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Abstract

The optimal competitive ratio for a randomized online list update algorithm is known to be at
least 1.5 and at most 1.6, but the remaining gap is not yet closed. We present a new lower bound
of 1.50084 for the partial cost model. The construction is based on game trees with incomplete
information, which seem to be generally useful for the competitive analysis of online algorithms.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The list update problem is a classical online problem in the area of self-organizing
data structures [4]. Requests to items in an unsorted linear list must be served while
maintaining the list so that access costs remain small. We assume the partial cost
model where accessing the ith item in the list incurs a cost of i − 1 units. This is
simpler to analyze than the original full cost model [14] where that cost is i. After an
item has been requested, it may be moved free of charge closer to the front of the list.
This is called a free exchange. Any other exchange of two consecutive items in the
list incurs cost one and is called a paid exchange.
An online algorithm must serve the sequence � of requests one item at a time,

without knowledge of future requests. An optimum o,ine algorithm knows the entire
sequence � in advance and can serve it with minimum cost OFF(�). If the online
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algorithm serves � with cost ON (�), then it is called c-competitive if for a suitable
constant b,

ON (�)6c OFF(�) + b (1)

for all request sequences �. The competitive ratio c in this inequality is the stan-
dard yardstick for measuring the performance of the online algorithm. The well-known
move-to-front rule MTF , for example, which moves each item to the front of the list
after it has been requested, is 2-competitive [14, 15]. This is also the best possible
competitiveness for any deterministic online algorithm for the list update problem [10].
Randomized algorithms can perform better on average [9]. Such an algorithm is

called c-competitive if

E[ON (�)]6c OFF(�) + b; (2)

where the expectation is taken over the randomized choices of the online algorithm.
Furthermore, we call the algorithm strictly c-competitive if (2) holds with b=0.

The best randomized list update algorithm known to date is 1.6-competitive. This
algorithm COMB [2] serves the request sequence with probability 4

5 using the algo-
rithm BIT [14], which alternately moves a requested item to the front or leaves it
in place. With probability 1

5 ; COMB treats the request sequence using a determin-
istic TIMESTAMP algorithm [1], where a requested item x is moved in front of
the Grst item in the list that has been requested at most once since the last request
to x.
Randomization is useful only against the oblivious adversary [5] that generates

request sequences without observing the randomized choices of the online algorithm.
If the adversary can observe those choices, it can generate requests as if the algorithm
was deterministic, which is then at best 2-competitive. We therefore consider only the
interesting situation of the oblivious adversary. Lower bounds for the competitive ratio
can be proved using Yao’s theorem [18]: If there is a probability distribution on request
sequences so that the resulting expected competitive ratio for any deterministic online
algorithm is d or higher, then every deterministic or randomized online algorithm has
competitive ratio d or higher [8]. Teia [16] described a simple distribution on request
sequences that, adapted to the partial cost model, shows a lower bound of 1.5. The
optimal competitive ratio for the list update problem is therefore between 1.5 and 1.6,
but the true value is as yet unknown.
For lists with up to four items, it is possible to construct an online list update

algorithm that is 1.5-competitive [3] and therefore optimal. In this paper, we show a
lower bound that is greater than 1.5 when the list has at least Gve items. We will prove
this bound for the standard assumption that algorithms may use paid exchanges. One
can also prove a lower bound above 1.5 for the variant of the list update problem where
only free exchanges are allowed. For that purpose, we have to modify and extend our
method in certain ways, as mentioned at the end of this paper.
Our construction uses a game tree, where alternately the adversary generates a

request and the online algorithm serves it. The adversary is not informed about the
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action of the online algorithm, so the game tree has imperfect information [12]. We
consider a Gnite tree where after some requests, the ratio of online versus optimal
oJine cost is the payoK to the adversary. This deGnes a zero-sum game, which we
solve by linear programming. For a game tree that is suLciently deep, and restricted to
a suitable subset of requests so that the tree is not too large in order to stay solvable,
this game has a value of more than 1.50084. This shows that any strictly c-competitive
online algorithm fulGlls c¿1:50084. In order to derive from this a new lower bound
for the competitive ratio c according to (1) with a nonzero constant b, one has to
generate arbitrarily long request sequences. This can be achieved by composing the
game trees repetitively, as we will show.
A drawback is our assumption of the partial instead of the full cost model. In the

latter model, where a request to the ith item in the list incurs cost i, the known lower
bound is 1:5−5=(n+5) for a list with n items. This result by Teia [16] yields a lower
bound for the competitive ratio much below 1.5 when the list is short. In fact, the
algorithm COMB [2] is 1.5-competitive when n¡9. To prove a lower bound above
1.5 for the full cost model we would have to extend our construction to longer lists.
Unfortunately, a straightforward extension cannot compensate for the reduction of the
competitive ratio by 5=(n+ 5) (or any term proportional to 1=n) when considering the
full instead of the partial cost model, so this case remains open. Nevertheless, we think
a result for the partial cost model is still interesting since that model is more canonical
when one looks at the analysis, and it is still close to the original problem formulation.

2. Pairwise analysis and partial orders

The analysis of a list update algorithm is greatly simpliGed by observing separately
the relative movement of any pair of items in the list. Let � be a sequence of requests.
Consider any deterministic algorithm A that processes �. For any two items x and y
in the list, let Axy(�) be the number of times where y is requested and is behind x in
the list, or vice versa. Then it is easy to show [6, 9, 2] that

A(�) =
∑

{x;y}⊆ L:x �=y
Axy(�);

where L is the set of items in the list. In this way, Axy(�) represents the cost of the
online algorithm projected to the unordered pair {x; y} of items.
Let �xy be the request sequence � with all items other than x or y deleted. Many

list update algorithms, like MTF; BIT , and TIMESTAMP, are projective in the sense
that at any time the relative order of two items x and y in the list depends only on
the projected request sequence �xy and the initial order of x and y, which we denote
by [xy] if x precedes y. (In general, we list items between square brackets to denote
their current order in the list maintained by the algorithm.)
For the optimal oJine algorithm OFF , the projected cost OFFxy(�) is clearly at

least as high as the cost of serving �xy optimally on the two-element list consisting of
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Table 1

�xy OFF ON with [xy]; Ibefore = 0
with
[xy] x WAIT x MTF x WAIT x MTF

y WAIT y WAIT y MTF y MTF

ON Iafter ON Iafter ON Iafter ON Iafter

xy 1 1 0 1 0 1 1 1 1

xxxy 1 1 0 1 0 1 1 1 1

xyyy 1 2 0 2 0 1 0 1 0

xxxyyy 1 2 0 2 0 1 0 1 0

4E[ON +PI ] 6 + 0 6 + 0 4 + 2 4 + 2

x and y. The latter cost is easy to determine since, for example, it is always optimal
to move an item to the front at the Grst of two or more successive requests. In fact,
the item must be moved to the front at the Grst of three or more successive requests.
On the other hand, it is usually not optimal to move an item that is requested only
once. Hence, for any two items x and y, where x precedes y, an online algorithm
serving a request to y can either leave y behind x or move y in front of x, which,
either way, is a “mistake” depending on whether y will be requested again before x
or not.
Based on this observation, Teia [16] has constructed a lower bound of 1.5 for the

competitive ratio. The requests are generated in runs which are repeated indeGnitely.
At the start of each run, the list currently maintained by the oJine algorithm has a
particular order [x1x2 : : : xn]. Then this list is traversed from front to back, requesting
each item with equal probability either once or three times. If an item is requested three
times, then it is moved to the front at the Grst request, otherwise left in place, which
is an optimal oJine treatment. This results in a new oJine list, which determines the
next run.
Table 1 lists the resulting costs for the possible actions of the online algorithm,

projected on items x and y. In Table 1, WAIT refers to an online algorithm that moves
the requested item only at the second request in succession (if it is not moved then,
the online costs are even higher), and MTF moves the item to the front at the Grst
request. In Table 1, item x is assumed to precede y in the lists maintained by both
oJine and online algorithm. The four request sequences each have probability 1

4 . For
each of the four possible combinations of WAIT and MTF , the column ON denotes
the online cost and Iafter denotes the number of inversions in the online list after the
requests have been served. An inversion is a transposition of two items relative to their
position in the oJine list.
Without inversions, the MTF algorithm, for example, would incur the same cost as

the optimal oJine cost. However, the inversion increases the online cost by a full unit
in the next run, where [xy] is the order for the oJine algorithm but [yx] is the order
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Table 2

�xy OFF ON with inversion [yx]; Ibefore = 1
with
[xy] x WAIT x MTF x WAIT x MTF

y WAIT y WAIT y MTF y MTF

ON Iafter ON Iafter ON Iafter ON Iafter

xy 1 1 1 2 0 1 1 2 1

xxxy 1 3 0 2 0 3 1 2 1

xyyy 1 1 0 3 0 1 0 2 0

xxxyyy 1 4 0 3 0 3 0 2 0

4E[ON +PI ] 9− 3 10− 4 8− 2 8− 2

of x and y in the list used by the online algorithm. Table 2 shows these online costs
when the algorithm starts with such an inversion, denoted by Ibefore = 1.

Tables 1 and 2 list all possible online actions, except for those that perform
even worse (leaving a triply requested item in place, for example). Note that it does
not matter if the online algorithm conditions its action in the presence of inversions or
not.
Let T be the distribution on request sequences generated by the described method

of Teia. Then the expected online costs together with the change in the number of
inversions fulGll the inequality

E[ON (T ) + PI ] = E[ON (T )− Ibefore + Iafter]¿1:5OFF(T ): (3)

This follows from Tables 1 and 2 by considering the projected sequences and telescop-
ing the sum for the inversion counts from one run to the next (where Ibefore for that run
is equal to Iafter for the previous run and cancels). Inequality (3) shows that the number
of inversions can serve as a potential function [7]. The variation PI = Iafter − Ibefore
of this potential function is bounded, so that (3) implies that any online algorithm is
at most 1.5-competitive for the distribution T on request sequences. We will extend
Teia’s method in our lower bound construction.
Using partial orders, one can construct a 1.5-competitive list update algorithm for

lists with up to four items [3]. The partial order is initially equal to the linear order of
the items in the list. After each request, the partial order is modiGed as follows, where
x‖y means that x and y are incomparable:

partial order after request to
before z =∈{x; y} x y
x‖y x‖y x¡y y¡x
x¡y x¡y x¡y x‖y
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That is, a request only aKects the requested item y in relation to the remaining items.
Then y is in front of all items x except if x¡y held before, which is changed to x‖y.
The initial order in the list and the request sequence determine the resulting partial
order. One can generate an arbitrary partial order in this way [3].
The partial order deGnes a position p(x) = |{y |y¡x}|+ |{y |y‖x}|=2 for each item

x. If the online algorithm can maintain a distribution on lists so that the expected cost
of accessing an item x is equal to p(x), then this algorithm is 1.5-competitive [3].
One can show that then x is with probability one behind all items y so that y¡x, and
precedes with probability 1

2 those items y where x‖y. Incomparable elements reSect the
possibility of a “mistake” of not transposing these items, which should have probability
1
2 . For lists with up to four items, one can maintain such a distribution using two lists
only. That is, the partial order is represented as the intersection of two lists, where
each list is updated by moving the requested item suitably to the front, using only free
exchanges. The algorithm works by choosing one of these lists at the beginning with
probability 1

2 as the actual list and serving it so as to maintain the partial order (with
the aid of the separately stored second list).
The partial order approach is very natural for the projection on pairs and when the

online algorithm can only use free exchanges. A lower bound above 1.5 must exploit
a failure of this algorithm. This is already possible for lists with Gve items, despite
the fact that all Gve-element partial orders are two-dimensional (representable as the
intersection of two linear orders). Namely, let the items be integers and let the initial
list be [12345], and consider the request sequences

�1 = 4254 and �2 = 4253: (4)

After the Grst request to 4, the partial order states 4‖1, 4‖2, 4‖3, and 4¡5, and
otherwise 1¡2¡3¡5. Using a free exchange, 4 can only be moved forward and has
to precede 3, 2, 1 each with probability 1

2 . This is achieved uniquely with the uniform
distribution on the two lists [12345] and [41235] (this, as well as the following, holds
even though distributions on more than two lists are allowed). The next request to 2
induces 2¡4, so 2 must be moved in front of 4 in the list [41235], where 2 already
passes 1, which yields the unique uniform distribution on [12345] and [24135]. The
next request to 5 entails that 5 is incomparable with all other items. It can be handled
deterministically in exactly two ways (or by a random choice between these two ways):
Either 5 is moved to the front in [24135], yielding the two lists [12345] and [52413]
with equal probability, or 5 is moved to the front in [12345], yielding the two lists
[51234] and [24135] with equal probability. If the two lists are [12345] and [52413],
the algorithm must disagree with the partial order after the request to 4 as in �1, since
then 4 must precede both 1 and 5 in both lists (so 4 is moved to the front in both lists)
but then incorrectly passes 2 where only 2‖4 should hold. Similarly, for the two lists
[51234] and [24135] the request to 3 as in �2 moves 3 in front of 5 and 4 in both lists,
so that it passes 1, violating 1‖3. Thus, either �1 or �2 in (4) causes the poset-based
algorithm to fail, which otherwise achieves a competitive ratio of 1.5. These sequences
will be used with certain probabilities in our lower bound construction.
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3. Game trees with imperfect information

Competitive analysis can be phrased as a zero-sum game between two players, the
adversary and the online algorithm (or online player). In order to deal with Gnite
games, we assume a Gnite set S of request sequences � (of a given bounded length,
for example), which represent the pure strategies of the adversary. These can be mixed
by randomization. The online player has a Gnite number N of possible ways of deter-
ministically serving these request sequences. These deterministic online algorithms can
also be chosen randomly by suitable probabilities pj for 16j6N . In this context of
Gnitely many request sequences, an arbitrary constant b in (2) is not reasonable, so we
look at strict competitiveness. The randomized online algorithm is strictly c-competitive
if for all � in S,

N∑

j=1

pj ONj(�)6c OFF(�); (5)

where ONj(�) is the cost incurred by the jth online algorithm and OFF(�) is the
optimal oJine cost for serving �. We can disregard the trivial sequences � with
OFF(�)= 0 that consist only of requests to the Grst item in the list. In this case
(5) is equivalent to

N∑

j=1

pj
ONj(�)
OFF(�)

6c: (6)

The terms ONj(�)=OFF(�) in (6), for 16j6N and �∈ S, can be treated as a payoK to
the adversary in a zero-sum game matrix with rows � and columns j. Correspondingly,
a lower bound d for the strict competitive ratio is an expected competitive ratio [8]
resulting from a distribution on request sequences. This distribution is a mixed strat-
egy of the adversary with probabilities q� for � in S so that for all online strategies
j=1; : : : ; N

∑

�∈S
q�
ONj(�)
OFF(�)

¿d: (7)

The minimax theorem for zero-sum games [18] asserts that there are mixed strategies
for both players and reals c and d so that (6) and (7) hold with d= c. Then c is
the “value” of the game and the optimal strict competitive ratio for the chosen Gnite
approximation of the list update problem. Note that it depends on the admitted length
of request sequences. Due to the complicated implicit deGnition and large size of the
game matrix, we only know bounds c and d in (6) and (7) that hold irrespective of
the length of the request sequences where d¡c.
The number of request sequences is exponential in the length of the sequences. The

online player has an even larger number of strategies since that player’s actions are
conditional on the observed requests. This is best described by a game tree. At each
nonterminal node of the tree, a player makes a move corresponding to an outgoing edge.
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Fig. 1. Game tree with information sets.

The game starts at the root of the tree where the adversary chooses the Grst request.
Then, the online player moves with actions corresponding to the possible reorderings of
the list after the request. There are n! actions corresponding to all possible reorderings.
(Later, we will see that most of them need not be considered.) The players continue
to move alternatingly until the last request and the reaction by the online player. Each
leaf of the tree deGnes a sequence � and an online cost ON (�) (depending on the
online actions leading to that leaf), with payoK ON (�)=OFF(�) to the adversary.
The restricted information of the adversary in this game tree is modeled by infor-

mation sets [12]. Here, an information set is a set of nodes where the adversary is
to move and which are preceded by the same previous moves of the adversary him-
self. Hence, the nodes in the set diKer only by the preceding moves of the online
player, which the adversary cannot observe. An action of the adversary is assigned to
each information set (rather than an individual node) and is by the deGnition the same
action for every node in that set. On the other hand, the online player is fully informed
about previous requests, so his information sets are singletons. Fig. 1 shows the initial
part of the game tree for a list with three items for the Grst and second request by the
adversary, and the Grst online response, here restricted to free exchanges only.
A pure strategy in a game tree assigns a move to every information set of a player,

except for those that are unreachable due to an earlier choice of that player. Here,
the online player has information sets (like in Fig. 1) where each combination of
moves deGnes a diKerent strategy. This induces an exponential growth of the number
of strategies in the size of the tree. The strategic approach using a game matrix as
in (6) and (7) becomes therefore computationally intractable even if the game tree is
still of moderate size. Instead, we have used a recent method [17, 11] which allows
to solve a game tree with a “sequence form” game matrix and corresponding linear
program that has the same size as the game tree.
Using game trees, a Grst approach to Gnding a randomized strategy for the adver-

sary is the following. Consider a list with Gve items, the minimum number where a
competitive ratio above 1.5 is possible. Fix a maximum length m of request sequences,
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and generate the game tree for requests up to that length. At each leaf, the payoK to
the adversary is the quotient of online and oJine cost for serving that sequence. Then
convert the game tree to a linear program, and compute optimal strategies with an LP
solver (we used CPLEX).
However, this straightforward method does not lead to a strict competitiveness above

1.5, for two reasons. First, “mistakes” of an algorithm, like in the last column in Table
1, manifest themselves only later as actual costs, so there is little hope for an improved
lower bound using short request sequences. Secondly, even if only short sequences are
considered, the online player has n! responses to every move of the adversary, so that
the game tree grows so fast that the LP becomes computationally infeasible already
for very small values of m.
The Grst problem is overcome by adding the number of inversions of the online

list, denoted by Iafter in Tables 1 and 2 above, to the payoK at each leaf. This yields
a strict competitive ratio greater than 1.5 for rather short sequences. The inversions
are converted into actual costs by attaching a “gadget” to each leaf of the game tree
that generates requests similar to Teia’s lower bound construction. The next section
describes the details.
The second problem, the extremely rapid growth of the game tree, is avoided as

follows. First, we limit the possible moves of the online player by allowing only
paid exchanges of a special form, so-called subset transfers [13]. A subset transfer
chooses some items in front of the requested item x and puts them in the same order
directly behind x (e.g. [12345x67]→ [13x24567]). Afterwards, the adversary’s strategy
computed against this “weak” online player is tested against all deterministic strategies
of the online player, which can be done quickly by dynamic programming. Then the
lower bound still holds, that is, the “strong” online player who may use arbitrary paid
exchanges cannot proGt from its additional power.

4. The game tree gadgets

We compose a game tree from two types of trees or “gadgets”. The Grst gadget called
FLUP (for “Gnite list update problem”) has a small, irregular structure. The second
gadget called IC (for “inversion converter”) is regularly structured. Both gadgets come
with a randomized strategy for the adversary, which has been computed by linear
programming for FLUP. An instance of IC is appended to each leaf of FLUP. The
resulting tree with the speciGed strategy of the adversary deGnes a one-player decision
problem for the online player that has an expected strict competitive ratio of at least
1:5 + 1=1184, about 1.50084, for the simplest version of FLUP that we found; larger
versions of FLUP give higher lower bounds.
Both gadgets assume a particular state of the oJine list, which is a parameter that

determines the adversary strategy. Furthermore, at the root of FLUP (which is the
beginning of the entire game), it is assumed that both online and oJine list are in
the same state, say [12345]. Then the adversary strategy for FLUP generates only
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Table 3

Requests OJine list Probability OFF MTF + I WAIT + I

4 [41235] 396=1184 3 3+0 3+3

425 [51234] 114=1184 8 9+3 8+4

425 [52134] 38=1184 8 9+2 8+5

4253 [12345] 40=1184 10 13+7 10+0

4253 [13524] 240=1184 10 13+4 10+3

4253 [23451] 200=1184 10 13+3 10+4

4254 [24513] 117=1184 9 11+2 11+4

4254 [41523] 39=1184 9 11+2 11+2

the request sequences 4, 425, 4253, and 4254 with positive probability, which are
the sequences in (4) or a preGx thereof. After the responses of the online player to
one of these request sequences, the FLUP tree terminates in a leaf with a particular
status of the online list and of the oJine list, where the latter is also chosen by the
adversary, independently of the online list. For the request sequence 4, that oJine list
is [41235], that is, the oJine algorithm has moved 4 to the front. If the FLUP game
terminates after the request sequence 425, the adversary makes an additional internal
choice, unobserved by the online player, between the oJine lists [51234] and [52134].
In the Grst case, the oJine player brought 5 to the front but left 4 and 2 in their place,
in the second, 2 was also moved to the front. Similar choices are performed between
the oJine lists for the request sequences 4253 and 4254.
The speciGc probabilities for these choices of the adversary in FLUP are shown

in Table 3. The last three columns denote the cost for the oJine algorithm and, as
an example, the two online algorithms MTF and WAIT , where WAIT moves an item
to the front at the second request. The FLUP tree starts with 4 as the Grst request,
followed by the possible responses of the online player. Next, the adversary exits with
probability 396=1184, without a request, to the leaf with oJine list [41235], and with
complementary probability requests item 2, which is followed by the online move, and
so on.
Each leaf of the FLUP tree is the root of an IC gadget which generates requests

(similar to the runs in Teia’s construction, see below), depending on the oJine list.
The number of inversions of the online list relative to this oJine list is denoted by
I in Table 3. The purpose of the IC gadget is to convert these inversions into actual
costs. Any request sequence generated by the IC gadget can be treated with the same
oJine cost v, here v=30. Thereby, the online algorithm makes mistakes relative to
the oJine algorithm, so that the additional online cost in IC is 1:5 v.
Let ON be the online cost incurred inside FLUP. Then FLUP can be represented

as a game tree where the IC gadget at each leaf is replaced by the payoK D to the
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adversary,

D =
ON + I + 1:5v
OFF + v

: (8)

Using these payoKs, the probabilities in Table 3 have been computed by linear pro-
gramming. One can show that any online strategy, as represented in the FLUP tree,
has an expected strict competitive ratio of at least 1:5 + 1

1184 , or about 1.50084. Two
optimal online strategies are MTF and WAIT , where the values of ON + I as used in
(8) are also shown in Table 3. Here, WAIT moves only item 4 to the front at the end
of the request sequence 4254.
The well-deGned behavior of the IC gadget allows to replace it by a single payoK

D as in (8). Furthermore, the online player knows that the FLUP gadget has been left
and the IC gadget has been entered, since IC starts with a request to the Grst item
in the oJine list, like 4 when that list is [41235] as in the Grst row of Table 3. In
this context, we make a certain assumption about the internal choice of the adversary
between diKerent oJine lists. Namely, at the start of the IC gadgets for the oJine lists
[12345] and [13524] which follow the request sequence 4253, the Grst request is 1
and then the online player cannot yet tell which IC gadget has been entered. Strictly
speaking, the two gadgets have to be bridged by appropriate information sets for the
online player. However, we assume instead that the internal choice of the adversary
between the two lists is revealed to the online player at the beginning of IC, which
is implicit in replacing IC by a single payoK. This is allowed since it merely weakens
the position of the adversary: Any online strategy without this extra information can
also be used when the online player is informed about the adversary’s internal choice,
so then the online payoK cannot be worse.
The oJine list assigned to a leaf of the FLUP gadget is part of an optimal oJine

treatment (computed similar to [13]) for the entire request sequence. However, that
list may even be part of a suboptimal oJine treatment, which suLces for showing
a lower bound since it merely increases the denominator in (7). Some of the oJine
costs in Table 3 can only be realized with paid exchanges by the oJine algorithm. For
example, the requests 4253 are served with cost 10 yielding the oJine list [23451] by
initial paid exchanges that move 1 to the end of the list. With free exchanges, this can
only be achieved by moving every requested item in front of 1, which would result in
higher costs.
In the remainder of this section, we describe the IC gadget. Its purpose is to convert

the inversions at the end of the FLUP game to real costs while maintaining the lower
bound of at least 1.5. At the same time, these inversions are destroyed so that both
the online list and the oJine list are in the same order after serving the IC.
The IC extends the construction by Teia [16] described in Section 2 above. Let Tk

be the sequence that requests the Grst k items of the current oJine list in ascending
order, requesting each item with probability 1

2 either once or three times. Assume that
the oJine algorithm treats Tk by moving an item that is requested three times to
the front at the Grst request, leaving any other item in place, which is optimal. The
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triply requested items, in reverse order, are then the Grst items of the new oJine list,
followed by the remaining items in the order they had before. Then Tn is a run as used
in Teia’s construction for a list with n items. The random request sequence generated
there can be written as Twn , that is, a w-fold repetition of Tn, where w goes to inGnity.
Note that the oJine list and hence the order of the requests changes from one run Tn
to the next, so T 2

n , for example, is not a repetition of two identical sequences. The
optimal oJine treatment of Tk costs ( k2 ) units.

The diKerence between our construction and Teia’s is the use of only a preGx of the
elements in the oJine list. We show

E[ON (Tk)− Ibefore + Iafter]¿1:5OFF(Tk); (9)

which for k = n has already been proved above, see (3). To see (9) also for k¡n, we
use projection on pairs and consider the case of only two items. If none of the two
items occur in Tk , both sides of (9) are zero, because, by deGnition, projection on pairs
ignores items that are not projected. If only one item occurs in Tk , only the Grst one
in the oJine list was requested, so OFF(Tk)= 0. Furthermore, ON (Tk) − Ibefore¿0,
because the online algorithm incurs cost at least one if there is an inversion. This
shows (9).
As in (3) above, (9) can be extended to concatenations T of sequences Tk . We let

IC be the randomly generated sequence deGned by

IC := T 3
4 T 3

3 T 3
2 T 3

1 ;

which by the preceding considerations fulGlls

E[ON (IC)]¿1:5OFF(IC) + Ibefore − E[Iafter]: (10)

If E[Iafter] = 0 in (10), that is, there are no inversions left after serving IC, then inver-
sions would indeed have been converted to actual costs. Otherwise, suppose that after
serving IC, there is an inversion between two items x and y, say, with x in front of
y in the Gnal oJine list. Then by the deGnition of IC, item x was requested at least
three more times after the last request to y. So the online player could have saved
a cost unit by moving x in front of y in his list after the second request to x. To
summarize, the sequence IC produces an additional online cost unit for every inversion
that holds between the online and the oJine list at the end of IC. Then, however, we
can assume without loss of generality that both lists are in the same state after IC.
Namely, if they are not, the online player could as well have served IC as intended
(leaving no inversions) and invested the saved cost units in creating the inversions at
the beginning of the next FLUP gadget, where their costs are taken into account. Thus,
indeed, (10) holds with E[Iafter] = 0 and inversions have become actual costs as stated
in (8). The oJine costs there are v=OFF(IC)=30.
Since the online and oJine list are identical at the end of the IC, a new FLUP

game can be started. This generates request sequences of arbitrary length. In that way,
we obtain a lower bound above 1.5 for the competitive ratio c in (2) for any additive
constant b.
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In the above construction, the value of the lower bound does not depend on whether
the online player may use paid exchanges or not, but the adversary’s strategy does
use paid exchanges. So it seems that the online player cannot gain additional power
from paid exchanges. This raises the conjecture that by restricting both players to free
exchanges only, the list update problem might still have an optimal competitive ratio
of 1.5. However, this is false. There is a randomized adversary strategy where the
oJine algorithm uses only free exchanges which cannot be served better than with
a competitive ratio of 1:5 + 1=5048. Because of the length of the sequences used in
the corresponding FLUP game, this result is more diLcult to obtain. First of all, the
sequences used in that game are not found by brute force any more, but by dynamic
game tree search with alpha-beta pruning in an approximate game. In that approximate
game, the online player is restricted to a small set of random moves, similar to the
poset algorithm. Secondly, the above argument about the order of the elements in the
online list after leaving the IC gadget no longer holds. This can be resolved by a
further elaboration of our method. The details are beyond the scope of this paper.
Extending our result to the full cost model requires a systematic treatment of lists of

arbitrary length n. This is easy for the IC gadget but obviously diLcult for the FLUP
gadget. We hope to clarify the connection of FLUP with the sequences in (4) that beat
the partial order approach to make progress in this direction.

References

[1] S. Albers, Improved randomized on-line algorithms for the list update problem, Proc. 6th Annual
ACM-SIAM Symp. on Discrete Algorithms, 1995, pp. 412–419.

[2] S. Albers, B. von Stengel, R. Werchner, A combined BIT and TIME-STAMP algorithm for the list
update problem, Inform. Process. Lett. 56 (1995) 135–139.

[3] S. Albers, B. von Stengel, R. Werchner, List update posets, manuscript, 1996.
[4] S. Albers, J. Westbrook, Self-organizing data structures, in: A. Fiat, G. Woeginger (Eds.), Online

Algorithms: The State of the Art, LNCS 1442, Springer, Berlin, 1998, pp. 31–51.
[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, A. Wigderson, On the power of randomization in on-line

algorithms, Algorithmica 11 1994, 2–14. Preliminary version in Proc. 22nd STOC, 1990, pp. 379–386.
[6] J.L. Bentley, C.C. McGeoch, Amortized analyses of self-organizing sequential search heuristics, Comm.

ACM 28 (1985) 404–411.
[7] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge Univ. Press,

Cambridge, 1998.
[8] A. Borodin, N. Linial, M.E. Saks, An optimal online algorithm for metrical task systems, J. ACM 39,

1992, 745–763. Preliminary version in Proc. 19th STOC, 1987, pp. 373–382.
[9] S. Irani, Two results on the list update problem, Inform. Process. Lett. 38 (1991) 301–306.
[10] R. Karp, P. Raghavan, 1990, unpublished.
[11] D. Koller, N. Megiddo, B. von Stengel, Fast algorithms for Gnding randomized strategies in game trees,

Proc. 26th STOC, 1994, pp. 750–759.
[12] H.W. Kuhn, Extensive games and the problem of information, in: H.W. Kuhn, A.W. Tucker (Eds.),

Contributions to the Theory of Games II, Annals of Mathematics Studies, Vol. 28, Princeton Univ.
Press, Princeton, 1953, pp. 193–216.

[13] N. Reingold, J. Westbrook, Optimum oK-line algorithms for the list update problem, Tech. Report
YALEU=DCS=TR-805, Yale University, 1997.

[14] N. Reingold, J. Westbrook, D.D. Sleator, Randomized competitive algorithms for the list update problem,
Algorithmica 11 (1994) 15–32.



16 C. Amb�uhl et al. / Theoretical Computer Science 268 (2001) 3–16

[15] D.D. Sleator, R.E. Tarjan, Amortized eLciency of list update and paging rules, Comm. ACM 28 (1985)
202–208.

[16] B. Teia, A lower bound for randomized list update algorithms, Inform. Process. Lett. 47 (1993) 5–9.
[17] B. von Stengel, ELcient computation of behavior strategies, Games and Economic Behavior 14 (1996)

220–246.
[18] A.C. Yao, Probabilistic computations: towards a uniGed measure of complexity, Proc. 18th FOCS, 1977,

pp. 222–227.


