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1. Introduction

Finding Nash equilibria of normal form or extensive form games can be difficult
and tedious. A computer program for this task would allow greater detail of game-
theoretic models, and enhance their applicability. Algorithms for solving games have
been studied since the beginnings of game theory, and have proven useful for other
problems in mathematical optimization, like linear complementarity problems.

In this paper, we survey algorithms for finding Nash equilibria of two-person
games. We give an exposition of classical results, in particular of the algorithm
by Lemke and Howson (1964) for finding an equilibrium of a bimatrix game, with
the goal to make them as accessible as possible. We also present topics and open
problems of current interest. We try to complement the recent survey by McKelvey
and McLennan (1996) on computation of equilibria in games. Therefore, we do
not consider nonlinear methods like simplicial subdivision for approximating fixed
points, or systems of inequalities for higher-degree polynomials as they arise for
noncooperative games with more than two players.

First, we consider two-person games in normal form. The algorithm by Lemke
and Howson (1964) finds one equilibrium of a bimatrix game. It provides an elemen-
tary, constructive proof that such a game has an equilibrium, and shows that the
number of equilibria is odd, except for degenerate cases. We follow Shapley’s (1974)
very intuitive geometric exposition of this algorithm, and then explain the pivoting
scheme that represents the algebraic computation. In its basic form, the algorithm
requires that the game is nondegenerate, meaning that both players always use the
same number of pure strategies with positive probability. Nondegeneracy appears
in various other forms in the literature. For clarification, we show that most of these
notions are equivalent. We also explain the lexicographic method for solving degen-
erate games. Then we return to a geometric view, namely certain polytopes that
can be associated with the payoff matrices. The problem of finding all equilibria
of a bimatrix game can be phrased as an enumeration problem for the vertices of
these polytopes, which has been observed by Vorob’ev (1958), Kuhn (1961), and
Mangasarian (1964). In this context, Quint and Shubik (1994) have conjectured an
upper bound on the number of equilibria of a nondegenerate square bimatrix game,
which is still open for some dimensions.

Second, we look at two methods for finding equilibria of normal form games
with additional refinement properties. A set of equilibria is called stable if every
game nearby has an equilibrium nearby. This concept, due to Kohlberg and Mertens
(1986), is interesting for degenerate games, as they arise, for example, from games in
extensive form. Wilson (1992) modified the Lemke–Howson algorithm for comput-
ing equilibria that fulfill a weaker notion, called simple stability. These are equilibria
that survive certain perturbations of the game which are easily represented by lex-
icographic methods for degeneracy resolution. Van den Elzen and Talman (1991)
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presented a complementary pivoting method for finding a perfect equilibrium of a
bimatrix game. This method also emulates the linear tracing procedure of Harsanyi
and Selten (1988) for finding an equilibrium starting from a given prior of initially
conceived opponent strategies (van den Elzen and Talman, 1995). We discuss only
these two papers since the other methods we are aware of use nonlinear methods as
for general N -person games.

Third, we consider methods for extensive form games. In principle, such games
can be solved by converting them to normal form and then applying the respective
algorithms. However, the number of pure strategies is often exponential in the
size of the extensive game. This holds also for the reduced normal form of an
extensive game where pure strategies differing in irrelevant moves are identified. This
vast increase in the description of the game can make its solution computationally
intractable. It can be circumvented by looking at sequences of moves instead of
arbitrary combinations of moves as in pure strategies. The realization probabilities
of sequences can be characterized by linear equations if the players have perfect
recall (Koller and Megiddo, 1992). In turn, the probabilities for sequences define
a behavior strategy for each player. This defines the sequence form of the game
that is analogous to the normal form but has small size. The solution of games in
normal form (in the way we present it here, using linear programming duality) can
analogously be applied to the sequence form. The equilibria of a zero-sum game
are the solutions to a linear program that has the same size as the extensive game
(Romanovskii, 1962; von Stengel, 1996). The complementary pivoting algorithm by
Lemke (1965) is applied by von Stengel, van den Elzen and Talman (1996) to the
sequence form of non-zero-sum games, analogous to the algorithm by van den Elzen
and Talman (1991) presented in Section 3.2.

For two-person games, finding equilibria amounts to finding the pure strategies
(or sequences) that are played with positive probability, and solving corresponding
linear equations. We try to present this approach in a unified manner, citing and
explaining the pertinent papers. We will mention very briefly other works, but refer
to McKelvey and McLennan (1996) for further references. In the last section, we will
touch the issue of computational complexity, and mention ongoing implementations
of the theoretically known methods.

2. Normal form games

In the following sections, we develop the problem of equilibrium computation using
the duality theory of linear programming, which we briefly review. We start with the
linear program (LP), with mixed strategy probabilities and payoffs as variables, of
maximizing the payoff of a single player against a fixed opponent strategy. It is then
easy to demonstrate that the equilibria of a zero-sum game are the solutions to an LP.
The equilibria of non-zero-sum game are the solutions to a linear complementarity
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problem (LCP). In this context, the LCP specifies that each pure strategy is either
played with probability zero or has maximum payoff. Lemke and Howson (1964)
gave an algorithm for finding one solution to this LCP. Following Shapley (1974),
we explain this algorithm geometrically with labels marking best response regions.
The numerical computations are iterative changes, called pivoting, to solutions of
linear equations. This algebraic implementation is shown next. The uniqueness of
the computation requires that the game is nondegenerate, which is true for “almost
all” games. We discuss the interrelationships of various definitions of nondegeneracy
used in the literature. Degenerate games can be solved by a lexicographic method
that simulates a perturbation of the equations and is best understood in algebraic
terms. The problem of finding all equilibria of a bimatrix game can be phrased as
an enumeration problem for the vertices of a polytope. We present this geometric
view and related results and conjectures on the maximal number of equilibria of a
nondegenerate bimatrix game.

2.1. Review of linear programming duality

Our notation for two-person games employs vectors and matrices. All vectors are
column vectors, so an n-vector x is treated as an n× 1 matrix. Transposition gives
the corresponding row vector x> . A vector or matrix with all components zero is
denoted 0, with varying dimension depending on the context. Inequalities like x ≥ 0
hold componentwise.

A linear program (LP) is given by a matrix A and vectors b and c of suitable
dimension and states

maximize c>x

subject to Ax = b ,

x ≥ 0.

(2.1)

A vector x fulfilling the constraints Ax = b and x ≥ 0 is called feasible for this LP.
The dual linear program is motivated by finding an upper bound, if it exists, for
the objective function c>x in this optimization problem. Let A have m rows, and
let y ∈ IRm . Then any feasible x fulfills y>Ax = y>b and (y>A)x ≥ c>x provided
y>A ≥ c> . Thus, the objective function c>x has the upper bound y>b which is
minimized in the following dual LP for (2.1):

minimize y>b

subject to y>A ≥ c>.
(2.2)

Problem (2.1) is also called the primal LP. The fact that, for feasible solutions,
primal and dual objective function values are mutual bounds is called weak duality .

Theorem 2.1. (Weak duality theorem of Linear Programming.) Consider a feasible
solution x to the primal LP (2.1) and a feasible solution y to the dual LP (2.2).
Then c>x ≤ y>b.
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The central property of linear programs is strong duality, which says that the
optimal values of primal and dual LP, if they exist, coincide. For a proof see, for
example, Schrijver (1986).

Theorem 2.2. (Strong duality theorem of Linear Programming.) If the primal LP
(2.1) and the dual LP (2.2) both have feasible solutions, then they have the same
optimal value of their objective functions. That is, there is a feasible primal-dual
pair x, y with c>x = y>b.

The primal LP (2.1) describes the maximization of a linear function of non-
negative variables subject to linear equalities, whereas the dual LP (2.2) describes
the minimization of a linear function of unconstrained variables subject to linear
inequalities. The LP (2.1) is said to be in equality form (nonnegativity of x being
considered a separate property), and (2.2) is called an LP in inequality form. These
differences are not essential. Changing signs turns maximization into minimization
and reverses inequalities. (Also, the constraints in (2.2) are transposed, which we
will do as it is convenient.) A symmetric primal-dual pair of linear programs is ob-
tained from the following primal LP in inequality form with nonnegative variables:
maximize c>x subject to Ax ≤ b, x ≥ 0. It is converted to equality form by intro-
ducing an m-vector z of slack variables (assuming A has m rows), so that Ax ≤ b is
equivalent to Ax+Iz = b, z ≥ 0, with the m×m identity matrix I . It is easy to see
that the dual LP is then equivalent to the LP: minimize y>b subject to y>A ≥ c> ,
y ≥ 0. Furthermore, the dual of the dual is again the primal. In general, an LP may
involve both nonnegative and unconstrained variables subject to linear equalities as
well as inequalities, and is then called a mixed LP. In a primal-dual pair of mixed
LPs, unconstrained dual variables correspond to primal equalities and nonnegative
dual variables correspond to primal inequalities and vice versa (see Figure 2.1 below
for an example). Weak and strong duality continue to hold and are easily derived
from the theorems above.

2.2. Payoff maximization and zero-sum games

Let (A,B) be a two-person game in normal form (also called a bimatrix game),
where A is an m × n matrix of payoffs for player 1 and B is an m × n matrix
of payoffs for player 2. The m rows are the pure strategies of player 1 and the n
columns are the pure strategies of player 2. A mixed strategy x for player 1 can
be represented by the vector x of probabilities for playing pure strategies. Thus,
x is an m-vector fulfilling x ≥ 0 and 1>mx = 1 where 1m is an m-vector with all
components equal to one. If there is no ambiguity about the dimension, we write 1
instead of 1m . Similarly, a mixed strategy y for player 2 can be represented as an
n-vector y fulfilling y ≥ 0 and 1>n y = 1.

When player 1 and player 2 use the mixed strategies x and y, their expected
payoffs are x>Ay and x>By, respectively. Strategy x is a best response to y if

6



it maximizes the expression x>(Ay), for fixed y. Similarly, a best response y of
player 2 to x maximizes (x>B)y. An equilibrium is a pair (x, y) of mutual best
responses.

If the strategy y of player 2 is known, then a best response x of player 1 to y
is a solution to the following LP:

maximize x>(Ay)

subject to x>1 = 1,

x ≥ 0.

(2.3)

We consider the dual of this LP, which has only a single dual variable u:

minimize u

subject to 1u ≥ Ay.
(2.4)

Both LPs are feasible. By strong duality (Theorem 2.2), they have the same optimal
value. That is, the maximal expected payoff x>Ay to player 1 is the same as the
smallest u fulfilling 1u ≥ Ay. The latter is obviously the maximum of the entries
of the vector Ay, which are the expected payoffs to player 1 for his pure strategies.

Consider now a zero-sum game, where B = −A. Player 2, when choosing y, has
to assume that his opponent plays rationally and maximizes x>Ay. This maximum
payoff to player 1 is the optimal value of the LP (2.3), which is equal to the optimal
value u of the dual LP (2.4). Player 2 is interested in minimizing u by his choice of y.
The constraints of (2.4) are linear in u and y even if y is treated as a variable, which
has to represent a mixed strategy. So a minmax strategy y of player 2 (minimizing
the maximum amount he has to pay) is a solution to the mixed LP with variables u, y

minimize u

subject to 1>n y = 1,

1mu− Ay ≥ 0,

y ≥ 0.

(2.5)

Figure 2.1 shows on the left a simple example of the LP (2.5) for a 3× 2 game
where the matrix of payoffs to player 1 is

A =




0 6
1 4
3 3


 .

The LP variables u, y1, y2 and the sign restrictions y ≥ 0 are marked at the top.
The coefficients of the objective function are written at the bottom, separated by a
line. The right part of Figure 2.1 shows a similar diagram to be read vertically. It
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Figure 2.1. Example of the LP (2.5) for a 3× 2 zero-sum game, and its dual LP.

represents the dual of the LP (2.5) with variables v (a scalar corresponding to the
equation 1>n y = 1) and x, which has the form

maximize v

subject to x>1m = 1,

v1>n − x>A ≤ 0,

x ≥ 0.

(2.6)

It is easy to verify that this LP describes the problem of finding a maxmin strategy
x (with maxmin payoff v) for player 1. We have shown the following.

Theorem 2.3. A zero-sum game with payoff matrix A for player 1 has the equi-
librium (x, y) iff (if and only if) u, y is an optimal solution of the LP (2.5) and v, x

is an optimal solution of its dual LP (2.6). Thereby, u is the maxmin payoff to
player 1, v is the minmax payoff to player 2, and u = v, denoting the value of the
game.

Thus, the “maxmin = minmax” theorem for zero-sum games follows directly
from LP duality. This connection was noted by von Neumann and Dantzig in the
late forties when linear programming took its shape (see Dantzig, 1991, p. 24).
Conversely, linear programs can be expressed as zero-sum games (Gale, Kuhn, and
Tucker, 1950).

There are standard algorithms for solving LPs, in particular the Simplex algo-
rithm (see Dantzig, 1963). Usually, they compute a primal solution together with a
dual solution since this proves that the optimum is reached.
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2.3. Linear complementarity

A best response x of player 1 against the mixed strategy y of player 2 is a solution to
the LP (2.3). This is also useful for games that are not zero-sum. By strong duality,
a feasible solution x is optimal iff there is a dual solution u fulfilling 1mu ≥ Ay and
x>(Ay) = u, that is, x>(Ay) = (x>1m)u or equivalently

x>(1mu− Ay) = 0 . (2.7)

This condition states that x and 1mu − Ay are orthogonal. Because these vectors
are nonnegative, they have to be complementary in the sense that they cannot both
have positive components in the same position. This characterization of an optimal
primal-dual pair of feasible solutions is known as “complementary slackness” in
linear programming. Here, we know that x, being a mixed strategy, has at least one
positive component, so the respective component of 1mu− Ay is zero and u is the
maximum of the entries of Ay. Any pure strategy i, 1 ≤ i ≤ m, of player 1 is a best
response to y iff the ith component of the slack vector 1mu − Ay is zero. So (2.7)
amounts to the following well-known property (Nash, 1951): A strategy x is a best
response to y iff it only plays pure strategies that are best responses with positive
probability.

For player 2, strategy y is a best response to x iff it maximizes (x>B)y subject
to 1>n y = 1, y ≥ 0. This gives an LP analogous to (2.3). Its dual LP has a single
scalar v as variable and says: minimize v subject to 1nv ≥ B>x. A primal-dual
pair y, v of feasible solutions is optimal iff, analogous to (2.7),

y>(1nv −B>x) = 0 . (2.8)

Considering these conditions for both players, this shows the following.

Theorem 2.4. The vector pair (x, y) is an equilibrium of the bimatrix game (A,B)
iff there are reals u, v such that

1>mx = 1

1>n y = 1

1mu − Ay ≥ 0

1nv −B>x ≥ 0

x , y ≥ 0

(2.9)

and (2.7), (2.8) hold.

The constraints (2.9) are linear in the variables u, v, x, y. The orthogonality
conditions (2.7) and (2.8) state that the nonnegative vector of slacks for these con-
straints, (1>mx− 1,1>n y − 1,1mu−Ay,1nv −B>x), is complementary to the vector
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(u, v, x, y) of variables. Such a problem is called a linear complementarity problem
(LCP). The complementarity condition is nonlinear in the variables. However, it
is comparatively simple since it amounts to the combinatorial problem of deciding
which pure strategies may have positive probability. There are various solutions
methods for LCPs (for a comprehensive treatment see Cottle, Pang, and Stone,
1992). The most important method for finding one solution of the LCP in Theo-
rem 2.4 is the Lemke–Howson algorithm.

2.4. The Lemke–Howson algorithm

In their seminal paper, Lemke and Howson (1964) described an algorithm for finding
one equilibrium of a bimatrix game. Shapley (1974) gave an intuitive explanation of
this algorithm which is easily visualized for games of small dimension. We will follow
his exposition here. For illustration, we use a simple example of a 3 × 2 bimatrix
game (A,B) with

A =




0 6
2 5
3 3


 , B =




1 0
0 2
4 3


 . (2.10)

Throughout, we will use the following notation. The given bimatrix game is
(A,B) and has size m × n. The sets of pure strategies are I = {1, . . . ,m} for
player 1 and N = {1, . . . , n} for player 2. The rows of A are denoted ai for i ∈ I

and the columns of B are denoted Bj for j ∈ N . The sets of mixed strategies for
player 1 and 2 are denoted by

X = {x ∈ IRm | 1>mx = 1, x ≥ 0}, Y = {y ∈ IRn | 1>n y = 1, y ≥ 0}.
For easier distinction of the pure strategies of the players, let J = {m+1, . . . ,m+n}
be a “copy” of N where any j in N is identified with m + j in J . A label is any
element of I∪J . In our example, labels 1, 2, 3 refer to the pure strategies of player 1
and 4, 5 to those of player 2.

The labels are used to mark the points in X and Y , as follows. Consider Y ,
which is in our example the line segment in IR2 connecting (1, 0)> and (0, 1)> . We
divide Y into regions Y (i) for i ∈ I where the pure strategy i of player 1 is a best
response, so for i ∈ I ,

Y (i) = {y ∈ Y | aiy ≥ aky for all k ∈ I}.
Each best response region Y (i) is therefore a polytope (a bounded set defined by
linear inequalities), and Y is the union of these regions. In our example,

Y (1) = {(y1, y2)
> ∈ Y | 0 ≤ y1 ≤ 1/3}

Y (2) = {(y1, y2)
> ∈ Y | 1/3 ≤ y1 ≤ 2/3}

Y (3) = {(y1, y2)
> ∈ Y | 2/3 ≤ y1 ≤ 1}.
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These sets are one-dimensional. In general, the set Y (i) for i ∈ I is either empty or
(n− 1)-dimensional, except in degenerate cases. (The dimension of convex sets like
these is defined as follows: A set has dimension d iff it has d+1, but no more, affinely
independent points. Affine independence means no point is an affine combination
of others. An affine combination of points x1, . . . , xk is given by

∑k
i=1 x

iλi where
λ1, . . . , λk are arbitrary reals with

∑k
i=1 λi = 1.)

Secondly, we consider sets Y (j) for the strategies j ∈ J of player 2 himself con-
taining those y where j has probability zero. In order to obtain the same dimension
for these sets as for the sets Y (i), it is not required that y belongs to Y . For j ∈ J ,
let

Y (j) = {y = (y1, . . . , yn)> ∈ IRn | 1>n y ≤ 1, y ≥ 0, yj−m = 0 }.
We say y has label k if y ∈ Y (k), for k ∈ I ∪ J , and define the set of labels of y as

L(y) = { k ∈ I ∪ J | y ∈ Y (k) }. (2.11)

Figure 2.2 shows on the right Y as a subset of IRn for our example (with n = 2)
where the sets Y (k) are indicated by their labels k which are drawn as circled
numbers. Some points y have more than one label, for example y = (1, 0)> has the
set of labels L(y) = {3, 5}.
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Figure 2.2. Strategy spaces X and Y of the players for the bimatrix game (A,B)
in (2.10). The labels 1, 2, 3 (drawn as circled numbers) are the pure
strategies of player 1 and marked in X where they have probability zero,
in Y where they are best responses. The pure strategies of player 2 are
similar labels 4, 5. The dots mark points x and y with a maximum
number of labels.

The strategy set X is divided analogously into regions X(j) where each pure
strategy j of player 2 is a best response. Then for j ∈ J ,

X(j) = {x ∈ X | x>Bj−m ≥ x>Bk−m for all k ∈ J}.
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Similarly, for i ∈ I ,

X(i) = {x = (x1, . . . , xm)> ∈ IRm | 1>mx ≤ 1, x ≥ 0, xi = 0 } .

We say x has label k if x ∈ X(k), for k ∈ I ∪ J . The set of labels of x is denoted

L(x) = { k ∈ I ∪ J | x ∈ X(k) }, (2.12)

where it will always be clear from the context that L(y) is defined by (2.11) and
L(x) by (2.12). In our example,

X(4) = {(x1, x2, x3)
> ∈ X | x1 + 4x3 ≥ 2x2 + 3x3},

and X(5) is the complement of X(4) in X together with those points where both
strategies of player 2 are best responses; the latter are the points in X(4) ∩ X(5)
which is the line segment connecting (2/3, 1/3, 0)> and (0, 1/3, 2/3)

> .

Figure 2.2 shows on the left X as a subset of IR3 . The labels 4 and 5 mark the
subsets of the triangle X that are the best response regions of player 2. The labels
1, 2, 3 mark the sets X(1), X(2), X(3), which are the right, back, and bottom sides
of the pyramid {x ∈ IR3 | 1>x ≤ 1, x ≥ 0}.

With the help of these labels, it is easy to identify the equilibria of the game.
These are exactly the pairs (x, y) in X × Y that are completely labeled, that is,
L(x) ∪ L(y) = I ∪ J . The reason is that in equilibrium, a pure strategy is either a
best response or has probability zero (or both, which can only happen if the game
is degenerate, as we will explain). A missing label k represents a pure strategy
(of either player) that has positive probability but is not a best response, which is
forbidden in equilibrium.

There are not many points x and y such that (x, y) can be an equilibrium.
Together, they must have m + n labels, meaning they belong to several sets X(k)
and Y (l), respectively. For any nonempty set K of labels, ∅ 6= K ⊆ I ∪ J , let

X(K) =
⋂

k∈K

X(k), Y (K) =
⋂

k∈K

Y (k).

In our example in Figure 2.2, any two of the sets X(k) intersect, if at all, in a line
segment, any three of them in a point. Similarly, any two sets Y (k) intersect at
most in a point.

In general, the dimension of X(K) and Y (K) should decrease with the size
of K . This is usually, but not always the case. We have to assume that the game is
nondegenerate.

Definition 2.5. The m× n bimatrix game (A,B) is called nondegenerate if it has
the following properties: whenever ∅ 6= K ⊆ I ∪J and K = L(x) for some x ∈ IRm ,

12



then X(K) has dimension m− |K|, and if K = L(y) for some y ∈ IRn , then Y (K)
has dimension n− |K|.

Until further notice, we assume that the game is nondegenerate. Then |L(x)| ≤
m for every x in X , and |L(x)| = m holds for finitely many points x in X ,
given by the nonempty sets {x} = X(K) with |K| = m, K ⊆ I ∪ J . Similarly,
|L(y)| ≤ n for all y in Y , and the nonempty sets Y (K) where |K| = n identify
those points in Y that have exactly n labels. In Figure 2.2, inspection shows the
following completely labeled pairs in X × Y : (x1, y1) =

(
(0, 0, 1)>, (1, 0)>

)
where

L(x1) = {1, 2, 4}, L(y1) = {3, 5}, furthermore (x2, y2) =
(
(0, 1/3, 2/3)

>, (2/3, 1/3)
>

)

where L(x2) = {1, 4, 5}, L(y2) = {2, 3}, and (x3, y3) =
(
(2/3, 1/3, 0)>, (1/3, 2/3)

>
)

where L(x3) = {3, 4, 5}, L(y3) = {1, 2}. This geometric-qualitative inspection is
very suitable for studying equilibria of games of size up to 3× 3.

The Lemke–Howson method is not such an inspection of candidate points but
a search along a piecewise linear path, as follows. Fix an arbitrary label k ∈ I ∪ J ,
and let

M(k) = { (x, y) | I ∪ J − {k} ⊆ L(x) ∪ L(y) }. (2.13)

That is, M(k) consists of almost completely labeled pairs (x, y) that have all labels
except possibly k, which is called the missing label. The set M(k) includes all
equilibria. Furthermore, M(k) contains pairs (x, y) where x is not in X and y is
not in Y , in particular (x, y) = (0,0) which is the element of X(I) × Y (J). We
call (0,0) the artificial equilibrium since it is a completely labeled pair. Any (x, y)
in M(k) has at least m+ n− 1 labels. By nondegeneracy, this means either m− 1
or more labels for x and n labels for y, or m labels for x and at least n− 1 labels
for y. In either case, the missing label gives a degree of freedom to change x or y,
respectively, which makes it possible to follow a path defined by M(k).

We explain this first for our example with the help of Figure 2.3. The algorithm
starts from (0,0). Let 2 be the label that may be dropped. This means x2 can be
increased, which we do until x2 = 1, reaching the vertex x = (0, 1, 0)> of X . This is
shown as step I in Figure 2.3, where y = (0, 0)> stays fixed. For this pair (x, y) that
is reached, x has m labels 1, 3, 5 and y has n labels 4, 5. Since label 2 is missing,
one of the m + n labels is duplicate, which is label 5 picked up in X by moving x

from 0 to (0, 1, 0)> . This duplicate label is now dropped from y which is moved
from (0, 0)> to (0, 1)> while x stays fixed (step II). Thereby, L(2) is reached as
a subset of X × Y . (Equivalently, one may start directly with the pure strategy
(0, 1, 0)> in X representing the missing label 2 and its best response (0, 1)> in Y .)
Now, label 1 is duplicate since it was just picked up by y, so it may be dropped from
x while keeping the remaining labels 3, 5 (step III). Thereby, the probability x1 (for
the newly found best response strategy 1 to y) is increased until x = x3 , picking up
another label, 4, which is now duplicate. This means 4 can be dropped from y which
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Figure 2.3. The set M(2) of almost completely labeled pairs where label 2 is missing
is formed by the paths with line segments (in the product graph) I–
II–III–IV, connecting the artificial equilibrium (0,0) and (x3, y3), and
V–VI, connecting equilibria (x1, y1) and (x2, y2).

is moved from (0, 1)> to y3 . The label encountered there is the missing label 2, so
the path terminates at the completely labeled pair (x3, y3) which is the equilibrium
found.

The Lemke–Howson algorithm, although we described it by “moving” along
edges, is combinatorial and can it its general form be described in graph-theoretic
terms. Let G1 be the graph whose vertices are those points x with |L(x)| = m.
Except for 0 in X(I), these points belong to X . Any two such vertices x, x′ are
joined by an edge if they differ in exactly one label. The set K = L(x) ∩ L(x′)
of the m − 1 labels that x and x′ have in common define the line segment X(K)
which represents this edge in IRm . The vertices x and x′ are the endpoints of this
edge (and not interior points) since it is not possible to get additional labels by
taking convex combinations. Similarly, let G2 be the graph with vertices y where
|L(y)| = n, and edges joining those vertices that have n − 1 common labels. In
our example, Figure 2.2 (or 2.3) is a picture of these graphs G1 and G2 . Finally,
we consider the product graph G of G1 and G2 . Its vertices are (x, y) where x is
a vertex of G, and y is a vertex of G2 . The edges of G are given by {x} × e2 for
vertices x of G1 and edges e2 of G2 , or e1 × {y} for edges e1 of G1 and vertices y
of G2 .

Theorem 2.6. (Lemke and Howson, 1964; Shapley, 1974.) Let (A,B) be a nonde-
generate bimatrix game and k be a label in I ∪ J . Then M(k) in (2.13) consists of
disjoint paths and loops in the product graph G of G1 and G2 . The endpoints of
the paths are the equilibria of the game and the artificial equilibrium (0,0). The
number of equilibria of the game is odd.

Proof. Let (x, y) ∈M(k). Then x and y have together m+ n or m+ n− 1 labels.
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a) If the pair (x, y) is completely labeled, it is a vertex of G and either an equi-
librium or (0,0).

Otherwise, L(x) ∪ L(y) = I ∪ J − {k} and there are the following possibilities:

b) |L(x)| = m, so x is a vertex of G1 , and y has n − 1 labels, which define an
edge e2 of G2 , so that {x} × e2 is an edge of G, or

c) x has m− 1 labels and is part of an edge e1 of G1 and y has n labels and is a
vertex of G2 , so that e1 × {y} is an edge of G, or

d) |L(x)| = m and |L(y)| = n, so that (x, y) is a vertex of G.

Thus, M(k) defines a subgraph of G. In case a), the vertex (x, y) is incident
to a unique edge in the subgraph M(k), namely {x}×Y (L(y)−{k}) if k ∈ L(y) or
X(L(x)−{k})×{y} if k ∈ L(x), respectively. In case d), L(x)∪L(y) = I ∪J−{k}
so there is a duplicate label l in L(x) ∩ L(y). Then (x, y) is incident to the two
edges {x} × Y (L(y)− {l}) and X(L(x)− {l})× {y} in M(k). So M(k) is a graph
where all vertices are incident to one or two edges, so M(k) consists of paths and
loops. The endpoints of the paths are the equilibria and the artificial equilibrium
(0,0). Clearly, the number of these endpoints is even, so the number of equilibria
is odd.

This theorem provides a constructive, elementary proof that every nondegen-
erate game has an equilibrium, independently of the result of Nash (1951). Al-
gorithmically, the subgraph M(k) of G in Theorem 2.6 is generated implicitly as
the computation goes along. (We show its algebraic aspects in the next section.)
Starting from a completely labeled vertex of G, the edges in G of the path that
is followed are alternatingly edges of G1 and G2 , leaving the vertex in the other
graph fixed. The first edge is defined by the label k that is dropped initially, the
subsequent edges are defined by the duplicate labels encountered along the way.

In Figure 2.3, we have shown the path that starts from (0,0) with steps I–
II–III–IV. Starting from the equilibrium (x1, y1), M(2) leads by steps V and VI
to the equilibrium (x2, y2). This can also be used algorithmically, since (x1, y1) is
reached from (0,0) by dropping another label k, for example 3 (or 1 or 4) instead
of 2. However, it can be shown that this does not necessarily generate all equilibria,
that is, the union of the paths in the subgraphs M(k) for all k ∈ I ∪ J may be
disconnected (see Aggarwal, 1973). Variants of the Lemke–Howson method have
similar properties (Bastian, 1976; Todd, 1976, 1978). Shapley (1981) discusses more
general methods as a potential way to overcome this problem.

Shapley (1974) introduced the index of an equilibrium of a nondegenerate bi-
matrix game as the index of a certain determinant defined by the equilibrium and
the payoff matrices. The index does not depend on the order of pure strategies. For
any missing label k, the two ends of an almost completely labeled path in M(k) (as
in Theorem 2.6) have opposite index. The artificial equilibrium has positive index
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(by Shapley’s definition; sometimes the opposite sign is used). Thus, the Lemke–
Howson algorithm started from (0,0) computes always an equilibrium with negative
index. For any equilibrium with negative index that is found, the missing label used
in another computation can be used to find a corresponding equilibrium of positive
index, and vice versa. Thus, using the Lemke–Howson method iteratively with all
labels k in I ∪ J , and from all equilibria that are found as starting points, finds an
odd number of equilibria, one more with negative index than with positive index.

2.5. Complementary pivoting

The Lemke–Howson algorithm is implemented by iteratively computing basic so-
lutions to a system of linear equations equivalent to (2.9). These basic solutions
represent the graph vertices used above, and moving along a graph edge is a basis
change known as pivoting. We present this algebraic version of the algorithm since
it is necessary for the computation, and since it is readily extended to degenerate
games.

Pivoting is well known as the main step of the Simplex algorithm for solving
linear programs given in equality form. The linear constraints (2.9) are also con-
verted to equality form by introducing vectors of slack variables: If there is z in IRn

with
1>mx = 1

−1nv +B>x+ Inz = 0

x, z ≥ 0

(2.14)

(where In is the n× n identity matrix), and w in IRm with

1>n y = 1

−1mu+ Ay + Imw = 0

y, w ≥ 0

(2.15)

then u, v, x, y is a solution to (2.9), and vice versa.

Both (2.14) and (2.15), and the two systems taken together, are of the form
Dr = b with a matrix D, a vector r of variables rj , some of which are nonnegative,
and a right hand side b. The matrix D has full rank, so that b belongs always to the
space spanned by the columns Dj of D. A basis β is given by a basis {Dj | j ∈ β}
of this column space, so that the square matrix Dβ formed by these columns is
invertible. The corresponding basic solution is the unique vector rβ = (rj)j∈β with
Dβrβ = b, where the variables rj for j in β are called basic variables, and rj = 0
for all nonbasic variables rj , j 6∈ β , so that Dr = b. If this solution fulfills also
the nonnegativity constraints, then the basis β is called feasible. If β is a basis
for the system Dr = b, then the corresponding basic solution can be read from
the equivalent system D−1

β Dr = D−1
β b since the columns of D−1

β D (for the basic
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variables) form the identity matrix. This new system, called a tableau, can also be
written as

rβ = D−1
β b−∑

j 6∈β

D−1
β Djrj. (2.16)

We require that an unconstrained variable, like v in (2.14), is always basic. In
a basic solution to the n + 1 equations in (2.14), n + 1 of the m + n + 1 variables
are basic, including v and at least one variable xi since x 6= 0. Thus, at least one
of the n slack variables zj is nonbasic and zero, so that in a feasible solution v is
minimal subject to 1nv ≥ B>x and represents the best response payoff to player 2
against x as we desire. To avoid special treatment of the variable v, one can make
the payoff matrix positive by adding a constant to all entries (which does not change
the game), so that B > 0 and v is positive and therefore basic in any basic feasible
solution. Similarly, assuming A > 0 implies that u in (2.15) is always positive.

In a basic feasible solution v, x, z to (2.14), the m nonbasic variables are zero
and represent the labels of x, namely the pure strategies i of player 1 that have
probability zero (if xi = 0), or pure best responses j of player 2 to x (if zj = 0). In
a nondegenerate game, m is the maximum number of labels of x, so that all basic
variables are positive (except possibly v where the sign does not matter). Similarly,
basic feasible solutions to (2.15) represent maximally labeled mixed strategies y of
player 2.

In terms of basic solutions, the Lemke–Howson algorithm for the example (2.10)
illustrated in Figure 2.3 works as follows. Since x and y are mixed strategies in any
solution to (2.14) and (2.15), we do not use the artificial equilibrium but compute
separately the first two steps such that x ∈ X and y ∈ Y . That is, the initial
solutions to (2.14) and (2.15), determined by steps I and II, are given by the pure
strategy x = (0, 1, 0)> resulting from the missing label, and its best response y =
(0, 1)> . The corresponding basic variables in (2.14) are v, x2, z1 . System (2.14),
besides the conditions x, z ≥ 0, is here

x1 + x2 + x3 = 1

−v + x1 + 4x3 + z1 = 0

−v + 2x2 + 3x3 + z2 = 0

For the initial basis, it has the equivalent form (2.16) given by the tableau

v = 2− 2x1 + x3 + z2

x2 = 1− x1 − x3

z1 = 2− 3x1 − 3x3 + z2

(2.17)

Similarly, the initial basis for (2.15) with basic variables u, y2, w2, w3 yields the
tableau
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u = 6− 6y1 + w1

y2 = 1− y1

w2 = 1− 3y1 + w1

w3 = 3− 6y1 + w1

(2.18)

which is equivalent to the equations in (2.15). A label representing a pure strategy i
of player 1 is a nonbasic variable xi or wi , and a label representing a pure strategy j
of player 2 is a a nonbasic variable yj or zj . Here, the m + n nonbasic variables
represent all labels except the missing label 2.

Label 1 is duplicate since both x1 and w1 are nonbasic. The move along a
line segment in the algorithm results by treating x1 as an additional variable that
is no longer fixed at zero. Equation (2.17) shows how the current basic variables
change when x1 is increased. Thereby, x2 and z1 have to stay nonnegative, that
is, x2 = 1 − x1 ≥ 0 and z1 = 2 − 3x1 ≥ 0 (the sign of v does not matter). These
inequalities are equivalent to x1 ≤ 1 and x1 ≤ 2/3 , of which the latter is stronger.
When x1 is increased to 2/3 , then z1 = 0. This determines a new basic solution
where x1 , called the entering variable, is a new basic variable, and z1 , called the
leaving variable, becomes nonbasic. This basis change is called pivoting. It produces
a new tableau by rewriting the equation containing the leaving variable,

x1 = 2/3 − 1/3z1 − x3 + 1/3z2 ,

and then substituting this expression for the entering variable x1 in the remaining
equations. The new tableau is

v = 2/3 − 2/3z1 + 3x3 + 1/3z2

x2 = 1/3 + 1/3z1 − 1/3z2

x1 = 2/3 − 1/3z1 − x3 + 1/3z2

and is obtained by straightforward row operations applied to the coefficients in the
old tableau. This completes step III in the example.

Above, the first entering variable x1 represents the new best response against y;
letting w1 enter the basis in (2.18) would not work since then all basic variables
increase indefinitely with w1 . The next pivoting step is determined by the new
duplicate label where both z1 and y1 are nonbasic. Since z1 has just left the basis,
y1 is chosen as entering variable in (2.18). There, the increase of y1 is bounded by
the constraints y2 = 1− y1 ≥ 0, w2 = 1− 3y1 ≥ 0, w3 = 3− 6y1 ≥ 0, of which the
second is the strongest, stating y1 ≤ 1/3 . Thus, w2 leaves the basis where

y1 = 1/3 − 1/3w2 + 1/3w1

is substituted into the remaining equations in (2.18) to obtain the new tableau. This
is the last step IV of the algorithm since w2 , which represents the missing label, has
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become nonbasic. The values of x and y in the current basic solution define an
equilibrium since exactly one variable of each complementary pair xi, wi and yj, zj

is nonbasic and zero, so that x>w = 0 and y>z = 0 hold, that is, (2.7) and (2.8).

We described the algorithm with alternating pivoting steps for two tableaus
equivalent to (2.14) and (2.15). Since the two systems are independent, they can
also be regarded as a single system of linear equations, whose bases obviously consist
of the bases of the separate systems. We assume this for the general description.

Pivoting in the tableau (2.16) with an entering variable rj for j 6∈ β works with
the following minimum ratio test. Let c = D−1

β b and d = D−1
β Dj where c = (ci)i∈β

and d = (di)i∈β . The largest value of rj such that rβ = c − drj ≥ 0 is obviously
given by

min{ci/di | i ∈ β, di > 0}. (2.19)

The entering column d has at least one positive entry, so the increase of rj is
bounded, since after initialization the values of (x, y) stay in the bounded set X×Y .
The leaving variable ri is given by that i in β where the minimum in (2.19) is taken.
A tie occurs if the minimum is not unique. Then only one of at least two variables can
leave the basis, but the other will have value zero after pivoting. This cannot happen
in a nondegenerate game. So the leaving variable is unique, and after pivoting the
new basis will be β ∪ {j} − {i}.

If the leaving variable is such as to reach an equilibrium, the algorithm termi-
nates. Otherwise, pivoting continues with the next entering variable as the comple-
ment of the variable that has just left the basis. Thereby, the variable xi is called
the complement of wi and vice versa, for 1 ≤ i ≤ m, and yj is called the complement
of zj and vice versa, for 1 ≤ j ≤ n. This is called the complementary pivoting rule.
(This is, in fact, the only difference to the Simplex algorithm for solving a linear
program, where the entering variable is chosen such as to improve the objective
function.) In the course of the computation, one variable of each complementary
pair, except the one for the missing label, is always nonbasic. Since the game is
nondegenerate, the computed sequence of bases is unique and allows no repetitions
(as stated in Theorem 2.6 in graph-theoretic terms), so the algorithm terminates.
The details of the algorithm are straightforward.

2.6. Degenerate games

In this section, we clarify various notions of nondegeneracy used in the literature,
and show that the existence of weakly but not strongly dominated strategies leads to
degenerate games. Furthermore, we demonstrate how Lemke and Howson extended
their algorithm to degenerate games, and discuss related issues of numerical stability.

Different authors define nondegeneracy differently, but most of these definitions
are equivalent, as shown in the following theorem. There, the support of a mixed
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strategy (or any vector) x, denoted supp(x), is defined as the set of pure strategies
that have positive probability,

supp(x) = { i | xi 6= 0}.

Furthermore, it is useful to assume positive expected payoffs u and v to player 1
and 2, respectively, in systems (2.14) and (2.15). This holds if A and B are non-
negative and A has no zero column and B has no zero row, like in (2.10), or even
simpler, if all entries of A and B are positive. We assume this without loss of gen-
erality (w.l.o.g.) since a constant can be added to all payoffs without changing the
game.

Theorem 2.7. Let (A,B) be an m × n bimatrix game with A,B > 0. Then the
following are equivalent.

(a) The game is nondegenerate.

(b) Any mixed strategy x of player 1 has at most | supp(x)| pure best responses,
and the same holds for any mixed strategy y of player 2.

(c) In any basic feasible solution to (2.14) and (2.15), the basic variables have
positive values.

(d) For any x in X , the columns of the matrix [Im, B] corresponding to the labels

of x are linearly independent, and for any y in Y , the rows of
[
A
In

]
corre-

sponding to the labels of y are linearly independent.

Proof. (a)⇒(b): If a mixed strategy x, say, has more than | supp(x)| pure best
responses, then x has more than m labels, which cannot happen in a nondegenerate
game according to Def. 2.5.

(b)⇒(c): This is similarly easy.

(c)⇒(d): Assume that in any basic feasible solution to (2.15), all basic variables

are positive. We will show that the rows of
[
A
In

]
for the labels of any mixed

strategy y are linearly independent. The same reasoning applies then to (2.14) and
columns of [Im, B]. Let I = {1, . . . ,m}, N = {1, . . . , n}. Let ai for i ∈ I denote
the rows of A, and let ej for j ∈ N denote the rows of In .

Assume that (d) is false, that is, for some y in Y , the rows ai for i ∈ K and
ej for j ∈ L are linearly dependent, where K ⊆ I and L ⊆ N represent the sets of
labels of y,

aiy = u for i ∈ K, aiy < u for i ∈ I −K,

ejy = 0 for j ∈ L, ejy > 0 for j ∈ N − L,
(2.20)

and u is minimal subject to 1nu ≥ Ay so K 6= ∅. Consider a linearly independent
subset of these row vectors with the same span, given by the rows ai for i ∈ K ′ and
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ej for j ∈ L where K ′ is a proper subset of K . For the moment, we ignore all the
dependent rows ak for k ∈ K −K ′ of A and consider the smaller system, similar to
(2.15),

1>n y = 1

−u+ aiy = 0, i ∈ K ′

−u+ aiy + wi = 0, i ∈ I −K,

(2.21)

and y, w ≥ 0, with variables u, yj for j ∈ N , and wi for i ∈ I − K . The given
values for u, y, and suitable slacks wi , solve (2.21). This system has full row rank:
Otherwise, the zero vector is a nontrivial linear combination of the rows in (2.21),
clearly not involving the rows for i ∈ I − K . That is, there are reals λ0 and λi ,
i ∈ K ′ , not all zero, with −∑

i∈K′ λi = 0 and λ01
>
n +

∑
i∈K′ λiai = 0> , so that

λ01
>
n y +

∑
i∈K′ λiaiy = 0>y and therefore λ0 = 0, which contradicts the linear

independence of the rows ai for i ∈ K ′ . Since (2.21) has a feasible solution u, y, w,
it has a basic feasible solution u, y, w with supp(y) ⊆ supp(y) (this is a standard,
easy result on existence of basic feasible solutions).

Consider now the linear dependent rows ak for k ∈ K −K ′ . Each of them is
of the form

ak =
∑

i∈K′
λiai +

∑

j∈L

µjej

for suitable reals λi and µj , where

u = aky =
∑

i∈K′
λiaiy +

∑

j∈L

µjejy =
( ∑

i∈K′
λi

)
u

so
∑

i∈K′ λi = 1 since u > 0 (because A > 0). Since supp(y) ⊆ supp(y), so
yj = ejy = 0 for j ∈ L, we obtain similarly u = aky. The basic feasible solution
u, y, w of (2.21) can therefore be extended to a basic feasible solution of (2.15) with
zero basic variables wk for k ∈ K − K ′ (and nonbasic variables wi for i ∈ K ′),
contradicting (c). This shows (c)⇒(d).

(d)⇒(a): Assume (d) holds, and let y ∈ Y (the argument for x in X will be
analogous). We use the same notation as before. The labels of y are the unique sets
K and L so that (2.20) holds, K 6= ∅. Let y = y, and let d = n − |K| − |L|. We
want to find d points y in Y in addition to y fulfilling (2.20) which, together with y,
are affinely independent. Extend the, by assumption, linearly independent rows ai

for i ∈ K and ej for j ∈ L by d rows ej for j ∈ L′ , |L′| = d, such that all these n
rows are linearly independent. Then, for each l ∈ L′ , consider the constraints in u, y
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1>n y = 1

−u+ aiy = 0, i ∈ K
−u+ aiy < 0, i ∈ I −K

yj = 0, j ∈ L
yj = yj, j ∈ L′, j 6= l

yl = yl + ε

yj > 0, j ∈ N − L− L′ 6= ∅.

Similarly to (2.21), the n+ 1 equations in this system are linearly independent and
determine a unique solution u and y = y(l), which fulfills the inequalities if ε is
sufficiently small. We can choose ε > 0 so that this holds for all l ∈ L′ . The d + 1
points y and y(l) for l ∈ L′ have the same labels. It is easy to see that they are
affinely independent, and that their affine hull contains all points y in Y that have
(at least) the labels of y. So the set of these points has the correct dimensionality
as required in Def. 2.5.

Our Definition 2.5 of nondegeneracy in Theorem 2.7(a) is used by Krohn et al.
(1991), and, in slightly weaker form, by Shapley (1974). Condition (b) is the easiest
to state and should be used as definition. Van Damme (1987, p. 52) has observed
the implication (d)⇒(b). The uniqueness of the complementary pivoting rule relies
on (c). Lemke and Howson (1964) define nondegenerate games by condition (d).

A game is not necessarily nondegenerate if all payoffs of a player are distinct.
This only guarantees (b) for pure strategies x and y. Conversely, a nondegenerate
game can have identical payoffs against a pure strategy as long as these are not
maximal.

Degeneracy is related to the presence of weakly dominated strategies. Consider
a pure strategy k of player 1, say, with corresponding row ak of his payoff matrix A,
and a mixed strategy x of player 1. Then ak is called payoff equivalent to x if
ak = x>A, strictly dominated by x if ak < x>A, and weakly dominated by x if
ak ≤ x>A but neither of the two preceding cases hold.

Theorem 2.8. A bimatrix game is degenerate if a player has a pure strategy which
is weakly dominated by or payoff equivalent to another mixed strategy, but not
strictly dominated.

Proof. Consider a pure strategy k of player 1, say, which is weakly dominated by
or payoff equivalent to a different mixed strategy. The kth row of the m× n payoff
matrix A of player 1 is ak , the entries of A are aij . Then the LP with variables
x ∈ IRm and t ∈ IR,
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minimize − t

subject to x>A− t1>n ≥ ak

xk = 0

x>1m = 1

x ≥ 0

has an optimal solution x, t with t = 0, where x is the mixed strategy that dominates
or is payoff equivalent to k (if t > 0, then k is strictly dominated). It is easy to see
that the corresponding dual optimal solution gives a mixed strategy y of player 2
against which both x and k are best responses. This implies

∑
i xiaij = akj for all j

with yj > 0, which violates the linear independence condition in Theorem 2.7(d) for

the rows of
[
A
In

]
corresponding to the labels of y (w.l.o.g., A > 0). So the game is

degenerate.

Iterated elimination of weakly dominated and payoff equivalent pure strategies
does not necessarily yield a nondegenerate game, however (like the game in (2.30)
below). Furthermore, this elimination process is not always desired since it may
produce different games depending on the order of elimination, as in the game

A =
[
2 1
1 1

]
, B =

[
1 1
1 2

]
, (2.22)

where eliminating first the bottom row and then the right column yields a differ-
ent game than eliminating first the left column and then the top row, for example.
(Knuth, Papadimitriou, and Tsitsiklis, 1988, study computational aspects of strat-
egy elimination where they overlook this fact.)

It is often assumed that a game is nondegenerate on the grounds that this is
true for a generic game. A generic game is a game where the payoffs are not exactly
known. We use the following definition.

Definition 2.9. A game is called generic if each payoff is drawn randomly and
independently from a continuous distribution.

A game is generic, for example, if each payoff aij for player 1 (similarly bij
for player 2) is drawn independently from the uniform distribution on the interval
[aij − ε, aij + ε] for some ε > 0, where aij represents an approximate value for the
respective payoff.

By Theorem 2.7(d), a sufficient condition that the game is nondegenerate is

that any n rows of the matrix
[
A
In

]
(not just those corresponding to the labels

of y in Y ) are linearly independent, and that the same holds for the columns of
the matrix [Im, B]. The rows of A are then said to be in general position. For a
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generic game, this is true with probability one, since a linear dependence imposes an
equation on at least one payoff, which is fulfilled with probability zero. So a generic
game is nondegenerate (with probability one). The common understanding of a
“generic game” is that its payoffs are realizations of random variables as stated in
Def. 2.9, where some undesirable, zero probability event (here degeneracy) does not
occur. This is reasonable and convenient since a precise statement of the undesired
conditions can be laborious, as we have seen here.

While degeneracy can be excluded due to accidental causes, it may well occur
for systematic reasons, if the entries of the payoff matrix are not independent. In
particular, this holds if the bimatrix game is the normal form of a nontrivial extensive
form game, where there are more strategy combinations than payoffs. Fortunately,
the Lemke–Howson algorithm can easily be extended to degenerate games.

A degenerate game has basic feasible solutions to (2.14), (2.15) where some
basic variables have value zero, by Theorem 2.7(c). Such a degenerate basis is com-
puted by the Lemke–Howson algorithm after a pivoting step where the leaving vari-
able, determined by the minimum ratio test (2.19), is not unique. In graph-theoretic
terms, this basis represents a vertex where more than two almost completely labeled
edges meet, so Theorem 2.6 is no longer valid. Instead of following a unique path,
the computation must choose a branch and may possibly cycle.

The solution to this problem is the so-called lexicographic rule for choosing
the leaving variable in the case of ties, which is well known in linear programming
(see, for example, Chvátal, 1983, p. 36), and has been suggested by Lemke and
Howson (1964) in terms of perturbations. For a general lexicographic treatment
of LCPs see Eaves (1971). Consider a system Dr = b of k linearly independent
equations with the vector r of variables subject to r ≥ 0. Perturb the right hand
side b by replacing it by b(ε) = b + (ε, . . . , εk)> for some ε > 0. For a basis β
of this system, the vector rβ = (ri)i∈β of basic variables is then given by rβ =
D−1

β b(ε) = D−1
β b+D−1

β (ε, . . . , εk)> . Let (ci0, ci1, . . . , cik) denote row i of the matrix
D−1

β [b, Ik], so that ri = ci0 + ci1ε+ · · ·+ cikε
k , for i ∈ β . If the first nonzero entry of

(ci0, ci1, . . . , cik) is positive, then ri > 0 if ε is sufficiently small. If this holds for all
rows i of D−1

β [b, Ik], this matrix is called lexico-positive, and β is called lexico-feasible
since then β is feasible for the original system Dr = b. Moreover, a lexico-feasible
basis β is feasible and nondegenerate for the perturbed system Dr = b(ε), even if
it is degenerate for Dr = b.

Thus, perturbation of the system guarantees that every computed basis is non-
degenerate. The point of lexico-feasible bases β is that they can be recognized from
Dr = b, via D−1

β , without perturbing the system at all. By suitable rules, the per-
turbation for ε > 0 is simulated , and the computed basic solutions are not changed,
as if ε is vanishing. With the initialization of the algorithm, the first feasible basis
can easily be chosen such that it is lexico-feasible (which holds directly if it is non-
degenerate). Consider the pivoting step with entering column d = D−1

β Dj in (2.16)
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and entering variable rj . The leaving variable is determined by the maximum choice
of rj such that, for the perturbed system,

ri = ci0 + ci1ε+ · · ·+ cikε
k − dirj ≥ 0

for all i ∈ β . Assuming ε is sufficiently small, the sharpest bound is obtained for
that i with the lexicographically smallest of the row vectors 1/di · (ci0, ci1, . . . , cik)
for di > 0 (a vector is called lexicographically smaller than another if it is smaller
in the first component where the vectors differ). That is, if there is a tie among the
smallest ratios ci0/di for di > 0, then among these the smallest ratio ci1/di , and
if there is a tie then among them the smallest ratio ci2/di , and so on, determines
the leaving variable. No two of these row vectors are equal since D−1

β [b, Ik] has full
rank k. Therefore, this rule determines the leaving variable ri uniquely. It is called
the lexico-minimum ratio test and extends (2.19). By construction, it preserves the
invariant that all computed bases are lexico-positive. Since the computed sequence
of bases is unique, no basis can be repeated and the algorithm terminates as in the
nondegenerate case.

With a variant of the lexicographic rule, the Lemke–Howson algorithm can be
used to compute equilibria with additional stability properties (Wilson, 1992). We
will explain this in Section 3.1.

The practical relevance of a systematic treatment of degeneracy is less clear,
however. For example, degenerate bases are frequent when sparse linear programs
are solved with the Simplex algorithm, but cycling is extremely rare. Numerical sta-
bility is a much more important issue when computing with floating point arithmetic,
since roundoff errors can be amplified in pivoting steps. Compared to the Simplex
algorithm, this problem is particularly severe for the complementary pivoting rule
(Tomlin, 1978; Cottle et al., 1992, p. 383).

Moreover, the lexicographic rule is questionable in this context. In floating
point arithmetic, computed numbers are often treated as equal if their difference
does not exceed a certain small tolerance. This may randomly lead to degeneracies
where the lexicographic rule loses its foundation since it simulates perturbing the
data with numbers εi that are much smaller than the tolerance. The best way out of
this seems to work with rational arithmetic where numbers are always represented
exactly as fractions of integers. This method is slow, but it seems suitable for integer
payoff matrices, and avoids the problem of numerical instability.

2.7. Finding all equilibria

For a given bimatrix game, the Lemke–Howson algorithm finds at least one equilib-
rium. Sometimes, one wishes to find all equilibria, for example in order to know if
an equilibrium is unique. The problem of finding all equilibria can be phrased as a
vertex enumeration problem for polytopes.
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We first recall some notions from polytope theory (where we recommend Zieg-
ler, 1995). A polyhedron H is a subset of IRd defined by a finite number of linear
inequalities. If the dimension of H is d, then H is called full-dimensional. A polytope
is a bounded polyhedron. A face of a polyhedron H is a subset of H of the form
{x ∈ H | c>x = c0} where c>x ≤ c0 is a valid inequality for H (holds for all x
in H ), for some c ∈ IRd , c0 ∈ IR. A face of dimension zero (or its unique element) is
called vertex of H . This is the same as an extreme point of H , that is, a point in H

not representable as a convex combination of other points in H . A face of dimension
one is called an edge of H . A face of dimension d− 1 is called a facet of H if H has
dimension d. If H = { x ∈ IRd | Ax ≤ b } for some matrix A and vector b, and ai is
a row of A and bi the corresponding component of b, and x ∈ H , then the inequality
aix ≤ bi is called binding for x if aix = bi . It can be shown that any nonempty face
of H can be characterized by a set of binding inequalities, that is, by turning some
of the inequalities defining H into equalities. Each facet is characterized by a single
binding inequality which is irredundant , that is, the inequality cannot be omitted
without changing the polyhedron (Ziegler, 1995, p. 72).
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Figure 2.4. The polyhedron H2 for the game in (2.10), and its projection to the set
{ (y, 0) | (y, u) ∈ H2 }. The vertical scale is displayed shorter.

Let (A,B) be an m× n bimatrix game, and consider the polyhedra

H1 = {(x, v) | 1>mx = 1, B>x ≤ 1nv, x ≥ 0}

and
H2 = {(y, u) | 1>n y = 1, Ay ≤ 1mu, y ≥ 0} .
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The elements of H1 × H2 describe the solutions to (2.9), or equivalently to (2.14)
and (2.15) when using the vectors of slack variables z and w. Figure 2.4 shows
a drawing of H2 for our example (2.10). For (y, u) in H2 , the vector y (drawn
in the horizontal plane) is constrained by 1>y = 1 and y ≥ 0 which defines the
set Y of mixed strategies of player 2 as above. The scalar u (drawn vertically) is at
least the maximum of the functions aiy for the rows ai of A. The maximum itself
(defining the “upper envelope” of these functions) shows which strategy of player 1
is a best response to y. Consequently, projecting H2 to Y by mapping (y, u) to y

(in Figure 2.4 shown by the map (y, u) 7→ (y, 0)) reveals the subdivision of Y into
best response regions similar to Figure 2.2. We observe here that the (maximally
labeled) points marked by dots appear as projections of the vertices of H2 .

The sets H1 and H2 have dimension m and n, respectively, which is one di-
mension higher than the dimensions m − 1 and n − 1 of the respective strategy
spaces X and Y . If m and n are at most four, then the subdivisions of X and
Y can be visualized. The polyhedra H1 and H2 , however, are in general simpler
to study than the subdivided strategy spaces. In fact, the graphs G1 and G2 in
Theorem 2.6, as far as they are subsets of X and Y , consist of the vertices and
edges of H1 and H2 (disregarding the components v and u, which are only used in
the algebraic definition of the Lemke–Howson algorithm).

We want to simplify H1 and H2 further. If (x, u) ∈ H1 and (y, v) ∈ H2 , then
v and u can be arbitrarily large. Thus, the polyhedra H1 and H2 are unbounded.
Furthermore, they are not full-dimensional. As before, we assume w.l.o.g. A > 0
and B > 0 to guarantee u > 0 and v > 0 (adding a constant to all payoffs just
increases u and v by that constant, so H1 and H2 keep their shape). Let

P1 = { x′ ∈ IRm | B>x′ ≤ 1n, x
′ ≥ 0} (2.23)

and
P2 = { y′ ∈ IRn | Ay′ ≤ 1m, y

′ ≥ 0} . (2.24)

These polyhedra are polytopes and full-dimensional since A > 0 and B > 0.

The set H1 is in one-to-one correspondence with P1−{0} with the map (x, v) 7→
x · (1/v), and similarly, (y, u) 7→ y · (1/u) defines a bijection H2 → P2−{0}. These
maps have the respective inverse functions x′ 7→ (x, v) and y′ 7→ (y, u) with

x = x′ · v, v = 1/1>mx
′, y = y′ · u, u = 1/1>n y

′. (2.25)

These bijections are not linear. However, each defines a projective transformation
(see Ziegler, 1995, Sect. 2.6) which maps faces to faces. This is clear since a binding
inequality in H1 corresponds to a binding inequality in P1 and vice versa. Figure 2.5
shows a geometric interpretation of the bijection (y, u) 7→ y ·(1/u). On the left hand
side, the pair (yj, u) is shown as part of (y, u) in H2 for any component yj of y. The
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Figure 2.5. The map H2 → P2 , (y, u) 7→ y′ = y·(1/u) as a projective transformation

from IRn+1 to the hyperplane {(y′, 1) | y′ ∈ IRn} with projection point
(0, 0). The left hand side shows this for a single component yj of y, the
right hand side shows how P2 arises in this way from H2 in the example
(2.10).

line connecting this pair to (0, 0) contains the point (y′j, 1) with y′j = yj/u. Thus,
P2 can be seen as the intersection of the lines connecting any (y, u) in H2 with (0, 0)
in IRn+1 with the set of points (y′, 1), as shown on the right hand side in Figure 2.5
for our example. The point 0 in P2 does not arise as such a projection, but can be
thought of as corresponding to a ficticious vertex of H2 “at infinity”.

The inequalities defining P1 and P2 are simpler than those for H1 and H2 .
The Lemke–Howson algorithm can be described for these inequalities converted to
equality form, starting from the point (0,0) in P1 × P2 as an artificial equilibrium
similar to the one used in Section 2.6. This is often done to simplify the algebraic
computation, in particular the initialization step, but requires the retranslation of
the computed vectors (x′, y′) to mixed strategy pairs (x, y) and payoffs v, u that we
are using now.

We want to show that finding all equilibria of (A,B) can be reduced to an
inspection of all vertices of P1 and P2 . The points x′ in P1−{0} and y′ in P2−{0}
are always translated to the corresponding mixed strategies x and y, respectively,
according to (2.25). As before, the rows of A are ai for 1 ≤ i ≤ m, and the columns
of B are Bj for 1 ≤ j ≤ n. To identify equilibria, we use again labels, that is,
elements of {1, . . . ,m+ n} denoting own pure strategies that have probability zero
or pure best responses of the opponent. The labels of x′ in P1 and of y′ in P2 are
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the same as those of x and y, respectively, with (2.25). They are given by

L(x′) = { i | x′i = 0 } ∪ {m+ j | B>
j x

′ = 1 },
L(y′) = { i | aiy

′ = 1 } ∪ {m+ j | y′j = 0 }. (2.26)

Labels represent binding inequalities. The points with a maximal number of linearly
independent binding inequalities are the vertices.

Theorem 2.10. Consider P2 as in (2.24), for A > 0. Then the following are
equivalent:

(a) y′ is a vertex of P2 ,

(b) y′ ∈ P2 , and y′ fulfills n linearly independent equalities of the form aiy
′ = 1

or y′j = 0,

(c) y′, w is a basic feasible solution of the system Ay′ + Imw = 1m , y, w ≥ 0, with
w = 1m − Ay′ .

Proof. Exemplarily, we show (b)⇒(a). If y′ has n linearly independent binding
inequalities, then y′ is uniquely determined, and an extreme point of P2 since an
inequality is binding for a convex combination of points in P2 iff it is binding for all
these points. The other implications are similarly easy.

This theorem, which holds analogously for P1 , does not require that the game
is nondegenerate. If the game is nondegenerate, then by Theorem 2.7(d), the bind-
ing inequalities for any point in P1 or P2 are always independent. Thus, by Theo-
rem 2.10, every vertex of P1 or P2 has exactly m respectively n binding inequalities,
and only vertices are part of equilibria. Then, we can find all equilibria as follows.

Theorem 2.11. Let (A,B) be a nondegenerate m × n bimatrix game, A,B > 0.
The set of all equilibria of (A,B) can be computed as follows. Enumerate the vertices
x′ of the polytope P1 in (2.23) and the vertices y′ of the polytope P2 in (2.24). Then
(x, y) is an equilibrium iff, with (2.25) and (2.26), L(x′) ∪ L(y′) = {1, . . . ,m + n}
and (x′, y′) 6= (0,0).

This method was first suggested by Vorob’ev (1958) and later simplified by
Kuhn (1961). Mangasarian (1964) inspects the vertices of H1 × H2 to check for
maxima of the bilinear function x>(A + B)y − u − v. At a maximum, this func-
tion is zero, so this is equivalent to the complementarity conditions (2.7) and (2.8),
that is, completely labeled vertices. Enumerating the vertices of a polytope given
by linear inequalities is a standard problem (see Ziegler, 1995). A recent elegant
method, which has apparently not yet been applied to bimatrix games, is due to Avis
and Fukuda (1992). There, the inequalities of the polytope, say P2 , are converted
to a system of equations as in Theorem 2.10(c), whose basic feasible solutions are
enumerated by a depth-first search based on the Simplex algorithm (with a unique
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pivoting rule) “run backwards”. Audet et al. (1996) present a different approach
that restricts the search of vertices guided by the equilibrium condition. In con-
trast, Dickhaut and Kaplan (1991) ignore the polytope structure and enumerate all
possible supports of equilibria.

This raises the question if the polytopes provide useful information, rather than
complicating the algorithm. It is known that the number of vertices of a polytope
specified by inequalities can grow exponentially with the dimension. For example,
the d-dimensional unit cube is defined by 2d inequalities and has 2d vertices. This
is not the largest possible number, however. The upper bound is obtained for the
so-called dual neighborly polytopes, which have the number of vertices stated in the
following result.

Theorem 2.12. (Upper bound theorem for polytopes, McMullen, 1970.) The max-
imum number of vertices of a d-dimensional polytope with k facets is

Φ(d, k) =

(
k − bd−1

2
c − 1

bd
2
c

)
+

(
k − bd

2
c − 1

bd−1
2
c

)
. (2.27)

In (2.27),
(

p
q

)
is the binomial coefficient p!/(q!(p − q)!) and brc denotes the

largest integer not exceeding r, for natural numbers p, q and real r. For a self-
contained proof of this theorem see Mulmuley (1994). The representations of Φ(d, k)
in terms of binomial coefficients vary in the literature. They are easily converted
into each other using the arrangement of binomial coefficients in the Pascal triangle
according to their property

(
p
q

)
=

(
p−1
q−1

)
+

(
p−1

q

)
. In particular, one can rewrite (2.27)

depending on whether d is even, d = 2p, or odd, d = 2p+ 1:

Φ(2p, k) =
k

p

(
k − p− 1

p− 1

)
, Φ(2p+ 1, k) = 2

(
k − p− 1

p

)
. (2.28)

The upper bound theorem shows that P1 has at most Φ(m,n+m) and P2 at
most Φ(n,m + n) vertices, including 0 which is not part of an equilibrium. The
numbers 2m − 1 and 2n − 1 of possible supports for mixed strategies grow much
faster, so it is advisable to use the method of Theorem 2.11.

In a nondegenerate game, any vertex is part of at most one equilibrium, so the
smaller number of vertices of the polytope P1 or P2 is a bound for the number of
equilibria. That is, Theorem 2.12 implies the following.

Corollary 2.13. (Keiding, 1997.) A nondegenerate bimatrix game has at most
min{Φ(m,n+m),Φ(n,m+ n)} − 1 equilibria.

It is not hard to show that m < n implies Φ(m,n + m) < Φ(n,m + n). The
case m = n = d, that is, a square bimatrix game, has received special attention. In
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that case, one can use the single expression

Φ(d, 2d) = 2

(b3d−1
2
c

bd−1
2
c

)
(2.29)

which follows form (2.28) with k/p = 2 · 2p/p if d = 2p. For d = 1, . . . , 6, Φ(d, 2d)

equals 2
(

1
0

)
, 2

(
2
1

)
, 2

(
4
1

)
, 2

(
5
2

)
, 2

(
7
2

)
, 2

(
8
3

)
, that is, 2, 4, 8, 20, 42, 112, respectively.

However, the d×d bimatrix games with the largest of number of equilibria known are
those where both players have the identity matrix as payoff matrix. In that case, the
game has 2d − 1 equilibria, namely for any ∅ 6= C ⊆ {1, . . . , d} the mixed strategy
pairs (x, y) where both x and y play every pure strategy in C with probability
1/|C|. Then both P1 and P2 are equal to the unit cube. Possibly, this is a tighter
bound for the number of equilibria than Φ(d, 2d)− 1.

Conjecture 2.14. (Quint and Shubik, 1994.) A nondegenerate d × d bimatrix
game has at most 2d − 1 equilibria.

This conjecture is a consequence of Corollary 2.13 for d ≤ 3 but not for d > 3.
For d = 4, it was shown by Keiding (1997) and McLennan and Park (1996). Nev-
ertheless, potential counterexamples may arise in higher dimensions since Φ(d, 2d)
grows faster with d than 2d . [This is indeed the case. Using the polytope approach,
the Quint–Shubik conjecture has been disproven for d = 6 and all d ≥ 8 by von
Stengel (1997).] As the small values for d show, Φ(d, 2d) increases, by (2.29), from
even to odd d with an asymptotic factor of 9/4, and from odd to even d with an
asymptotic factor of 3, so that Φ(d, 2d) is asymptotically about (27/4)d/2 or approx-
imately 2.6d .

We return to the problem of finding all equilibria of an arbitrary, possibly de-
generate bimatrix game. Interpreted for the polytopes P1 and P2 , degeneracy has
two possible reasons. The first is a redundancy of the description of the polytope.
For a strictly dominated strategy, say strategy k of player 1, the inequality aky ≤ 1
for P2 is never binding, so this inequality is redundant and can be omitted without
changing P2 . If the strategy is weakly dominated by or payoff equivalent to another
mixed strategy but not strictly dominated, then the equality is sometimes binding
and the game is degenerate according to Theorem 2.8. Nevertheless, such an in-
equality is still redundant, that is, it does not define a facet, and it can be omitted
without changing the polytope. The second reason for degeneracy can be recognized
from the polytope itself. Assume that each inequality defines a facet. Then in a
degenerate game, P1 or P2 has a vertex that belongs to more than d facets, where
d is the dimension (m or n) of the polytope. A polytope where each vertex belongs
to exactly d facets is called simple. In the game

A =




0 6
2 5
3 3


 , B =




1 0
0 2
4 4


 , (2.30)
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the polytope P1 is not simple because its vertex (0, 0, 1/4)
> belongs to four facets.

In summary, a game is degenerate because of weakly but not strictly dominated
strategies as in Theorem 2.8, or because P1 or P2 is not a simple polytope.

Theorem 2.11 can be modified slightly to obtain a method for enumerating the
equilibria of any game, as shown by Mangasarian (1964); see also Winkels (1979).

Theorem 2.15. Let (A,B) be an m× n bimatrix game, A,B > 0. The set of all
equilibria of (A,B) can be computed as follows. Enumerate the vertices x′ of the
polytope P1 in (2.23) and the vertices y′ of the polytope P2 in (2.24), and call x′ a
mate of y′ iff L(x′) ∪ L(y′) = {1, . . . ,m + n} according to (2.26). Let a clique be
any set of vertex pairs (x′, y′) where x′ is a mate of y′ . Then (x, y) is an equilibrium
iff (2.25) holds and (x′, y′) belongs to the convex hull of a maximal clique, and
(x′, y′) 6= (0,0).

Proof. First, any point x′ in P1 is a mate of 0 in P2 iff {1, . . . ,m} ⊆ L(x′), that is,
x′ = 0. Similarly, 0 in P1 is a mate of y′ in P2 iff y′ = 0. Thus, 0 is not part of any
pair of mates (x′, y′) except (0,0). These pairs (x′, y′) 6= (0,0) can be translated
by (2.25) to elements of H1 ×H2 and represent equilibria (x, y).

Let (x, y) be any equilibrium of the game, with payoffs v, u. Fixing y = y

and u = u, the constraints defining H1 and the complementarity conditions (2.7)
and (2.8) are linear in x, v. They define a polyhedron that may not be a singleton
if the game is degenerate. In particular, (2.7) is equivalent to xi = 0 for i ∈
supp(1mu − Ay) and x>Bj = v for j ∈ supp(y) 6= ∅. The set of (x, v) fulfilling
these constraints is bounded, so it is a polytope and equal to the convex hull of its
vertices, which are vertices of H1 since the set is a face of H1 . So (x, v) is a convex
combination of these vertices. We consider only vertices (xs, vs) that are used for
the convex combination (for example, (x, v) may itself be a vertex of H1). That
is, x =

∑
s∈S x

sλS and v =
∑

s∈S v
sλs with λs > 0 for s ∈ S and

∑
s∈S λs = 1.

Similarly, (y, u) is a convex combination of extreme points (yt, ut) of H2 such that
(x, yt) is an equilibrium. Again, we consider only the representation y =

∑
t∈T y

tµt

and u =
∑

t∈S u
tµt where µt > 0 for t ∈ T and

∑
t∈T µt = 1.

Let s ∈ S and t ∈ T . We claim (xs, yt) is an equilibrium. Namely, if 1 ≤ i ≤ m,
then xs

i > 0 implies xi > 0 since λs > 0, thus aiy = u and therefore aiy
t = ut since

µt > 0 (note aiy
t < ut =⇒ aiy < u). Similarly, 1 ≤ j ≤ n and yt

j > 0 imply that
j is a best response to xs . So

(x, y) =
∑

s∈S, t∈T

λsµt(x
s, yt)

with the extreme equilibria (xs, yt), which together with their payoffs vs, ut corre-
spond to extreme points (x′, y′) of P1 × P2 where x′ is a mate of y′ . These form a
clique of mates, which is a subset of a maximal clique.
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Conversely, it is immediate that convex combinations of pairs (x′, y′) of mutual
mates correspond to equilibria.

Theorem 2.15 shows that when looking for equilibria, it suffices to look for
extreme equilibria corresponding to pairs of vertices of P1 and P2 . Furthermore, it
shows which convex combinations of these extreme equilibria are further equilibria.
Maximal convex subsets of X×Y of equilibria are called convex equilibrium compo-
nents , which are not necessarily disjoint. They have been characterized by Jansen
(1981). Theorem 2.15 shows that the sets of their vertices can be computed as max-
imal cliques of a bipartite graph. As an example, the game in (2.22) has the pairs

of extreme equilibria
(
(1, 0)>, (1, 0)>

)
,

(
(1, 0)>, (0, 1)>

)
, and

(
(0, 1)>, (0, 1)>

)
. The

first two and the last two of these pairs each form a maximal clique. The convex
equilibrium components of this game are therefore {(1, 0)>}×Y and X×{(0, 1)>}.

3. Equilibrium refinements

Nash equilibria of a noncooperative game are not necessarily unique. A large number
of refinement concepts have been invented for selecting some equilibria as more
“reasonable” than others (see van Damme, 1987, for a survey and comparison).
From the computational viewpoint, we will explain two approaches that extend the
Lemke–Howson method to finding equilibria with additional refinement properties.
This is the algorithm by Wilson (1992) for finding simply stable equilibria, and the
complementary pivoting method due to van den Elzen and Talman (1991) for finding
a perfect equilibrium.

3.1. Simply stable equilibria

Kohlberg and Mertens (1986) proposed a concept of strategic stability of equilibria.
Basically, a set of equilibria is called stable if every game nearby has equilibria nearby
(Wilson, 1992). In a nondegenerate game, all equilibria are isolated and determined
by the set of pure strategies that have positive probability, where the others have
strictly smaller payoff. This qualitative property does not change if the data of the
game are slightly changed. So in a nondegenerate game, all (sets of) equilibria are
stable.

In a degenerate game, however, stability is no longer guaranteed. The bimatrix
game (A,B) in (2.30), for example, has mixed strategy sets X and Y with labels
denoting best responses and unplayed pure strategies shown in Figure 3.1. This
game is degenerate since x1 = x2 = (0, 0, 1)> has four labels 1, 2, 4, 5, so that any
point y in Y labeled 3 combined with x1 is an equilibrium. Therefore, all convex
combinations of (x1, y1) and (x2, y2), where y1 = (0, 1)> and y2 = (1/3, 2/3)

> , are
equilibria. If B is changed so that
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Figure 3.1. The sets X and Y of mixed strategies for the game (A,B) in (2.30),
labeled with best response regions and unused pure strategies 1, 2, 3
for player 1 and 4, 5 for player 2. They are embedded in the next
higher dimension as in Figure 2.2. The game is degenerate and has an
infinite set of equilibria indicated by the rectangular boxes, with extreme
equilibria (x1, y1) and (x2, y2).

B =




1 0
0 2
4 4 + ε


 , (3.1)

then for ε 6= 0 this perturbed game has a unique best response to (0, 0, 1)> , namely
the second pure strategy of player 2 (label 5) if ε > 0 and the first pure strategy
(label 4) if ε < 0. Figure 3.2 shows that for ε > 0, the equilibrium component
disappears (so it is not stable), whereas for ε < 0 it turns into two separate equilibria
(x1, y1) and (x2, y2) with x1 6= x2 .
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Figure 3.2. The set X with best response regions for the game (2.30) after pertur-
bation as in (3.1), for ε > 0 and ε < 0. For ε > 0, the labels show that
the equilibrium component with extreme equilibria (x1, y1), (x2, y2) in
Figure 3.1 disappears, whereas for ε < 0 it dissolves into these two
separate equilibria.
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Here, the fact that an even number of equilibria appears indicates that another
perturbation may produce zero equilibria, since the total number of equilibria in
a nondegenerate bimatrix game (if such a game is obtained after perturbation) is
odd according to Theorem 2.6. As a very informal proof that at least one stable
component exists, observe that for that reason not all components can dissolve into
an even number of equilibria, so at least one component has an odd (and there-
fore positive) number of equilibria remaining. Of course, this is far from a precise
statement, since, among other things, convex equilibrium components need not be
disjoint and perturbation does not necessarily lead to a nondegenerate game. The
formal proofs in Kohlberg and Mertens (1986), or in the reformulation of stability
in Mertens (1989, 1991), involve homotopies of deformations of games.
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Figure 3.3. The game (3.2) has a single component, which for ε > 0 and ε < 0 in
(3.1) becomes one of its extreme equilibria (x1, y1) or (x2, y2), respec-
tively, so no equilibrium survives the perturbation individually.

To get existence, stability has to be defined for sets of equilibria. The game
(A,B) with

A =




0 6
3 3
2 5


 , B =




1 0
0 2
4 4


 (3.2)

has the single set of equilibria with extreme points (x1, y1) and (x2, y2) shown in
Figure 3.3. After perturbing B as in (3.1), only one of these equilibria (with x
slightly changed) remains. Therefore, stability holds only for the entire set but not
for single equilibria.

Degenerate normal form games are important because they arise from games
in extensive form. Figure 3.4 shows an extensive game that has the game in (2.30)
as normal form. (Extensive form games will be considered in more detail below.)
The degeneracy that arises is typical.

Wilson (1992) described an algorithm that computes a set of equilibria which
is stable in a weaker sense than described by Kohlberg and Mertens (1986) or the
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Figure 3.4. An extensive game that has the degenerate normal form game (2.30),
even though the payoffs in the extensive game can be generic. The pure
strategies of player 1 with labels 1, 2, 3 in Figure 3.1 correspond to the
move combinations 〈L, S〉, 〈L, T 〉, and 〈R, ∗〉 (∗ being arbitrary). The
two pure strategies of player 2 are his moves l and r.

even stronger definition in Mertens (1989, 1991). That is, the game is not perturbed
arbitrarily but only in certain systematic ways that are easily captured computa-
tionally. Because there is a smaller set of “games nearby” than in the other notions
of stability, the resulting concept is weaker and is called simple stability. There may
be simply stable sets of equilibria which are not stable, although no counterexample
has yet been found (Wilson, 1992, p. 1065). However, the algorithm is more efficient
and seems practically useful compared to the exhaustive method by Mertens (1989).
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Figure 3.5. Example of a mixed strategy set for player 1 with the unperturbed game
(left), a primal perturbation with a minimum probability for the strategy
labeled 2 of player 1 (middle), and a dual perturbation with a bonus for
the strategy labeled 5 of player 2 (right).
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The perturbations considered for simple stability apply not to payoffs but to
pure strategies, in two ways. A primal perturbation introduces a small minimum
probability for playing that strategy, even if it is not optimal. A dual perturbation
introduces a small bonus for that strategy, that is, its payoff can be slightly smaller
than the best payoff and yet the strategy is still considered optimal. Figure 3.5 shows
the effect of such perturbations on a strategy set and its best response regions.

For computation, Wilson (1992) uses the simplified version of the LCP with
inequalities as in (2.23) and (2.24). Assume w.l.o.g. that the m× n payoff matrices
A and B are positive. For x′ ∈ IRm and y′ ∈ IRn not equal to 0, the conditions

Ay′ ≤ 1m

B>x′ ≤ 1n

x′, y′ ≥ 0

(3.3)

are equivalent to (2.9) using the correspondence (2.25), and the equations

x′>(1m − Ay′) = 0, y′>(1n −B>x′) = 0 (3.4)

are equivalent to (2.7), (2.8). With slack vectors w ∈ IRm and z ∈ IRn , the LCP
(3.3), (3.4) can also be written as

Ay′ + Imw = 1m

B>x′ + Inz = 1n

(3.5)

with x′, y′, w, z ≥ 0, and
x′>w = 0, y′>z = 0 . (3.6)

Let x′, y′, w, z be perturbed by corresponding vectors ξ, η, ψ, ζ that have small
positive components, ξ, ψ ∈ IRm and η, ζ ∈ IRn . That is, replace (3.5) by

A(y′ + η) + Im(w + ψ) = 1m

B>(x′ + ξ) + In(z + ζ) = 1n.
(3.7)

If (3.7) and the complementarity condition (3.6) hold, then a variable xi or yj that
is zero is replaced by ξi or ηj , respectively. After the transformation (2.25), that is,
multiplication with u or v, these terms denote a small positive probability for playing
the pure strategy i or j , respectively. So ξ and η represent primal perturbations.

Similarly, ψ and ζ stand for dual perturbations. To see that ψi or ζj indeed
represents a bonus for i or j , respectively, consider the second set of equations in
(3.7) with ξ = 0 for the example (2.30):

[
1 0 4
0 2 4

]


x′1
x′2
x′3


 +

(
z1 + ζ1
z2 + ζ2

)
=

(
1
1

)
.
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If, say, ζ2 > ζ1 , then one solution is x′1 = x′2 = 0 and x′3 = (1−ζ2)/4 with z2 = 0 and
z1 = ζ2 − ζ1 > 0, which means that only the second strategy of player 2 is optimal,
so the higher perturbation ζ2 represents a higher bonus for that strategy (as shown
in the rightmost panel in Figure 3.5). Dual perturbations are in fact more general
than primal perturbations, letting ψ = Aη and ζ = B>ξ in (3.7). Here, only special
cases of these perturbations will be used, so it is useful to consider them both.

An equivalent way of writing (3.7) is

Dr = 1−Dδ (3.8)

with the vector of variables r ≥ 0, perturbation δ, and matrix D according to

r = (x′, y′, w, z)>, δ = (ξ, η, ψ, ζ)>, D =
[

0 A Im 0
B> 0 0 In

]
. (3.9)

The Lemke–Howson algorithm, applied to the simplified LCP (3.5), (3.6) and start-
ing from the artificial equilibrium (x′, y′) = (0,0), computes with basic feasible
solutions to the system Dr = 1 with bases β and inverse basis matrices D−1

β using
the complementary pivoting rule. For a degenerate game (where the computed equi-
librium may be unstable), that rule is made unique with the lexicographic method
(see Section 2.6). This method is used here as well, with a special, slightly different
right hand side in (3.8). Let k = 2(m + n) and δ = (ε, ε2, . . . , εk)> . Recall that
then, if ε is sufficiently small, a basis β defines a basic feasible solution to (3.8) iff
the matrix D−1

β [1,−D] is lexico-positive. That matrix is exactly the tableau needed
for pivoting, so it is easy to compute with lexico-feasible bases using the lexico-
minimum ratio test. The computation is unique since [1,−D] has full row rank.
As before, the lexicographic method simulates the perturbation (with ε vanishing)
rather than actually performing it.

With δ = (ε, ε2, . . . , εk)> , the most perturbed variable is r1 = x1 , where ξ1 = ε.
This represents essentially a primal perturbation of the first pure strategy of player 1.
The other perturbations are of smaller and smaller orders of magnitude. Such a
primal or dual perturbation can be achieved for each pure strategy by cyclically
shifting the lexicographic order. For 1 ≤ i ≤ k, the ith shift is represented by

δ = (εk−i+1, . . . , εk, ε, . . . , εk−i)>, (3.10)

that is, δj = εk−i+j for 1 ≤ j ≤ i and δj = εj−i for i < j ≤ k. Then the least
perturbed variable (by δi = εk) is ri , and the most perturbed variable (by δi+1 = ε)
is ri+1 (or r1 if i = k). Call a basic solution to (3.8) that is feasible for this pertur-
bation (3.10) i-lexico-feasible. This means that for each row of D−1

β [1,−D], the first
nonzero element is positive when inspecting the columns in the order 0, i+ 1, . . . ,
k, 1, 2, . . . , i. A set of equilibria surviving these perturbations is called simply stable.
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Definition 3.1. (Wilson, 1992.) Let (A,B) be an m×n bimatrix game, A,B > 0,
and k = 2(m + n). Then a connected set of equilibria of (A,B) is called simply
stable if for all i = 1, . . . , k, all sufficiently small ε > 0, and δ as in (3.10), there is a
solution r = (x′, y′, w, z)> ≥ 0 to (3.8), (3.6) so that the strategy pair (x, y) defined
by (2.25) is near that set.

Due to the perturbation, (x, y) in Def. 3.1 is only an “approximate” equilib-
rium. When ε vanishes, then (x, y) becomes a member of the simply stable set.
Unfortunately, a simply stable set can usually not be computed by just finding an
equilibrium with the Lemke–Howson algorithm started from (0,0) for each shifted
lexicographic order in (3.10). The reason is that this may not always lead to the
same equilibrium (and in fact such an equilibrium may not exist as Figure 3.3
shows), so that the set of these equilibria is not connected. Instead, the method
invented by Wilson (1992) computes a unique path where on the last part of that
path (representing the connected simply stable set), all points are equilibria, and all
perturbations (3.10) for i = 1, . . . , k occur somewhere.

The computed path in this algorithm is piecewise composed of parts of Lemke–
Howson paths. Each of the latter is here characterized by a single parameter i, for
1 ≤ i ≤ k, that represents both the shift in (3.10) and the missing label. That
is, the variable ri is the least perturbed one, and it is the only variable that may
be basic together with its complement (recall from (3.6) that complementary pairs
of variables are x′l, wl and y′j, zj ). Call such a path an i-path. Its vertices are
characterized by the two parameters β and i. Each basis β is i-lexico-feasible, and
contains only one basic variable of each complementary pair except possibly of the
pair containing ri .

For 1 ≤ i < k, a point on an i-path can be joined to an (i + 1)-path at an
equilibrium. We describe these possibilities as they may arise in the computation.
The start is from (0,0) on a 1-path until a complementary basis is reached, defining
an equilibrium. Now i is increased from 1 as long as this basis stays i-lexico-feasible.
In the simplest case, as when all basic variables are positive, this holds for all i up
to k and the equilibrium forms by itself a simply stable set.

In general, there is some maximal i < k such that the (complementary) basis
is i-lexico-feasible (Wilson, 1992, p. 1060, calls this basis a maximal i-vertex ). Then
at least one basic variable is zero. Now, it is possible to let ri+1 or its complement
enter the basis such that the resulting new basis, called a boundary vertex , is on an
(i+ 1)-path. This defines a certain pivoting step, called the NP rule, for switching
from the end of an i-path to the boundary vertex which is somewhere on an (i+1)-
path. This pivoting step is unique because of the disjoint structure of the tableau
(with two parts for the two players), the fact that the old basis is not (i + 1)-
lexico-feasible, and the definition of i-paths. Moreover, the unique leaving variable
is one of the basic variables with value zero, so the pivoting step is degenerate and
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only changes the basis but not the feasible solution (the actual values for basic
variables are always those for the unperturbed system since the perturbation is only
simulated). In other words, the new boundary vertex, encoded by a new basis β
and now part of an (i+ 1)-path, is still an equilibrium, that is, the respective basic
solution fulfills (3.6). It happens that of the two directions that can now be taken on
the (i+ 1)-path, one will destroy the equilibrium property (by increasing the value
of a basic variable with value zero) but the other will not. The latter direction is
taken to continue on the (i+ 1)-path.

The NP rule is conceptually the most difficult part of Wilson’s algorithm. Its
purpose is to define a unique adjacency of a maximal i-vertex to a boundary vertex
on an (i+1)-path. Moreover, this adjacency relation should be symmetric so that the
computed overall path is the same in either direction. That is, the NP rule should
also be followed the other way around. A boundary vertex can be characterized by
the following properties: it is part of an (i + 1)-path (with i < k), the basis is not
complementary but yet defines an equilibrium, and this property would be destroyed
with the next regular pivoting step for Lemke–Howson paths (called the RP rule).
In that case, it is not the RP step that is taken but the NP step (in reverse) to get
back to a maximal i-vertex (Wilson, 1992, Lemma 2), which is a complementary
basis.

If a complementary basis has been reached this way, the computation continues
by decreasing i as long as the basis is i-lexico-feasible or until i = 1. At a minimal
i-vertex (where the basis is not (i−1)-lexico-feasible), the next step of following the
regular Lemke–Howson path in fact also preserves the equilibrium property (Wilson,
1992, Lemma 1).

In summary, the pivoting steps (regular or with the NP rule), and changes of the
lexicographic shift i, are all performed without changing the equilibrium property,
so they generate a path where all points are equilibria. Wilson remarks that the
path stays in an equilibrium component, which is to be understood as a topological
component, since the path may traverse several non-disjoint convex components.
The only exception is on 1-paths which may leave or enter equilibrium components
as with the ordinary Lemke–Howson algorithm. The computation terminates at
a basis that is k-lexico-feasible. Since the last time the equilibrium property did
not hold was on a 1-path, all perturbations i = 1, . . . , k in (3.10) have occurred in
between. Therefore, that last part of the path constitutes a simply stable set. We
refer to Wilson (1992) for examples and further geometric interpretations.

3.2. Perfect equilibria and the tracing procedure

Selten (1975) called an equilibrium perfect if it is robust against certain small mis-
takes of the players. We consider this concept only for normal form games. Then
mistakes are represented by small positive minimum probabilities for all pure strate-
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gies, which can be chosen suitably. The resulting pair of completely mixed strategies
converges to the equilibrium when the mistake probabilities go to zero. At the same
time, the equilibrium strategies have to be best responses to these completely mixed
strategies. We use this characterization of perfect equilibria (Selten, 1975, p. 50,
Theorem 7) as definition.

Definition 3.2. (Selten, 1975.) An equilibrium (x, y) of a bimatrix game is called
perfect if there is a continuous function ε 7→ (x(ε), y(ε)) where (x(ε), y(ε)) is a pair
of completely mixed strategies for all ε > 0, (x, y) = (x(0), y(0)), and x is a best
response to y(ε) and y is a best response to x(ε) for all ε.

Positive minimum probabilities for all pure strategies define a special primal
perturbation as considered for simply stable equilibria. Thus, as noted by Wilson
(1992, p. 1042), his algorithm can also be used for computing a perfect equilibrium.
The ramifications with i-paths are not necessary. It suffices to use the Lemke–
Howson algorithm alone with an unshifted lexicographic order, and any missing
label when starting from the artificial equilibrium.

Theorem 3.3. Consider a bimatrix game (A,B) and, with (3.9), the LCP Dr = 1,
r ≥ 0, (3.6). Then the Lemke–Howson algorithm, computing with bases β such that
D−1

β [1,−D] is lexico-positive, terminates at a perfect equilibrium.

Proof. Let β be the final complementary basis with basic feasible solution r =
(x′, y′, w, z)> , and let (x, y) be the computed equilibrium obtained by (2.25). With

δ(ε) = (ξ(ε), η(ε),0,0)> = (ε, . . . , εm+n, 0, . . . , 0)>,

let r(ε) = (x(ε), y(ε), w(ε), z(ε))> be the basic solution to D r(ε) = 1 − Dδ(ε)
with basic variables rβ(ε) = D−1

β (1 − Dδ(ε)), and zero nonbasic variables. Since
D−1

β [1,−D] is lexico-positive, r(ε) ≥ 0 for all sufficiently small ε ≥ 0. Similar to
the equivalence of (3.7) and (3.8), we obtain

A(y(ε) + η(ε)) + Imw(ε) = 1m

B>(x(ε) + ξ(ε)) + Inz(ε) = 1n.
(3.11)

The mixed strategies x(ε) and y(ε), obtained from x(ε) + ξ(ε) and y(ε) + η(ε) via
(2.25), are completely mixed for ε > 0, and converge to x and y, respectively, when
ε goes to zero. Furthermore, x′>w(ε) = 0 and y′>z(ε) = 0 since w(ε) and w, as
well as z(ε) and z , have the same basic variables, and the basis is complementary,
with (3.6). So x is a best response to y(ε), and y is a best response to x(ε). Hence,
(x, y) is a perfect equilibrium according to Def. 3.2.

A different approach to computing perfect equilibria of a bimatrix game is
due to van den Elzen and Talman (1991, 1995); see also van den Elzen (1993). It
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is motivated by certain shortcomings of the Lemke–Howson algorithm. First, the
missing label on the computed path represents a player’s pure strategy that is not
a best response but is played with positive probability, whereas the other player is
always in equilibrium. The computation can be interpreted by a subsidy for the
suboptimal strategy (equal to the slack variable wi if the missing label represents
strategy i of player 1, say), which is kept while maintaining an equilibrium for both
players, until either the subsidy (here wi) or the probability for playing the strategy
(here xi) becomes zero (see also Wilson, 1992; van den Elzen, 1993). However, this
is not symmetric for the two players. Furthermore, the algorithm is started from a
pure strategy pair, that is, a corner of the strategy space X×Y , and does not allow
an arbitrary starting point. This makes the algorithm unsuitable for games with
more than two players where it is sometimes useful to perform short-distance linear
approximations of paths leading to an equilibrium, which requires the possibility
of restarts at any position. (For “nonlinear” generalizations of the Lemke–Howson
algorithm to games with more than two players see Rosenmüller, 1971; Wilson, 1971;
Garcia, Lemke, and Luethi, 1973.)

The method by van den Elzen and Talman permits an arbitrary starting point,
and treats both players symmetrically. Let (p, q) be an arbitrary pair of mixed
strategies, that is,

1>mp = 1, p ≥ 0, 1>n q = 1, q ≥ 0. (3.12)

The starting point (p, q) is also called a prior. Consider the following constraints,
with scalar variables r0, u, v, and vectors x,w ∈ IRm and y, z ∈ IRn :

1>mx + r0 = 1

1>n y + r0 = 1

w = 1mu − Ay − (Aq)r0 ≥ 0

z = 1nv −B>x − (B>p)r0 ≥ 0 ,

x , y , r0 ≥ 0 ,

(3.13)

and
x>w = 0, y>z = 0 . (3.14)

For r0 = 0, (3.13) and (3.14) are equivalent to the familiar LCP with conditions
(2.9) and (2.7), (2.8). In general, the constraints define an augmented LCP because
of the additional column for the variable r0 (often denoted z0).

This augmented LCP can be solved by a complementary pivoting scheme due
to Lemke (1965), which is a generalization of the Lemke–Howson algorithm. It
computes with basic solutions to the system (3.13), which has 2 +m+ n equations
and 3 + 2(m+ n) variables. The 2 +m+ n basic variables include always u and v,
and at most one variable of each complementary pair xi, wi and yj, zj for 1 ≤ i ≤ m,
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1 ≤ j ≤ n, so this implies (3.14). In the beginning, r0 is also basic. In consequence,
there is one complementary pair of variables that are both nonbasic, so that one of
them can be chosen to enter the basis, inducing a pivoting step. The leaving variable
is then either r0 , so that the algorithm terminates, or another component of x, y, w,
or z , whose complement is then chosen as the next entering variable. This process
continues until an equilibrium is found. (For more details see Lemke, 1965; Murty,
1988; or Cottle et al., 1992.)

Here, Lemke’s algorithm can be interpreted as inducing a path in the strategy
space X × Y that starts at (p, q) and ends at the computed equilibrium. The
condition 0 ≤ r0 ≤ 1 will hold during the computation. Then (3.12) and (3.13)
imply

1>m(x+ p r0) = 1, 1>n (y + q r0) = 1, (3.15)

and (x + p r0, y + q r0) is a pair of mixed strategies, which defines the path in the
strategy space X × Y . The vectors x and y fulfill

1>mx = 1− r0, 1>n y = 1− r0. (3.16)

Thus, xi denotes how much the pure strategy i of player 1 is played beyond the
minimum probability pir0 , and yj denotes how much the pure strategy j of player 2
is played beyond qjr0 . Furthermore, (3.13) implies

w = 1mu− A(y + q r0), z = 1nv −B>(x+ p r0). (3.17)

That is, u and v are the payoffs and w and z the corresponding slacks when playing
against the mixed strategy pair (x + p r0, y + q r0). Because only one variable of
each complementary pair xi, wi and yj, zj is positive on the computed path, which
implies (3.14), only best responses against the current strategy pair may have excess
probabilities. In other words, the path traces equilibria of a restricted game where r0
and the prior (p, q) prescribe minimum probabilities pir0 and qjr0 for playing pure
strategies. The conditions (3.16) and x ≥ 0, y ≥ 0 describe the player’s choices in
this restricted game. Initially, their freedom is zero, when r0 = 1, and at the end
the restricted game coincides with the full game.

Initial solutions to (3.13), (3.14) are given by r0 = 1, x = 0, y = 0, and u

and v sufficiently large. This does not yet define a basis since it involves 3 +m+ n

positive variables r0, u, v, w, z . Therefore, u is chosen minimally subject to w =
1mu−Aq ≥ 0, so that at least one component wi is zero and nonbasic, and replaced
by xi as a basic variable, and v is chosen minimally subject to z = 1nv−B>p ≥ 0,
so that at least one component zj is zero and made nonbasic, and the first nonbasic
complementary pair is yj, zj .

This initial step of the algorithm amounts to finding a pure best response i of
player 1 against q, and a pure best response j of player 2 against p. The prior (p, q)
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can therefore be interpreted as a preconception of the players about the behavior of
their opponent, against which they react initially. In general, they take the prior into
account with probability r0 . The computed path shows how the players gradually
adjust their behavior by using information about their opponent’s actual strategy.

Given the prior (p, q) and a generic game, the pure best responses i and j

against the prior are unique, with positive slacks in w and z for the remaining
strategies. Letting yj enter the basis, the value of this variable is increased and
reduces the value of r0 since (3.16) holds. We demonstrate the progress of the
algorithm for the game (A,B) with

A =
[
1 0
0 2

]
, B =

[
5 0
0 1

]
. (3.18)

Figure 3.6 shows the strategy sets X and Y of player 1 and player 2 drawn vertically
and horizontally, respectively. As usual, the circled numbers 1, 2 label the pure
strategies of player 1 (top and bottom row), and 3, 4 those of player 2 (left and
right column), where they are best responses or have probability zero. The square
represents the strategy space X×Y , also subdivided into (products of) best response
regions, with the three equilibria of the game marked by dots.
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Figure 3.6. The computed path of the van den Elzen–Talman algorithm for the
game (3.18) when started from the prior (p, q) where all pure strategies
have equal probability.

The prior (p, q) is defined by p1 = p2 = q1 = q2 = 1/2. Initially, r0 = 1, and the
best responses to q and p are the bottom row and left column, respectively. Thus,
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the first basic variables besides r0, u, v are w1 , x2 , z2 , and y1 enters the basis. Then
y1 is increased (and with it x2) until the slack w1 becomes zero, which happens when
r0 = 2/3 and y1 = x2 = 1/3, indicated by Step I in Figure 3.6. After pivoting, y1 is
has become basic and w1 has left the basis. At this point, both strategies of player 1
are optimal. This is maintained when in the next step, the complement x1 of w1 is
increased. So during this part of the path (Step II), the mixed strategy y+qr0 stays
the same, and r0 is also unchanged. The corresponding restricted game is shown by
the dashed square. The increase of x1 stops when x2 becomes zero, which leaves the
basis. Next, w2 enters, so the path can leave the best response region for strategy 2
of player 1. Both x1 and y1 are increased, and r0 reduced, until r0 = 0 (Step III),
when r0 leaves the basis. The algorithm terminates, having reached the equilibrium
(x, y) with x = y = (1, 0)> .

In general, the complementary pivoting rule determines a unique path, with
lexicographic degeneracy resolution if necessary. Hence, there is no further point
on the path where r0 = 1 since this would reach the starting point again, and
(considered backwards) allow an alternative way to start, which is not the case. So
the path never leaves the strategy space. Since no basis is repeated, the algorithm
eventually terminates with r0 = 0. (However, it is possible that the value of r0
sometimes increases at intermediate steps.) Furthermore, the algorithm can be used
to compute a perfect equilibrium.

Theorem 3.4. (Van den Elzen and Talman, 1991.) The complementary pivoting
algorithm applied to the augmented LCP (3.13), (3.14) terminates at a perfect
equilibrium if the prior (p, q) is completely mixed.

Proof. Consider the last part of the computed path, where the variables that are
allowed to have positive values are those of the final complementary basis and r0 .
These 3 +m + n variables fulfill the 2 + n +m equations (with nonbasic variables
set to zero) (3.15) and (3.17), that is,

A(y + qr0) + Imw = 1mu

B>(x+ pr0) + Inz = 1nv.
(3.19)

These equations define the last line segment of the path, where r0 > 0 except for
the endpoint determining the equilibrium (x∗, y∗). Note that u, v, x, y, w, z all vary
with r0 , but the complementarity conditions (3.14) hold throughout, in particular
x∗>w = 0 and y∗>z = 0. Letting ε = r0 and x(ε) = x + p r0 , y(ε) = y + q r0
in (3.19), these conditions, similar to (3.11) above, show that (x∗, y∗) is a perfect
equilibrium since if ε > 0, then x(ε) and y(ε) are completely mixed strategies if p
and q are.

Different priors may lead to different equilibria. For the game (3.18), Figure 3.6
shows that from the prior (p, q) with p1 = 1/8, p2 = 7/8 and q1 = q2 = 1/2, the
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algorithm reaches the bottom-right equilibrium ((0, 1)>, (0, 1)>) in a single step. In-
deed, for both players the optimal response against (p, q) is their second strategy.
Similar to the Lemke–Howson algorithm, this can be used to find even further equi-
libria, by starting the algorithm backwards from an equilibrium (with r0 increased
from zero rather than decreased from one), but with a prior leading to a different
equilibrium in (3.13) (note that (p, q) serves not only as a starting point, but also
as a reference throughout the computation). In Figure 3.6, this yields the unique
mixed equilibrium of the game (see van den Elzen and Talman, 1991, p. 42, van den
Elzen, 1993, p. 117).

Besides the symmetric treatment of the players and the freedom to choose the
starting point, this algorithm is attractive because it emulates the linear tracing
procedure of Harsanyi and Selten (1988), as shown by van den Elzen and Talman
(1995). The tracing procedure is an adjustment process to arrive at an equilibrium
of the game when starting from a prior (p, q). It traces a pair of strategy pairs
(x, y). Each such pair is an equilibrium in a parameterized game Γ(r0). For r0 = 0,
this is the original game (A,B), whereas for r0 = 1, it is the game with payoffs
depending only on the own strategy, assuming the opponent plays according to the
prior. In general, the prior is played with probability r0 , so that player 1 receives in
Γ(r0) expected payoff r0 · x>(Aq) + (1 − r0) · x>(Ay), and player 2 receives payoff
r0 · (p>B)y + (1 − r0) · (x>B)y. The procedure starts with r0 = 1, where x and y

are the players’ optimal responses to the prior. Then r0 is decreased, changing
(x, y) such that it stays an equilibrium of Γ(r0). In this way, the players initially
expect the prior and simultaneously and gradually adjust their expectations and
react optimally against these revised expectations, until reaching an equilibrium
of Γ(0).

This process corresponds to the above computation, letting x = x(1− r0) and
y = y(1− r0). Then (because it is a two-person game), player 1 and player 2 receive
in Γ(r0) the same payoffs as in the original game against the mixed strategies y+q r0
and x+ p r0 , respectively. Thus, the paths generated by the tracing procedure and
by the algorithm coincide up to projection, given by the one-to-one correspondence
between (x, y) and (x, y) for all r0 < 1. Whereas the tracing procedure traces a
pair of strategies in the full strategy space and considers convex combinations of
payoffs with weights r0 and 1−r0 , the complementary pivoting algorithm generates
the corresponding convex combinations of strategies which belong to a restricted
strategy space that expands and shrinks proportionally to 1− r0 .

We conclude with remarks on proper equilibria, a refinement due to Myerson
(1978). A proper equilibrium is like a perfect equilibrium, except that more costly
mistakes have to be made with probabilities of smaller orders of magnitude. For
example, the mistake probabilities for the strategies 1, 2, 3, . . . of player 1, whenever
these are not played, are ε1, ε2, ε3, . . . for the perfect equilibrium computed according
to Theorem 3.3, and are therefore of decreasing orders of magnitude. However,
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these magnitudes have no relationship to the respective payoffs in equilibrium which
indicate if a mistake is costlier than another. As topic of future research, one could
try to modify Wilson’s algorithm so that the lexicographic order is changed during
the computation such as to find a proper equilibrium. One potential difficulty is that
some suboptimal strategies have the same payoff (for example in mixed strategies in
subgames of extensive games, like in the example by Wilson, 1992, p. 1048), where
a strict lexicographic order no longer applies.

In contrast, the mistake probabilities in the perfect equilibrium determined
by Theorem 3.4 are explicitly given. Relatively, they are the same as in the prior,
and are therefore all of the same order of magnitude. The computation of proper
equilibria with such an explicit representation of mistakes seems not suitable for a
linear method like pivoting. Talman and Yang (1994) and Yang (1996) suggest a
method based on simplicial subdivisions, which are not the topic of this paper.

4. Extensive form games

Games in extensive form are represented by a tree, with players’ moves corresponding
to tree edges. The standard way to find an equilibrium of such a game has been to
convert it to normal form, where each combination of moves of a player is a strategy,
and then applying a suitable normal-form algorithm. The problem is thereby the
vast increase in the description of the game since the number of pure strategies may
be exponential in the size of the tree. Although extensive games are convenient
modeling tools, their use has been partly limited due to this reason (Lucas, 1972).

A solution to this problem was already suggested by Romanovskii (1962). This
Russian paper became only known after the publication of a similar, independent
result by von Stengel (1996) that extended a method by Koller and Megiddo (1992)
(see also Koller, Megiddo, and von Stengel, 1994). In these approaches, probabilities
for playing sequences of moves are characterized by certain linear equations. These,
in turn, can be used for computing equilibria by techniques of linear programming.
Sequences are computationally advantageous since their number is proportional to
the tree size rather than exponential. We first discuss the exponential growth of the
normal form, even if it is reduced (RNF) and if the players have a bounded number
of moves at a time. Then we present the sequence form, and a corresponding LP or
LCP as for the normal form. Finally, we mention methods for computing sequential
equilibria, which are an important refinement concept for extensive form games.

4.1. Extensive form and reduced normal form

The basic structure of an extensive game is a finite tree. The nodes of the tree
represent game states. The game starts at the root (initial node) of the tree, and
ends at a leaf (terminal node), where each player receives a payoff. The nonterminal
nodes are called decision nodes. The possible moves of the player are assigned to
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the outgoing edges of the decision node. The decision nodes are partitioned into
information sets. All nodes in an information set belong to the same player, and
have the same moves. The interpretation is that when a player makes a move, he
only knows the information set but not the particular node he is at. We denote the
set of information sets of player i by Hi , information sets by h, and the set of moves
at h by Ch . Figure 3.4 shows an example of an extensive game. Moves are marked
by upper case letters for player 1 and by lower case letters for player 2. Information
sets are indicated by ovals. The two information sets of player 1 have move sets
{L,R} and {S, T}, and the information set of player 2 has move set {l, r}.

At some decision nodes, the next move is a chance move. Chance is here
treated as an additional player 0 who receives no payoff and plays according to a
known behavior strategy. A behavior strategy of player i is given by a probability
distribution on Ch for all h in Hi . A pure strategy is a behavior strategy where
each move is picked deterministically. A pure strategy of player i can be regarded
as an element of

∏
h∈Hi

Ch , that is, as a tuple of moves, like 〈L, S〉 for player 1 in
Figure 3.4. As in the normal form, a mixed strategy is a probability distribution on
pure strategies. A behavior strategy can be considered as a special mixed strategy
since it defines a probability for every pure strategy.

A sequence of moves of player i is the sequence of his moves (disregarding the
moves of other players) on the unique path from the root to some node t of the tree,
and is denoted σi(t). For example, for the leftmost leaf t in Figure 3.4 this sequence
is LS for player 1 and l for player 2. The empty sequence is denoted ∅. Player i has
perfect recall (Kuhn, 1953) iff σi(s) = σi(t) for any nodes s, t ∈ h and h ∈ Hi . Then
the unique sequence σi(t) leading to any node t in h will be denoted σh . Perfect
recall means that the player cannot get additional information about his position
in an information set by remembering earlier moves. We assume all players have
perfect recall.

Let βi be a behavior strategy of player i. The move probabilities βi(c) fulfill

∑

c∈Ch

βi(c) = 1, βi(c) ≥ 0 for h ∈ Hi , c ∈ Ch . (4.1)

The realization probability of a sequence σ of player i under βi is

βi[σ] =
∏

c in σ

βi(c). (4.2)

An information set h in Hi is called relevant under βi iff βi[σh] > 0, otherwise
irrelevant.

When using a strategy as a plan of action, moves at irrelevant information sets
under that strategy will not be made and can be left unspecified. In particular, this
simplifies pure strategies, resulting in the reduced normal form or RNF (sometimes
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called semi-reduced normal form) of the extensive game. For example, the second
information set of player 1 in Figure 3.4 is irrelevant for the pure strategies 〈R, S〉
and 〈R, T 〉. In the RNF, these two strategies are identified and denoted 〈R, ∗〉 where
∗ stands for an unspecified move at an irrelevant information set.
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Figure 4.1. An example of a game with n possible initial moves cj of player 2, about
which player 1 is fully informed and can subsequently choose Lj or Rj ,
for 1 ≤ j ≤ n. Payoffs are not shown. Player 1 has 2n pure strategies.

The number |∏h∈Hi
Ch| of pure strategies is often exponential in the size of tree,

unless player i has very few information sets. In the game in Figure 4.1, the tree has
3n+1 nodes and player 1 has 2n strategies. The RNF is the same as the full normal
form. However, this game has perfect information (singleton information sets).
Hence, an equilibrium is easily found by backward induction, or more generally, by
recursively solving subgames . A subgame is a subtree that includes all information
sets containing a node of the subtree, like the subtree in Figure 3.4 where player 2
moves first. Furthermore, the exponential number of strategies in the game in
Figure 4.1 is due to a large number of moves of the opponent at one node.

Figure 4.2 shows a game without subgames, and where each player has only
two possible moves at a time. On a path from the root to a leaf, players move
alternatingly, and each player is informed about everything except the last move of
the other player. At each level l (with l = 0 for the root) the tree has 2l nodes.
Assume that the last level L of the leaves is even (like L = 4 in the picture), so both
players move the same number of times until the game terminates. Player 2 has
1 + 4 + 16 + · · ·+ 4L/2−1 , that is, (2L− 1)/3 information sets and therefore 2(2L−1)/3

strategies in the full normal form. The number s(L) of RNF strategies of player 2
can be determined recursively. For L = 4 as in Figure 4.2, the strategies with move
l1 are 〈l1, l2, ∗, l4, ∗〉, 〈l1, l2, ∗, r4, ∗〉, 〈l1, r2, ∗, l4, ∗〉, and 〈l1, r2, ∗, r4, ∗〉. In general,
there are two information sets h with σh = l1 (the first and third information set on
level 3), each of which have s(L−2) “subsequent” move combinations, which can be
combined in any way. So there are (s(L−2))2 RNF strategies with move l1 and the
same number with move r1 (like 〈r1, ∗, l3, ∗, l5〉, etc.). This gives s(L) = 2(s(L−2))2

for L ≥ 2 and s(0) = 1, or explicitly s(L) = 2(2L/2−1) . In terms of the number
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Figure 4.2. A game without subgames and two moves per decision node. For easy
identification of the leaves, they have the integers 1–16 as zero-sum
payoffs. Here player 1 has four and player 2 has eight RNF strategies.
For this tree with n nodes, the number of RNF strategies is exponential
in
√
n.

n = 2L+1 − 1 of nodes of the tree, this number is 2
√

(n+1)/2−1 . This exponential
growth with the square root of the size of the tree is still impractical except for small
games. For L = 10, for example, the tree has 2047 nodes but player 2 has 231 (and
player 1 has 216) RNF strategies.

In this example, some information sets at the same level are distinguished by
an own earlier move, so one or the other is irrelevant, which leads to a mere additive
growth of the number of RNF strategies. The problem of multiplicative growth (and
hence an exponential total number) arises with parallel information sets h and h′ of
a player, defined by the property σh = σh′ . Such parallel information sets are due
to revealed moves of the opponent. Unless these revealed moves lead to subgames
which can be solved recursively, they cause computational difficulties for methods
based on the normal form.

4.2. Sequence form

In order to avoid the large of size of the reduced normal form, Wilson (1972) used
the Lemke–Howson algorithm with pivoting columns that are generated directly as
best responses from the game tree. He observed that the computation requires few
pure strategies that have positive probability, a claim made more precise by Koller
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and Megiddo (1996). However, it is possible to avoid pure strategies altogether by
using sequences of moves instead.

Let Si be the set of sequences (of moves) of player i. Since player i has perfect
recall, any sequence σ in Si is either the empty sequence ∅ or uniquely given by its
last move c at the information set h of player i, that is, σ = σhc, so

Si = { ∅ } ∪ { σhc | h ∈ Hi, c ∈ Ch }.

This implies that the number of sequences of player i, apart from the empty se-
quence, is equal to his total number of moves, that is, |Si| = 1 +

∑
h∈Hi

|Ch|. This
number is linear in the size of the game tree.

The large number of mixed strategy probabilities does not arise when using
behavior strategy probabilities. Let β1 and β2 denote behavior strategies of the two
players, and let β0 be the known behavior of the chance player. Let a(t) and b(t)
denote the payoffs to player 1 and player 2, respectively, at a leaf t of the tree. The
probability of reaching t is the product of move probabilities on the path to t. The
expected payoff to player 1 is therefore

∑

leaves t

a(t) β0[σ0(t)] β1[σ1(t)] β2[σ2(t)] , (4.3)

and the expected payoff to player 2 is the same expression with b(t) instead of a(t).
However, the expected payoff is nonlinear in terms of behavior strategy probabilities
βi(c) since the terms βi[σi(t)] are products by (4.2).

Therefore, we consider directly the realization probabilities βi[σ] as functions
of sequences σ in Si . They can also be defined for mixed strategies µi of player i,
which choose each pure strategy πi of player i with probability µi(πi). Under πi ,
the realization probability of σ in Si is πi[σ], which is equal to one if πi prescribes
all the moves in σ and zero otherwise. Under µi , the realization probability of σ is

µi[σ] =
∑
πi

µi(πi)πi[σ]. (4.4)

For player 1, this defines a map x from S1 to IR by x(σ) = µ1[σ] for σ ∈ S1 . We call
x the realization plan of µ1 or a realization plan for player 1. A realization plan for
player 2, similarly defined on S2 by a mixed strategy µ2 , is denoted y. Realization
plans have two important properties (Koller and Megiddo, 1992; von Stengel, 1996).

Theorem 4.1. A realization plan x of a mixed strategy of player 1 fulfills x(σ) ≥ 0
for all σ ∈ S1 and

x(∅) = 1,
∑

c∈Ch

x(σhc) = x(σh) for all h ∈ H1.
(4.5)
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Conversely, any x:S1 → IR with these properties is the realization plan of a behav-
ior strategy of player 1, which is unique except at irrelevant information sets. A
realization plan y of player 2 is characterized analogously.

Proof. Conditions (4.5) hold for the realization probabilities x(σ) = β1[σ] under a
behavior strategy β1 by (4.1) and (4.2) and thus for every pure strategy π1 . Hence,
they also hold for the convex combinations in (4.4) with the probabilities µ1(π1).

Conversely, any x with these properties arises from the behavior strategy β1

that makes move c at h in H1 with probability β1(c) = x(σhc)/x(σh) if x(σh) > 0.
This is necessary in order to obtain x(σ) = β1[σ], where (4.2) follows by induction
on the length of a sequence. If x(σh) = 0, then h is irrelevant under β1 , and βi(c)
for c in Ch can be defined arbitrarily so that (4.1) holds.

For the second property, two mixed strategies are called realization equivalent
(Kuhn, 1953) if they reach any node of the tree with the same probabilities, given
any strategy of the other player. We assume w.l.o.g. that all chance probabilities
β0(c) are positive.

Theorem 4.2. Two mixed strategies µi and µ′i of player i are realization equivalent
iff they have the same realization plan, that is, iff µi[σ] = µ′i[σ] for all σ ∈ Si .

Proof. Let i = 1, say, and let µ2 be a completely mixed strategy of player 2. Then
any node t of the game tree is reached with probability β0[σ0(t)]µ1[σ1(t)]µ2[σ2(t)].
This expression is the same for µ1 and µ′1 iff µ1[σ] = µ′1[σ] for all σ ∈ S1 , since the
terms β0[σ0(t)] and µ2[σ2(t)] are positive.

These two theorems imply the well-known result by Kuhn (1953) that behavior
strategies are strategically as expressive as mixed strategies.

Corollary 4.3. (Kuhn, 1953.) For a player with perfect recall, any mixed strategy
is realization equivalent to a behavior strategy.

Theorem 4.1 characterizes realization plans by nonnegativity and the equations
(4.5). A realization plan describes a behavior strategy uniquely except for the moves
at irrelevant information sets. In particular, the realization plan of a pure strategy
(that is, a realization plan with values zero or one) is as specific as the pure strategy
in the RNF.

A realization plan represents all the relevant strategic information of a mixed
strategy by Theorem 4.2. This compact information is obtained with the linear map
in (4.4). This map assigns to any mixed strategy µi , regarded as a tuple of mixed
strategy probabilities µi(πi), its realization plan, regarded as a tuple of realization
probabilities µi[σ] for σ in Si . The simplex of mixed strategies is thereby mapped
to the polytope of realization plans defined by the linear constraints in Theorem 4.1.
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The vertices of this polytope are the realization plans of pure strategies. We have
seen that the number of these vertices may be exponential. The number of defining
inequalities and the dimension of the polytope, however, is linear in the tree size.
For player i, this dimension is the number |Si| of variables minus the number 1+|Hi|
of equations (4.5) (which are linearly independent), so it is

∑
h∈Hi

(|Ch| − 1).

We consider realization plans as vectors in x ∈ IR|S1| and y ∈ IR|S2| , that is,
x = (xσ)σ∈S1 where xσ = x(σ), and similarly y = (yτ )τ∈S2 . The linear constraints
in Theorem 4.1 are denoted by

Ex = e, x ≥ 0 and Fy = f, y ≥ 0, (4.6)

using the constraint matrices E and F and vectors e and f . The matrix E and
right hand side e have 1+ |H1| rows, and E has |S1| columns. The first row denotes
the equation x(∅) = 1 in (4.5). The other rows for h ∈ H1 are the equations
−x(σh) +

∑
c∈Ch

x(σhc) = 0. For the game in Figure 4.2, listing the sequences of
player 1 as ∅, L1 , R1 , L1L2 , L1R2 , R1L3 , R1R3 ,

E =




1
−1 1 1

−1 1 1
−1 1 1


 , e =




1
0
0
0


 . (4.7)

Similarly, F and f have 1 + |H2| rows. In Figure 4.2,

F =




1
−1 1 1

−1 1 1
−1 1 1

−1 1 1
−1 1 1




, f =




1
0
0
0
0
0




.

Each sequence appears exactly once on the left hand side of the equations (4.5),
accounting for the entry 1 in each column of E and F .

Define the sequence form payoff matrices A and B , each of dimension |S1| ×
|S2|, as follows. For σ ∈ S1 and τ ∈ S2 , let the matrix entry aστ of A be defined by

aστ =
∑

leaves t :
σ1(t)=σ, σ2(t)=τ

a(t) β0[σ0(t)] . (4.8)

The matrix entry of B is this term with b instead of a. These two matrices are
sparse, since the matrix entry for a pair σ, τ of sequences is zero (the empty sum)
whenever these sequences do not lead to a leaf. If they do, the matrix entry is
the payoff at the leaf (or leaves, weighted with chance probabilities of reaching the
leaves, if there are chance moves). Then by (4.3) and (4.6), the expected payoffs to
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player 1 and player 2 are x>Ay and x>By, respectively, which is just another way of
writing the weighted sum over all leaves. Figure 4.3 shows an example of a sequence
form payoff matrix. The constraint and payoff matrices define the sequence form of
the game.

∅ l1 r1 l1l2 l1r2 r1l3 r1r3 l1l4 l1r4 r1l5 r1r5

∅
L1

R1

L1L2 1 2 5 6

L1R2 3 4 7 8

R1L3 9 10 13 14

R1R3 11 12 15 16

Figure 4.3. Sequence form payoff matrix for the game in Figure 4.2.

4.3. Computing equilibria

The computation of equilibria with the sequence form uses the same approach as
presented for the normal form in Sections 2.2 and 2.3. Consider a fixed realization
plan y of player 2. An optimal realization plan x of player 1 maximizes his expected
payoff x>(Ay), subject to Ex = e, x ≥ 0. This LP has a dual LP with a vector u
of unconstrained variables whose dimension is 1 + |H1|, the number of rows of E .
This dual LP, analogous to (2.4), is to

minimize e>u

subject to E>u ≥ Ay.
(4.9)

If the game is zero-sum, then player 2 is interested in minimizing the optimal payoff
to player 1, which is the value of this dual LP. So a minmax realization plan y of
player 2 solves the LP with variables u, y which is analogous to (2.5),

minimize e>u

subject to Fy = f,

E>u− Ay ≥ 0,

y ≥ 0.

(4.10)

It is easy to see that the dual of this LP, analogous to (2.6), determines a maxmin
realization plan of player 1. The number of nonzero entries in the sparse matrices
E,F,A, and the number of variables, is linear in the size of the extensive game.
Hence, we have shown the following.

54



Theorem 4.4. (Romanovskii, 1962; von Stengel, 1996.) The equilibria of a two-
person zero-sum game in extensive form with perfect recall are the solutions of the
LP (4.10) with sparse payoff matrix A in (4.8) and constraint matrices E and F in
(4.6) defined by Theorem 4.1. The size of this LP is linear in the size of the game
tree.

Romanovskii (1962) constructed the sequence form payoff matrix with entries
aστ in (4.8). As here, rows and columns are played with variables xσ and yτ con-
strained by (4.6). He used the construction of Charnes (1953) for solving such a
constrained matrix game. As mentioned, his result was overlooked.

Koller and Megiddo (1992) defined the constraints (4.5) for playing sequences
for a player with perfect recall. For the other player, they still considered pure strate-
gies since they used a single payoff variable instead of a dual vector u as in (4.9),
and since they did not construct a symmetric payoff matrix. They defined an LP
with a linear number of variables xσ but possibly exponentially many inequalities.
However, these can be evaluated as needed by finding a best response of the oppo-
nent, which can be done quickly by backward induction as shown by Wilson (1972).
This solves efficiently the “separation problem” for the ellipsoid method for linear
programming, which therefore runs in polynomial time. Apart from Romanovskii’s
result, this was the first polynomial-time algorithm for solving two-person zero-sum
games in extensive form.

For non-zero-sum games, we derive analogous to Section 2.3 an LCP. For
player 2, the realization plan y is a best response to x iff it maximizes (x>B)y
subject to Fy = f , y ≥ 0. Its dual LP has the vector v of variables and says:
minimize f>v subject to F>v ≥ B>x. The optimality of this primal-dual pair of
LPs, as well as that for player 1, is characterized by complementarity conditions
analogous to (2.8) and (2.7). We obtain the result corresponding to Theorem 2.4.

Theorem 4.5. Consider the two-person extensive game with sequence form pay-
off matrices A,B and constraint matrices E,F in (4.6). Then the pair (x, y) of
realization plans defines an equilibrium iff there are vectors u, v such that

Ex = e

Fy = f

E>u − Ay ≥ 0

F>v −B>x ≥ 0

x , y ≥ 0

(4.11)

and
x>(E>u− Ay) = 0 , y>(F>v −B>x) = 0 .

The size of this LCP with variables u, v, x, y is linear in the size of the game tree.
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Compared to the LCP for the normal form, the sequence form gives an LCP
of small size. So far, the standard Lemke–Howson algorithm has not been applied
to this LCP since the “missing label” corresponds to a pure strategy. Here, a
pure strategy is usually a realization plan that plays several sequences with positive
probability. Using the Lemke–Howson algorithm for the sequence form requires
labels for sequences, but would probably have to drop and pick up several labels at
a time. It is not clear how this can be done.

Instead, it is possible to use Lemke’s algorithm using a prior (p, q) of realiza-
tion plans analogous to the algorithm by van den Elzen and Talman described in
Section 3.2. By assumption, Ep = e, p ≥ 0, Fq = f , q ≥ 0. Analogous to (3.13),
which adds an extra column to (2.9), we add a column to (4.11), and compute with
solutions to the system

Ex + e r0 = e

Fy + f r0 = f

w = E>u − Ay − (Aq)r0 ≥ 0

z = F>v −B>x − (B>p)r0 ≥ 0 ,

x , y , r0 ≥ 0

(4.12)

and
x>w = 0, y>z = 0 .

Koller, Megiddo, and von Stengel (1996) suggested to use Lemke’s complementary
pivoting algorithm for such a system, although not with this particular form of the
column for the extra variable r0 . Using such a generally defined column requires a
rather technical proof that Lemke’s algorithm terminates.

With the constraints (4.12), one can use the same interpretation as for the
normal form algorithm in Section 3.2. That is, the algorithm starts with r0 = 1.
Throughout the computation, (x+ p r0, y+ q r0) is a pair of realization plans which
never leaves the strategy space. Therefore, the algorithm terminates with r0 = 0.
If all sequences (and hence all moves and pure strategies) have positive probability
under (p, q), then the computed equilibrium is normal form perfect. Furthermore,
the computation mimicks the linear tracing procedure of Harsanyi and Selten applied
to the normal form of the game. These results and the close relationship of the
sequence form with the normal form are shown by von Stengel, van den Elzen, and
Talman (1996).

The normal form of an extensive game is typically degenerate, as Figure 3.4
shows. The reason is that optimal strategies may avoid entire branches of the tree,
so the number of used strategies (or moves) is usually not the same for both players.
Therefore, degeneracy arises also in the sequence form, and must be resolved by
lexicographic pivoting methods. An example is again the game in Figure 3.4 because
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its sequence form is equivalent to the RNF. This is always the case if the game has no
parallel information sets. Then each column of E and F has at most one entry −1,
like E in (4.7), and the realization probabilities for maximal sequences sum to one.
In other words, the maximal sequences of a player without parallel information sets
define unique RNF pure strategies.

Further examples and details on the sequence form can be found in the cited
papers. For example, the components of the dual vectors u and v in (4.10) or (4.11)
can be interpreted as partial payoffs for optimal moves at information sets. The
sequence form is naturally defined for more than two players, although the pivoting
algorithms no longer apply.

Koller and Megiddo (1992) have shown that solving a zero-sum two-person
game in extensive form with imperfect recall is NP-complete. Hence, no efficient al-
gorithm for this problem is likely to exist. Koller and Megiddo (1996) applied sparse
basis representations to extensive two-person games for enumerating all equilibria of
the game in time that is exponential in the tree size. This follows from Theorem 4.5
when using the sequence form, but remarkably works also for games with imperfect
recall (the additional effort merely doubles the exponent in the running time).

Finally, we mention two unrelated papers that consider the problem of finding
sequential equilibria. This is a refinement for extensive form games due to Kreps and
Wilson (1982), which considers equilibria that have to be consistent with suitable
beliefs about one’s position in an information set. Some algorithmic aspects of
this concept are mentioned in the paper itself. Azhar, McLennan, and Reif (1993)
formulated LP conditions for determining if a belief system is consistent. A similar
characterization is given by Perea y Monsuwé, Jansen, and Peters (1996).

5. Computational issues

How long does it take to find an equilibrium of a bimatrix game? The Lemke–
Howson algorithm is known to take exponential time for some specifically con-
structed, even zero-sum, games. This is similar to certain LPs where the Simplex
algorithm has exponential running time. However, the Simplex algorithm has been
observed as very efficient for most practical problems. The same is said for com-
plementary pivoting methods, although the solved LCPs are much smaller due to
the overriding problems of numerical stability (Tomlin, 1978; Cottle et al., 1992).
Interior point methods that are provably polynomial as they are known for linear
programming are not yet known for LCPs arising from games.

The computational complexity of finding one equilibrium is unclear. The de-
cision problem if there is an equilibrium is trivial by Nash’s theorem, but finding a
particular equilibrium requires obviously more. Megiddo and Papadimitriou (1989)
defined a new complexity class of such problems where solutions exist but must be
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found constructively. Papadimitriou (1994) showed in a similar complexity class the
computational equivalence of related results like Nash’s theorem, Sperner’s lemma,
or the existence of fixed points of a continuous mapping on a simplex. The approxi-
mation of such fixed points takes worst-case exponential time in the dimension and
the number of digits of accuracy if the mapping is evaluated as an oracle (Hirsch,
Papadimitriou, and Vavasis, 1989). All known fixed-point approximations are such
oracle algorithms, but a more efficient method might well “look into” the function
and use its specific representation, like the function used in the proof of Nash’s
theorem (1951).

Gilboa and Zemel (1989) showed that finding an equilibrium of a bimatrix game
with maximum payoff sum is NP-hard, so this is a problem where no efficient solution
is likely to exist. The same holds for other problems that amount essentially to
examining all equilibria, like finding an equilibrium with maximum support. (Note
that Theorem 2.15, for example, requires to inspect the cliques of a graph. In
general, finding a maximum-sized clique is NP-hard.) Koller, Megiddo, and von
Stengel (1994) cite miscellaneous papers connecting theoretical computer science
and game theory.

The usefulness of algorithms for solving games should be tested further in
practice. Many of the described methods are being implemented in the project
GAMBIT (see its overview in McKelvey and McLennan, 1996, or its World Wide
Web site at http://www.hss.caltech.edu/∼gambit/Gambit.html). This is a program
for building and solving extensive games interactively or with the help of a com-
mand language. For the automatic generation of large extensive games with regular
structure like in Figure 4.2, Koller and Pfeffer (1997) developed a PROLOG-based
language GALA. One application was a simplified version of Poker. From simply
defined rules, GALA generated a game tree of 50,000 nodes and a corresponding LP
according to Theorem 2.4, which was solved by a commercial LP solver in minutes.
These program systems are under development to become efficient and numerically
stable implementations of algorithms and easily usable tools for the applied game
theorist.
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