3—3y4+ 3.

15



Then the complemenq, of rq enters the basis arg] leaves, so that the system replacing
(2.26) is now
X,=1— &b -

(2.28)
%=3-36 3%
With y, entering, the minimum ratio (2.23) in (2.27) 1312, wherer; leaves the basis

and (2.27) is replaced by
Ya= 15+ 3r1— 302 (2.29)

Then the algorithm terminates since the variablewith the missing label 2 as index, has
become nonbasic. The solution defined by the final systems (2.28) and (2.29), with the
nonbasic variables on the right-hand side equal to zero, fulfills (2.24). Renormatizing
andy’ by (2.19) as probability vectors gives the equilibriymy) = (x3,y3) mentioned

after (2.15) with payoffs 4 to player 1 and 2/3 to player 2.

Assumption (2.17) with the simple initial basis for the system (2.20) is used by
Wilson (1992). Lemke and Howson (1964) assufe 0 andB < 0, so thatP, and P,
are unbounded polyhedra and the almost completely labeled path starts at the vertex at
the end of an unbounded edge. To avoid the renormalization (2.19), the Lemke—Howson
algorithm can also be applied to the system (2.14) represented in equality form. Then the
unconstrained variablas andv have no slack variables as counterparts and are always
basic, so they never leave the basis and are disregarded in the minimum ratio test. Then
the computation has the followiregonomic interpretatio(Wilson, 1992; van den Elzen,
1993): Let the missing labéd belong toM. Then the basic slack variabig which is
basic together withx, can be interpreted as a “subsidy” payoff for the pure strategy
so that player 1 is in equilibrium. The algorithm terminates when that subsidy or the
probability x, vanishes. Player 2 is in equilibrium throughout the computation.

2.6. Degenerate games

The path computed by the Lemke—Howson algorithm is unique only if the game is nonde-
generate. Like other pivoting methods, the algorithm can be extended to degenerate games
by “lexicographic perturbation”, as suggested by Lemke and Howson (1964). Before we
explain this, we show that various definitions of nondegeneracy used in the literature are
equivalent. In the following theorenty denotes the identity matrix in M. Further-

more, a pure strategyof player 1 is callecbayoff equivalento a mixed strategy of

player 1 if it produces the same payoffs, thaigs= x' A. The strategy is calledweakly
dominatedby x if a < x'A, andstrictly dominatedoy x if a < x' A holds. The same
applies to the strategies of player 2.

Theorem 2.10. Let (A,B) be anm x n bimatrix game so that (2.17) holds. Then the
following are equivalent.
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(a) The game is nondegenerate according to Definition 2.6.

(b) For anyx in X andy inY, the rows of{é’ﬂ for the labels ok are linearly inde-

pendent, and the rows {rIA } for the labels ofy are linearly independent.
N

(c) Foranyxin X with set of labelK andy in'Y with set of labeld, the se{,cx X (K)
has dimensiom— |K|, and the sef\ . Y(l) has dimensiom— |L|.

(d) P, andP, in (2.18) are simple polytopes, and any pure strategy of a player that
is weakly dominated by or payoff equivalent to another mixed strategy is strictly
dominated by some mixed strategy.

(e) In any basic feasible solution to (2.20), all basic variables have positive values.

Lemke and Howson (1964) define nondegenerate games by condition (b). Krohn et
al. (1991), and, in slightly weaker form, Shapley (1974), define nondegeneracy as in (c).
Van Damme (1987, p. 52) has observed the implicatios{@). Some of the implications
between the conditions (a)—(e) in Theorem 2.10 are easy to prove, whereas others require
more work. For details of the proof see von Stengel (1996b).

Them+ n rows of the matrices in (b) define the inequalities for the polytdfesnd
P in (2.18), where the labels denote binding inequalities. This condition explains why
a genericbimatrix game is nondegenerate with probability one: We call a game generic
if each payoff is drawn randomly and independently from a continuous distribution, for
example the normal distribution with small variance around an approximate value for
the respective payoff. Then the rows of the matrices described in 2.10(b) are linearly
independent with probability one, since a linear dependence imposes an equation on at
least one payoff, which is fulfilled with probability zero. However, the strategic form of
an extensive game (like Figure 4.1 below) is often degenerate since its payoff entries are
not independent. A systematic treatment of degeneracy is therefore of interest.

The dimensionality condition in Theorem 2.10(c) has been explained informally
before Theorem 2.7 above. The geometric interpretation of nondegeneracy in 2.10(d)
consists of two parts. The polytog& (and similarlyP) is simple since a point that
belongs to more tham facets ofP; has too many labels. In the game

0 6 10
A=|2 5|, B=|0 2
3 3 4 4

the polytopeP; is not simple because its vertég, 0,%1)T belongs to four facets. This

game is degenerate since the pure strategy 3 of player 1 has two best responses. Apart
from this, degeneracy may result due to a redundancy ofi¢iseriptionof the polytope

by inequalities (for example, i\ has two identical rows of payoffs to player 1). It is not

hard to show that such redundant inequalities correspond to weakly dominated strategies.

: (2.30)
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A binding inequality of this sort defines a face of the respective polytope. The strict
dominance in (d) asserts that this face is empty if the game is nondegenerate.

Theorem 2.10(e) states that every feasii@sisof the system imondegenerateghat
is, all basic variables have positive values. This condition implies that the leaving variable
in step (b) of Algorithm 2.9 is unique, since otherwise, another variable that could also
leave the basis but stays basic will have value zero after the pivoting step. This concludes
our remarks on Theorem 2.10.

The lexicographic methoaxtends the minimum ratio test in such a way that the
leaving variable is always unique, even in degenerate cases. The method simulates an
infinitesimal perturbation of the right-hand side of the given linear system (2z21)),
and works as follows. Le® be a matrix of full row rank withk columns. For ang > 0O,
consider the system

Cz=q+Q-(¢1,...,e5T (2.31)

which is equal to (2.21) foe = 0 and which is gerturbedsystem fore > 0. Let 3 be a
basis for this system with basic solution

25 =C5q+C5 Q- (¢*,...,€9 " =g+Q-(¢%,...,9" (2.32)

andz; =0for j ¢ B. Itis easy to see thag is positive for all sufficiently smalk if and

only if all rows of the matrix@, Q] arelexico-positivethat is, the first nonzero component
of each row is positive. Thef is called aexico-feasiblébasis. This holds in particular
for g > 0 when 3 is a nondegenerate basis for the unperturbed system. BeQalae

full row rank, Q has no zero row, which implies that any feasible basis for the perturbed
system is nondegenerate.

In consequence, the leaving variable for the perturbed system is always unique. It is
determined by the followingexico-minimum ratio testLike for the minimum ratio test
(2.23), let, fori € 3, the entries of the entering colunnglcj beij, those ofg in (2.32)

beT;o, and those of beg; for 1 <1 < k. Then the leaving variable is determined by the
maximum choice of the entering variabdgsuch that all basic variablesin (2.31) stay
nonnegative, that is,

2 =To+ 018 +- + Ty —Tijz > 0

for all i € B. For sufficiently smalle, the sharpest bound f@; is obtained for that in

B with the lexicographically smallestow vector 1/Tij - (Tig, Tiq, - - -, Oix) Wheretjj > 0

(a vector is called lexicographically smaller than another if it is smaller in the first com-
ponent where the vectors differ). No two of these row vectors are equal Qritas

full row rank. Therefore, this lexico-minimum ratio test, which extends (2.23), deter-
mines the leaving variablg uniquely. By construction, it preserves the invariant that all
computed bases are lexico-feasible, provided this holds for the initial basis like that in Al-
gorithm 2.9(a) which is nondegenerate. Since the computed sequence of bases is unique,
the computation cannot cycle and terminates like in the nondegenerate case.
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The lexico-minimum ratio test can be performed without actually perturbing the
system, since it only depends on the current bgsandQ in (2.32). The actual values
of the basic variables are given lgy which may have zero entries, so the perturbation
applies as ik is vanishing. The lexicographic method requires little extra work (and none
for a nondegenerate game) sif@ecan be equal t&€ or to that part ofC containing the
identity matrix, so thaQ in (2.32) is just the respective part of the current tableau. Wilson
(1992) uses this to compute equilibria with additional stability properties, as discussed
in Section 3.1 below. Eaves (1971) describes a general setup of lexicographic systems
for LCPs and shows various ways (pp. 625, 629, 632) of solving bimatrix games with
Lemke’s algorithm (Lemke, 1965), a generalization of the Lemke—Howson method.

2.7. Equilibrium enumeration and other methods

For a given bimatrix game, the Lemke—Howson algorithm finds at least one equilibrium.
Sometimes, one wishes to find all equilibria, for example in order to know if an equilib-
rium is unique. A simple approach (as used by Dickhaut and Kaplan, 1991) is to enumer-
ate all possible equilibrium supports, solve the corresponding linear equations for mixed
strategy probabilities, and check if the unplayed pure strategies have smaller payoffs. In a
nondegenerate game, both players use the same number of pure strategies in equilibrium,
so only supports of equal cardinality need to be examined. They can be represented as
MNSandN — S for any n-element subse® of MUN exceptN. There are(™™) —1

many possibilities forS, which is exponential in the smaller dimensionor n of the
bimatrix game. Stirling’s asymptotic formukd2rm(n/e)" for the factorialn! shows that

in a square bimatrix game whene= n, the binomial coeﬁicien(zn”) is asymptotically
4"/\/Tm. The number of equal-sized supports is here not substantially smaller than the
number4" of all possible supports.

An alternative is to inspect the vertices df x H, defined in (2.16) if they rep-
resent equilibria. Mangasarian (1964) does this by checking if the bilinear function
x" (A+B)y—u—v has a maximum, that is, has value zero, so this is equivalent to the
complementarity conditions (2.12) and (2.13). It is easier to enumerate the vertiees of
andP in (2.18) since these are polytopes if (2.17) holds. Analogous to Theorem 2.5, a
pair (X,y) in P x P,, except(0,0), defines a Nash equilibriurfx,y) by (2.19) if it is
completely labeled. The labels can be assigned directy't§’) as the binding inequal-
ities. That is,(X,y) in Py x P, has label in M if X =0 or g5y = 1, and labelj in N if
bjX' =1 ory] =0 holds.

Theorem 2.11. Let (A,B) be a bimatrix game so that (2.17) holds, and/etandV, be
the sets of vertices d¥ andP, in (2.18), respectively. Then [fA,B) is nondegenerate,
(x,y) given by (2.19) is a Nash equilibrium 6A,B) if and only if (X,y') is a completely
labeled vertex pair iNy x Vo —{(0,0)}.

Thus, computing the vertex safs of P, andV, of P, and checking their labels finds
all Nash equilibria of a nondegenerate game. This method was first suggested by Vorob’ev
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(1958), and later simplified by Kuhn (1961). An elegant method for vertex enumeration
Is due to Avis and Fukuda (1992).

The number of vertices of a polytope is in general exponential in the dimension.
The maximal number is described in the following theorem, whefdor a real number
t denotes the largest integer not exceeding

Theorem 2.12. (Upper bound theorem for polytopes, McMullen, 1970.) The maximum
number of vertices of d-dimensional polytope with facets is

o= LEJ ) (k_ijﬂ_ )

For a self-contained proof of this theorem see Mulmuley (1994). This result shows
that P, has at mostP(m,n+ m) and P has at mostP(n,m+ n) vertices, including0
which is not part of an equilibrium. In a nondegenerate game, any vertex is part of at
most one equilibrium, so the smaller number of vertices of the polyRper P, is a
bound for the number of equilibria.

Corollary 2.13. (Keiding, 1997.) A nondegeneratax n bimatrix game has at most
min{®(m,n+m), d(n,m+n)} — 1 equilibria.

It is not hard to show thai < n implies ®(m,n+m) < ®(n,m+n). Form=
n, Stirling’s formula shows thatb(n,2n) is asymptoticallyc - (27/4)"/2/,/n or about
c-2.598'/,/n, where the constant is equal to2,/2/3m or about .921 ifn is even,
and /2/m or about .798 ifn is odd. Since2.598' grows less rapidly thad", vertex
enumeration is more efficient than support enumeration.

Although the upper bound in Corollary 2.13 is probably not tight, it is possible to
construct bimatrix games that have a large number of Nash equilibrian Xmebimatrix
game wheréA andB are equal to the identity matrix h@ — 1 Nash equilibria. Then
both P, and P, are equal to then-dimensional unit cube, where each vertex is part of
a completely labeled pair. Quint and Shubik (1997) conjectured that no nondegenerate
n x n bimatrix game has more equilibria. This follows from Corollary 2.13rfet 3 and
is shown fom = 4 by Keiding (1997) and McLennan and Park (1999). However, there are
counterexamples far > 6, with asymptoticallyc- (1++/2)"//n or aboutc-2.414"/,/n
many equilibria, where is 23/4/,/T or about .949 ifn is even, and2%4 — 27/4) /\/mt
or about .786 ifn is odd (von Stengel, 1999). These games are constructed with the help
of polytopes which have the maximum numisefn, 2n) of vertices. This result suggests
that vertex enumeration is indeed the appropriate method for finding all Nash equilibria.

For degenerate bimatrix games, Theorem 2.10(d) showsPthat P, may be not
simple. Then there may be equilibrig y) corresponding to completely labeled points
(X,¥) in P. x P, where, for examplex' has more tham labels andy has fewer tham
labels and is therefore not a vertex®@f. However, any such equilibrium is the convex
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combination of equilibria that are represented by vertex pairs, as shown by Mangasar-
ian (1964). The set of Nash equilibria of an arbitrary bimatrix game is characterized as
follows.

Theorem 2.14. (Winkels, 1979; Jansen, 1981.) Lg% B) be a bimatrix game so that
(2.17) holds, le¥/; andV, be the sets of vertices & andP, in (2.18), respectively, and
let R be the set of completely labeled vertex pair§in V> —{(0,0)}. Then(x,y) given
by (2.19) is a Nash equilibrium d&\, B) if and only if (X ,y') belongs to the convex hull
of some subset dR of the formU, x U, whereU; C V; andU, C V.

Proof. Labels are preserved under convex combinations. Hence, if thdisetJ, is
contained inR, then any convex combination of its elements is also a completely labeled
pair (X,y’) that defines a Nash equilibrium by (2.19).

Conversely, assume’,y’) in Py x P, corresponds to a Nash equilibrium of the game
via (2.19). Letl ={i e M |ay <1} andJ={j € N|Yy| > 0}, thatis,x has at least
the labels inl UJ. Then the elementg in Py fulfilling z =0 for i € | andbjz=1
for j € J form a face ofP, (defined by the sum of these equations, for example) which
containsx’. This face is a polytope and therefore equal to the convex hull of its vertices,
which are all vertices oP;. Hence,X is the positive convex combinatiofy k XAy of
certain vertices of P, whereA, > 0 for k e K. Similarly, y is the positive convex
combinationz|€Ly'u| of certain vertices! of P, wherey; > 0 for | € L. This implies
the convex representation

(X,vy,) = Aklll (Xk7y|) .

keK, leL

With Uy = {xX€| ke K} andUp = {y' || €L}, it remains to showx¥,y') € G for all k € K
andl € L. Suppose otherwise that soré,y') was not completely labeled, with some
missing label, sayj € N, so thatbjx* < 1 andy, > 0. But thenb;x < 1 sinceA, > 0
andy’j > 0 since' > 0, so labelj would also be missing fronix’,y') contrary to the
assumption. So indeddy x U, C G. O

The setR in Theorem 2.14 can be viewed as a bipartite graph with the completely
labeled vertex pairs as edges. The subgets U, arecliquesof this graph. The convex
hulls of the maximal cliques dR are calledmaximal Nash subsetslillham, 1974; Heuer
and Millham, 1976). Their union is the set of all equilibria, but they are not necessarily
disjoint. The topological equilibrium components of the set of Nash equilibria are the
unions of non-disjoint maximal Nash subsets.

An example is shown in Figure 2.6, where the maximal Nash subsets are, as sets of
mixed strategies{(1,0)"} x Y andX x {(0,1)"}. This degenerate game illustrates the
second part of condition 2.10(d): The polytogdsand P, are simple but have vertices
with more labels than the dimension due to weakly but not strongly dominated strate-
gies. Dominated strategies could be iteratively eliminated, but this may not be desired
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Figure 2.6. A gamgA,B), and its setR of completely labeled vertex pairs in Theo-
rem 2.14 as a bipartite graph. The labels denoting the binding inequalities in
P, andP, are also shown for illustration.

here since the order of elimination matters. Knuth, Papadimitriou, and Tsitsiklis (1988)
study computational aspects of strategy elimination where they overlook this fact; see also
Gilboa, Kalai, and Zemel (1990, 1993). The interesting problem of iterated elimination of
pure strategies that apayoff equivalento other mixed strategies is studied in Vermeulen
and Jansen (1998).

Quadratic optimization is used for computing equilibria by Mills (1960), Mangasar-
lan and Stone (1964), and Mukhamediev (1978). Audet et al. (2001) enumerate equilibria
with a search over polyhedra defined by parameterized linear programs. Bomze (1992)
describes an enumeration of teeolutionarily stableequilibria of a symmetric bimatrix
game. Yanovskaya (1968), Howson (1972), Eaves (1973), and Howson and Rosenthal
(1974) apply complementary pivoting p@lymatrix gameswhich are multi-player games
obtained as sums of pairwise interactions of the players.

3. Equilibrium refinements

Nash equilibria of a noncooperative game are not necessarily unique. A large number of
refinementconcepts have been invented for selecting some equilibria as more “reason-
able” than others. We give an exposition (with further details in von Stengel, 1996b) of
two methods that find equilibria with additional refinement properties. Wilson (1992) ex-
tends the Lemke—Howson algorithm so that it computesrely stablesquilibrium. A
complementary pivoting method that findpearfectequilibrium is due to van den Elzen

and Talman (1991).

3.1. Simply stable equilibria

Kohlberg and Mertens (1986) define strategfiability of equilibria. Basically, a set of
equilibria is called stable if every game nearby has equilibria nearby (Wilson, 1992). In
degenerate games, certain equilibrium sets may not be stable. In the bimatrixAdne

in (2.30), for example, all convex combinations @f,y!) and (x?,y?) are equilibria,
wherex! =x? = (0,0,1) " andy! = (0,1)" andy? = (3, %) . Another, isolated equilib-
rium is (x3,y3). As shown in the right picture of Figure 3.1, the first of these equilibrium
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sets is not stable since it disappears when the payoffs to player 2 for her second strategy
5 are slightly increased.

2 ® 2 ®

Figure 3.1. Left and center: Mixed strategy s¥tandY for the game(A,B) in (2.30)
with labels similar to Figure 2.2. The game has an infinite set of equilibria
indicated by the pair of rectangular boxes. Right: Mixed strategX sehere
strategy 5 gets slightly higher payoffs, and only the equilibripdhy?) re-
mains.

Wilson (1992) describes an algorithm that computes a sshqily stableequilibria.
There the game is not perturbed arbitrarily but only in certain systematic ways that are
easily captured computationally. Simple stability is therefore weaker than the stability
concepts of Kohlberg and Mertens (1986) and Mertens (1989, 1991). Simply stable sets
may not be stable, but no such game has yet been found (Wilson, 1992, p. 1065). However,
the algorithm is more efficient and seems practically useful compared to the exhaustive
method by Mertens (1989).

The perturbations considered for simple stability do not apply to single payoffs but
to pure strategies, in two ways. gkimal perturbation introduces a smatlinimum prob-
ability for playing that strategy, even if it is not optimal.dual perturbation introduces a
smallbonusfor that strategy, that is, its payoff can be slightly smaller than the best payoff
and yet the strategy is still considered optimal. In system (2.20), the varigbjés, s
are perturbed by corresponding vectdrs), p, o that have small positive components,
&, pcRMandn,o e RN, Thatis, (2.20) is replaced by

Ay +n)+Im(r+p) =1m

BT (X + &) +in(s+0) = 1n. ED

If (3.1) and the complementarity condition (2.24) hold, then a varigbde y; that is zero

is replaced by or nj, respectively. After the transformation (2.19), these terms denote
a small positive probability for playing the pure stratégy j, respectively. S& andn
represent primal perturbations.

Similarly, p and o stand for dual perturbations. To see tpabr g; indeed repre-
sents a bonus faror j, respectively, consider the second set of equations in (3.1) with
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¢ = 0 for the example (2.30):

/
10 4 ;(,1+54+04_1
0 2 4 x’2 s+os5) \1)°
3
If, say, 05 > 04, then one solution i%} = x, = 0 andx; = (1— 05)/4 with ss =0 and
s4 = 05— 04 > 0, which means that only the second strategy of player 2 is optimal, so the
higher perturbatioros represents a higher bonus for that strategy (as shown in the right
picture in Figure 3.1). Dual perturbations are a generalization of primal perturbations,

letting p = An ando =B' & in (3.1). Here, only special cases of these perturbations will
be used, so it is useful to consider them both.

Denote the vector of perturbations in (3.1) by
(&,n,p,0) =8=(d1,...,%)", k=2(m+n). (3.2)

For simple stability, Wilson (1992, p. 1059) considers only special casés bbr each

i € {1,...,k}, the component;_; (or & if i =K) represents the largest perturbation
by somee > 0. The subsequent compones,,...,%,0,...,4 are equal to smaller
perturbations?, ..., €X. That s,

doj=¢l ifi+j<k,
" )= 1<j<k (3.3)

di+j_k:£j if i+ >Kk,

Definition 3.1. (Wilson, 1992.) LetA,B) be anmx n bimatrix game. Then a connected
set of equilibria of A, B) is calledsimply stablef forall i =1, ... Kk, all sufficiently small

e >0, and(é,n,p,0) asin (3.2), (3.3), there is a solution= (X ,y,r,s)" > 0to (3.1)
and (2.24) so that the corresponding strategy payy) defined by (2.19) is near that set.

Due to the perturbation(x,y) in Definition 3.1 is only an “approximate” equilib-
rium. Wheng vanishes, therix,y) becomes a member of the simply stable set. A per-
turbation with vanishinge is mimicked by a lexico-minimum ratio test as described in
Section 2.6 that extends step (b) of Algorithm 2.9. The perturbation (3.3) is therefore
easily captured computationally. With (3.2), (3.3), the perturbed system (3.1) is of the
form (2.31) with

=yes’s o= 5 Pl a= | (34

andQ=[-Ci;1,...,—C«,—Cy,...,—Cj] if Cq,...,Cx are the columns df. That is,Q is
just —C except for a cyclical shift of the columns, so that the lexico-minimum ratio test
is easily performed using the current tableau.

The algorithm by Wilson (1992) computegath of equilibria where all perturba-
tions of the form (3.3) occur somewhere. Starting from the artificial equilibriard),
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the Lemke—Howson algorithm is used to compute an equilibrium with a lexicographic
order shifted by some. Having reached that equilibriunn,is increased as long as the
computed basic solution is lexico-feasible with that shifted order. If this is not possible
for all i (as required for simple stability), a new Lemke—Howson path is started with the
missing label determined by the maximally possible lexicographic shift. This requires
several variants of pivoting steps. The final piece of the computed path represents the
connected set in Definition 3.1.

3.2. Perfect equilibria and the tracing procedure

An equilibrium isperfect(Selten, 1975) if it is robust against certain small mistakes of
the players. Mistakes are represented by small positive minimum probabilities for all
pure strategies. We use the following characterization (Selten, 1975, p. 50, Theorem 7) as
definition.

Definition 3.2. (Selten, 1975.) An equilibriurfx,y) of a bimatrix game is calleperfect
if there is a continuous functioa — (x(€),y(€)) where(x(g),y(€)) is a pair of com-
pletely mixed strategies for a#l > 0, (x,y) = (X(0),y(0)), andx is a best response to
y(€) andy is a best response W¢) for all €.

Positive minimum probabilities for all pure strategies define a special primal per-
turbation as considered for simply stable equilibria. Thus, as noted by Wilson (1992,
p. 1042), his modification of the Lemke—Howson algorithm can also be used for comput-
ing a perfect equilibrium. Then it is not necessary to shift the lexicographic order, so the
lexico-minimum ratio test described in Section 2.6 can be used@ith—C.

Theorem 3.3. Consider a bimatrix gameA, B) and, with (3.4), the LCRRz=q, z> 0,
(2.24). Then Algorithm 2.9, computing with bageéso thaC[} g, —C] is lexico-positive,
terminates at a perfect equilibrium.

Proof. Consider the computed solution to the LCP, which represents an equilibxiymn
by (2.19). The final basig is lexico-positive, that is, foQ = —C in the perturbed system
(2.32), the basic variablesg are all positive ife > 0. In (2.32), replacge, .. LE9T by

5=(&,n,p,0) =(s,...,e™N0,...,0)", (3.5)

so thatzg is still nonnegative. Therzg contains the basic variables of the solution
(X,y,r,s) to (3.1), withp = 0, o0 = 0 by (3.5). This solution depends @n sor =r(g),
s=s(¢), and it determines the paif(¢) = X'+ &, y(¢) =y +n which represents a com-
pletely mixed strategy pair i > 0. The computed equilibrium is equal to this pair for

€ =0, and itis a best response to this pair since it is complementary to the slack variables
r(e),s(e). Hence the equilibrium is perfect by Definition 3.2. O

A different approach to computing perfect equilibria of a bimatrix game is due to
van den Elzen and Talman (1991, 1999); see also van den Elzen (1993). The method uses
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an arbitrarystarting point(p,q) in the productX x Y of the two strategy spaces defined

in (2.7). It computes a piecewise linear pathXirx Y that starts atp,q) and terminates at

an equilibrium. The paifp,q) is used throughout the computation as a reference point.
The computation uses an auxiliary varialae which can be regarded as a parameter for

a homotopymethod (see Garcia and Zangwill, 1981, p. 368). Initiatly= 1. Then,z,

is decreased and, after possible intermittent increases, eventually becomes zero, which
terminates the algorithm.

The algorithm computes a sequence of basic solutions to the system

Ex + ep=e
Fy+ fzg="f

r=E'u —Ay— (AQz>0 (3.6)
s= F'v-B'x —(B'pzn>0,
X, Y, 0 > 0.

These basic solutions contain at most one basic variable from each complementary pair
(xi,ri) and(yj,sj) and therefore fulfill

x'r=0, y's=0. (3.7)

The constraints (3.6), (3.7) define angmented_.CP which differs from (2.14) only by
the additional column for the variablg. That column is determined kyp, g). An initial
solution iszy =1 andx =0, y= 0. As in Algorithm 2.9, the computation proceeds by
complementary pivoting. It terminates whegis zero and leaves the basis. Then the
solution is an equilibrium by Theorem 2.4.

As observed in von Stengel, van den Elzen, and Talman (2002), the algorithm in this
description is a special case of the algorithm by Lemke (1965) for solving an LCP (see
also Murty, 1988; Cottle et al., 1992). Any solution to (3.6) fulfill< zg < 1, and the
pair

(X,Y) = (X+ P20,y -+ 02) (3.8)

belongs toX x Y sinceEp=e andFq= f. Hence,(X,y) is a pair of mixed strategies,
initially equal to the starting pointp,q). Forzy = 0, it is the computed equilibrium. The

set of these pair&,y) is the computed piecewise linear path¥rx Y. In particular, the
computed solution is always bounded. The algorithm can therefore never encounter an
unbounded ray of solutions, which in general may cause Lemke’s algorithm to fail. The
computed pivoting steps are unique by using lexicographic degeneracy resolution. This
proves that the algorithm terminates.

In (3.8), the positive componentsandy;j of x andy describe which pure strategies
I and j, respectively, are played with higher probability than the minimum probabilities
Pizo and gjZo as given by(p,q) and the current value af. By the complementarity
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condition (3.7), these areest responset® the current strategy paii,y). Therefore,
any point on the computed path is equilibriumof therestrictedgame where each pure
strategy has at least the probability it has un@er) - zop. Considering the final line
segment of the computed path, one can therefore show the following.

Theorem 3.4. (Van den Elzen and Talman, 1991.) Lemke’s complementary pivoting
algorithm applied to the augmented LCP (3.6), (3.7) terminates at a perfect equilibrium if
the starting pointp,q) is completely mixed.

As shown by van den Elzen and Talman (1999), their algorithm also emulates the
linear tracing procedureof Harsanyi and Selten (1988). The tracing procedure is an ad-
justment process to arrive at an equilibrium of the game when starting from & primr.

It traces a pair of strategy pai(®,y). Each such pair is an equilibrium in a parameterized
game where the prior is played with probabiligyand the currently used strategies with
probability 1 — zy. Initially, zo = 1 and the players react against the prior. Then they
simultaneously and gradually adjust their expectations and react optimally against these
revised expectations, until they reach an equilibrium of the original game.

Characterizations of the sets of stable and perfect equilibria of a bimatrix game
analogous to Theorem 2.14 are given in Borm et al. (1993), Jansen, Jurg, and Borm
(1994), Vermeulen and Jansen (1994), and Jansen and Vermeulen (2001).

4. Extensive form games

In a game in extensive form, successive moves of the players are represented by edges
of a tree. The standard way to find an equilibrium of such a game has been to convert it
to strategic form, where each combination of moves of a player is a strategy. However,
this typically increases the description of the game exponentially. In order to reduce this
complexity, Wilson (1972) and Koller and Megiddo (1996) describe computations that use
mixed strategies witsmall support A different approach uses tlsequence forrof the

game where pure strategies are replaced by move sequences, which are small in number.
We describe it following von Stengel (1996a), and mention similar work by Romanovskii
(1962), Selten (1988), Koller and Megiddo (1992), and further developments.

4.1. Extensive form and reduced strategic form

The basic structure of an extensive game is a finite tree. The nodes of the tree represent
game states. The game starts at the root (initial node) of the tree and ends at a leaf (termi-
nal node), where each player receives a payoff. The nonterminal nodes aralealdn

nodes The playersmovesare assigned to the outgoing edges of the decision node. The
decision nodes are partitioned int@formation setsintroduced by Kuhn (1953). All

nodes in an information set belong to the same player, and have the same moves. The
interpretation is that when a player makes a move, he only knows the information set but
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not the particular node he is at. Some decision nodes may belacftatwewhere the
next move is made according to a known probability distribution.

O I r O I r
0 0
1 L L
A= |3 R B= |4 R
S/ AT S/ AT 0 6|LS 1 0|LS
2 5|LT 0 2|LT

(5 () () ()

Figure 4.1. Left: A game in extensive form. Its reduced strategic form is (2.30). Right:
Thesequence formpayoff matricesA andB. Rows and columns correspond
to the sequences of the players which are marked at the side. Any sequence
pair not leading to a leaf has matrix entry zero, which is left blank.

We denote the set of information sets of playdry H;, information sets by, and
the set of moves dt by C,. In the extensive game in Figure 4.1, moves are marked by
upper case letters for player 1 and by lower case letters for player 2. Information sets
are indicated by ovals. The two information sets of player 1 have movekg®} and
{S T}, and the information set of player 2 has move{det}.

Equilibria of an extensive game can be found recursively by considstihgames
first. A subgame is a subtree of the game tree that includes all information sets containing
a node of the subtree. In a game wgérfect informationwhere every information set
is a singleton, every node is the root of a subgame, so that an equilibrium can be found
by backward induction. In games with imperfect information, equilibria of subgames are
sometimes easy to find. Figure 4.1, for example, has a subgame starting at the decision
node of player 2. Itis equivalent toZax 2 game and has a unique mixed equilibrium with
probability2/3 for the movesS andr, respectively, and expected paydfto player 1 and
2/3 to player 2. Preceded by moxeof player 1, this defines the unigsebgame perfect
equilibrium of the game.

In general, Nash equilibria of an extensive game (in particular one without sub-
games) are defined as equilibria of sisategic form There, agpure strategyof playeri
prescribes a deterministic move at each information set, so it is an elempptQfCh.

In Figure 4.1, the pure strategies of player 1 are the move combinafiofss, (L, T),
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(R'S), and (R T). In thereduced strategic formmoves at information sets that cannot

be reached due to an earlier own move are identified. In Figure 4.1, this reduction yields
the pure strategy (more precisely, equivalence class of pure stratéBie$) where x
denotes an arbitrary move. The two pure strategies of player 2 are her hramvéés. The
reduced strategic forrfA, B) of this game is then as in (2.30). This gamelégenerate

even if the payoffs in the extensive game are generic, because player 2 receives payoff 4
when player 1 chooseR (the bottom row of the bimatrix game) irrespective of her own
move. Furthermore, the game has an equilibrium which is not subgame perfect, where
player 1 chooseR and player 2 choosdswith probability at leas2/3.

A player may havearallelinformation sets that are not distinguished by own earlier
moves. In particular, these arise when a player receives information about an earlier move
by another player. Combinations of moves at parallel information sets cannot be reduced
(see von Stengel, 1996b, for further details). This causes a multiplicative growth of the
number of strategies even in the reduced strategic form. In general, the reduced strategic
form is thereforeexponentiain the size of the game tree. Strategic form algorithms are
then exceedingly slow except for very small game trees. Although extensive games are
convenient modeling tools, their use has partly been limited for this reason (Lucas, 1972).

Wilson (1972) applies the Lemke—Howson algorithm to the strategic form of an
extensive game while storing only those pure strategies that are actually played. That is,
only the positive mixed strategy probabilities are computed explicitly. These correspond
to basic variables or y’J in Algorithm 2.9. The slack variables ands; are merely
known to be nonnegative. For the pivoting step, the leaving variable is determined by a
minimum ratio test which is performaddirectly for the tableau rows corresponding to
basic slack variables. If, for examplg, enters the basis in step 2.9(b), then the conditions
y’j > 0 andr; > 0 for the basic variabley; andr; determine the value of the entering
variable by the minimum ratio test. In Wilson (1972), this test is first performed by
ignoring the constraints; > 0, yielding a new mixed strategy’ of player 2. Against
this strategy, a pure best responsef player 1 is computed from the game tree by a
subrouting essentially backward induction. ilhas the same payoff as the currently used
strategies of player 1, then> 0 and some component gfleaves the basis. Otherwise,
the payoff fori is higher and; < 0. Then at least the inequality > 0 is violated, which
iIs now added for a new minimum ratio test. This determines a new, smaller value for
the entering variable and a corresponding mixed stragégyAgainst this strategy, a best
response is computed again. This process is repeated, computing a sequence of mixed
strategies®, yL,...,yt, until r > 0 holds and the correct leaving variatilgs found.

Each pure strategy used in this method is stored explicitly as a tuple of moves.
Their number should stay small during the computation. In the description by Wilson
(1972) this is not guaranteed. However, the desired small support of the computed mixed
strategies can be achieved by maintaining an additional system of linear equations for
realization weight®f the leaves of the game tree and withasis crashingubroutine, as
shown by Koller and Megiddo (1996).
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The best response subroutine in Wilson’s (1972) algorithm requires that the players
haveperfect recal] that is, all nodes in an information set of a player are preceded by
the same earlier moves of that player (Kuhn, 1953). For findlhgquilibria, Koller and
Megiddo (1996) show how to enumerate small supports in a way that can also be applied
to extensive games without perfect recall.

4.2. Sequence form

The use of pure strategies can be avoided altogether by ssqgencesf moves instead.

The unigue path from the root to any node of the tree defines a sequence of moves for
playeri. We assume playearhas perfect recall. That is, any two nodes in an information
seth in H; define the same sequence for that player, which we denadg.byet § be the

set of sequences of moves for playetThen anyo in § is either the empty sequen@er
uniquely given by its last move at the information set in Hj, that is,o = o,,c. Hence,
S={0} U {onc|heHi, ceC,}. So player does not have more sequences than the
tree has nodes.

Thesequence forraf the extensive game, described in detail in von Stengel (1996a),
is similar to the strategic form but uses sequences instead of pure strategies, so it is a very
compact description. Randomization over sequences is thereby described as follows.

A behavior strategy3 of playeri is given by probabilitieg3(c) for his movesc
which fulfill B(c) > 0 and ¢, B(c) = 1 for all hin H;. This definition of 3 can be
extended to the sequencesn § by writing

Blol= [] B (4.1)

cino

A pure strategyrt of playeri can be regarded as a behavior strategy witb) € {0,1}
for all movesc. Thus, o] € {0,1} for all o in §. The pure strategies with o] =1
are those “agreeing” witlr by prescribing all the moves ia, and arbitrary moves at the
information sets not touched hy.

A mixed strategyu of playeri assigns a probability: (1) to every pure strategy.
In the sequence form, a randomized strategy of playsrdescribed by theealization
probabilities of playing the sequences in §. For a behavior strategf, these are
obviously B[o] as in (4.1). For a mixed strategy of playeri, they are obtained by
summing over all pure strategiesof playeri, that is,

ulo] =Y u(mmio]. (4.2)
T
For player 1, this defines a magrom S; to R by x(o) = pu[o] for o in § which we call

therealization planof u or a realization plan for player 1. A realization plan for player 2,
similarly defined ort,, is denoted,.
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Theorem 4.1. (Koller and Megiddo, 1992; von Stengel, 1996a.) For playex [5 the
realization plan of a mixed strategy if and onlyi{fo) > 0 for all o € S; and

X(0) =1,
;ﬂx(ahc) =x(on), heH. (4.3)

ce

A realization plary of player 2 is characterized analogously.

Proof. Equations (4.3) hold for the realization probabiliti€sr) = [o] for a behavior
strategyB and thus for every pure strategy and therefore for their convex combinations
in (4.2) with the probabilitieg (). O

To simplify notation, we write realization plans as vecta@rs: (Xg)ges, andy =
(Yo)oes, With sequences as subscripts. According to Theorem 4.1, these vectors are
characterized by

x>0, Ex=e y>0, Fy=f (4.4)

for suitable matrice€ andF, and vectore and f that are equal t¢1,0...,0) ", where
E ande havel—+ |H;| rows andF and f havel+ |Hy| rows. In Figure 4.1, the sets of
sequences ai® = {0,L,RLSLT} andS$ = {0,l,r}, and in (4.4),

1 1
1 1
E=|-1 1 1 , e=|0], F:[ } f:H.
{ 1 11] 0] -1 1 1 0

The number of information sets and therefore the number of roisafidF is at most
linear in the size of the game tree.

Mixed strategies of a player are calleshlization equivalen{Kuhn, 1953) if they
define the same realization probabilities for all nodes of the tree, given any strategy of the
other player. For reaching a node, only the players’ sequences matter, which shows that
the realization plan contains the strategically relevant information for playing a mixed
strategy:

Theorem 4.2. (Koller and Megiddo, 1992; von Stengel, 1996a.) Two mixed stratggies
andu’ of playeri are realization equivalent if and only if they have the same realization
plan, thatisu[o] = u'[o] forall o € S.

Any realization planx of player 1 (and similarlyy for player 2) naturally defines
a behavior strategy3 where the probability for move is §(c) = x(onc)/x(oy), and
arbitrary, for example(c) = 1/|C;|, if x(an) = 0 since therh cannot be reached.

Corollary 4.3. (Kuhn, 1953.) For a player with perfect recall, any mixed strategy is
realization equivalent to a behavior strategy.

In Theorem 4.2, a mixed strategy is mapped to its realization plan by regarding
(4.2) as a linear map with given coefficientso] for the pure strategies. This maps
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the simplex of mixed strategies of a player to the polytope of realization plans. These
polytopes are characterized by (4.4) as asserted in Theorem 4.1. They define the player’s
strategy spaces the sequence form, which we denote XyandY as in (2.7). The
vertices ofX andY are the players’ pure strategies up to realization equivalence, which

Is the identification of pure strategies used in the reduced strategic form. However, the
dimension and the number of facet0findY is reduced from exponential to linear size.

Sequence fornpayoffsare defined for pairs of sequences whenever these lead to
a leaf, multiplied by the probabilities of chance moves on the path to the leaf. This
defines two sparse matricdsand B of dimension|S;| x || for player 1 and player 2,
respectively. For the game in Figure 24 andB are shown in Figure 4.1 on the right.
When the players use the realization planandy, the expected payoffs ape’ Ay for
player 1 andx' By for player 2. These terms represent the sum over all leaves of the
payoffs at leaves multiplied by their realization probabilities.

The formalism in Section 2.2 can be applied to the sequence form without change.
For zero-sum games, one obtains the analogous result to Theorem 2.3. It was first proved
by Romanovskii (1962). He constructs a constrained matrix game (see Charnes, 1953)
which is equivalent to the sequence form. The perfect recall assumption is weakened by
Yanovskaya (1970). Until recently, these publications were overlooked in the English-
speaking community.

Theorem 4.4. (Romanovskii, 1962; von Stengel, 1996a.) The equilibria of a two-person
zero-sum game in extensive form with perfect recall are the solutions of the LP (2.10) with
sparse sequence form payoff mathxand constraint matricds andF in (4.4) defined

by Theorem 4.1. The size of this LP is linear in the size of the game tree.

Selten (1988, pp. 226, 237ff) defines sequence form strategy spaces and payoffs to
exploit their linearity, but not for computational purposes. Koller and Megiddo (1992)
describe the first polynomial-time algorithm for solving two-person zero-sum games in
extensive form, apart from Romanovskii’s result. They define the constraints (4.3) for
playing sequenceg of a player with perfect recall. For the other player, they still con-
sider pure strategies. This leads to an LP with a linear number of varigplas possibly
exponentially many inequalities. However, these can be evaluated as needed, similar to
Wilson (1972). This solves efficiently the “separation problem” when using the ellipsoid
method for linear programming.

For non-zero-sum games, the sequence form defines an LCP analogous to Theo-
rem 2.4. Again, the point is that this LCP has the same size as the game tree. The Lemke—
Howson algorithm cannot be applied to this LCP, since the missing label defines a single
pure strategy, which would involve more than one sequence in the sequence form. Koller,
Megiddo, and von Stengel (1996) describe how to use the more general complementary
pivoting algorithm by Lemke (1965) for finding a solution to the LCP derived from the
sequence form. This algorithm uses an additional variajp#d a corresponding column
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to augment the LCP. However, that column is just some positive vector, which requires a
very technical proof that Lemke’s algorithm terminates.

In von Stengel, van den Elzen, and Talman (2002), the augmented LCP (3.6), (3.7)
is applied to the sequence form. The columnZpis derived from a starting paiip,q) of
realization plans. The computation has the interpretation described in Section 3.2. Similar
to Theorem 3.4, the computed equilibrium can be shown to be strategic-form perfect if
the starting point is completely mixed.

5. Computational issues

How long does it take to find an equilibrium of a bimatrix game? The Lemke—Howson
algorithm has exponential running time for some specifically constructed, even zero-sum,
games. However, this does not seem to be the typical case. In practice, numerical stability
IS more important (Tomlin, 1978; Cottle et al., 1992). Interior point methods that are
provably polynomial as for linear programming are not known for LCPs arising from
games; for other LCPs see Kojima et al. (1991). The computational complexity of finding
one equilibrium is unclear. By Nash’s theorem, an equilibrium exists, but the problem is
to construct one. Megiddo (1988), Megiddo and Papadimitriou (1989), and Papadimitriou
(1994) study the computational complexity of problems of this kind.

Gilboa and Zemel (1989) show that finding an equilibrium of a bimatrix game with
maximum payoff sum is NP-hard, so for this problem no efficient algorithm is likely
to exist. The same holds for other problems that amount essentially to examining all
equilibria, like finding an equilibrium with maximum support. For other game-theoretic
aspects of computing see Linial (1994) and Koller, Megiddo, and von Stengel (1994).

The usefulness of algorithms for solving games should be tested further in practice.
Many of the described methods are being implemented in the project GAMBIT, acces-
sible by internet, and reviewed in McKelvey and McLennan (1996). The GALA system
by Koller and Pfeffer (1997) allows one to generate large game trees automatically, and
solves them according to Theorem 4.4. These program systems are under development
and should become efficient and easily usable tools for the applied game theorist.
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