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Abstract. An algorithm is presented for computing an equilibrium of an extensive
two-person game with perfect recall. The equilibrium is traced on a piecewise linear
path from an arbitrary starting point. If this is a pair of completely mixed strategies,
then the equilibrium is normal form perfect. The normal form computation is per-
formed efficiently using the sequence form, which has the same size as the extensive
game itself.
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1. Introduction

Consider a two-person game in extensive form where the players have perfect recall. This
paper presents an efficient algorithm for finding an equilibrium of such a game with ap-
pealing properties. Given the game, it computes a sample equilibrium tiail form
perfect The algorithm generates a piecewise linear path in the strategy space. An arbi-
trary strategy pair is chosen sfarting point serving as a parameter for the computation.
Various starting points can be tried to find possibly different equilibria. The probabilities

for playing strategies at the starting point become relatii&akeprobabilities for play-
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ing suboptimal strategies in mixed strategies that approximate the computed equilibrium.
Thus, this equilibrium is perfect if the starting point is completely mixed.

The algorithm is highly efficient because it uses a data structure that does not take
more space than the extensive game itself. This issdggience fornof the extensive
game (Romanovsky, 1962; von Stengel, 1996). In the sequence form, mixed strategies
of a player are identified in a natural way when they are realization equivalent, that is,
induce the same behavior along the path of play and therefore the same payoffs. After
this identification, they belong to a strategy space (a certain polytope) of low dimension,
which is equal to the total number of moves of the player. In contrast, the mixed strategy
simplex has typicallgxponentiatimension in the size of the game tree. This exponential
blowup makes standard methods applied to the normal form impractical.

The computation can be interpreted game-theoretically. In this interpretation, the
starting point representspior against which the players react initially. Next, they grad-
ually adjust their behavior by using information about the strategy that is actually played.
Each point on the piecewise linear path is an equilibrium of a restricted game where the
prior is played with some probability being initially one and then being decreased towards
zero (with possible intermittent increases). This mimickslithear tracing procedureas
formulated by Harsanyi and Selten (1988), who use it to determine an equilibrium for a
basic game starting from the given prior. Basic games result from the so-called standard
form of an extensive game after a reduction procedure. Here we emulate, up to projection,
the tracing procedure for the normal form, which can be considered as a special case of

the standard form for this purpose.

The sequence form strategy space of a player is a linear projection of his mixed
strategy simplex. The relevant properties of mixed strategies for the above interpretation
are preserved, like lying on a line or being completely mixed. In a sense, we merely
perform normal form computations efficiently. Therefore, the emulated tracing procedure
and the perfection of the equilibrium apply to the normal form of the game.

Our algorithm is a synthesis of previous, partly independent work by the authors
and Daphne Koller and Nimrod Megiddo. For bimatrix games, van den Elzen and Talman
(1991) (see also van den Elzen, 1993) described a complementary pivoting algorithm that
traces a given prior to an equilibrium. If the prior is completely mixed, the computed path
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leads to a perfect equilibrium. Generically, the algorithm represents the linear tracing
procedure by Harsanyi and Selten up to projection (van den Elzen and Talman, 1995).
Koller, Megiddo, and von Stengel (1996) applied the complementary pivoting algorithm
by Lemke (1965) to the sequence form. As a special case, it can also be applied to a
game in normal form. If one chooses in a specific way a certain parameter in Lemke’s
algorithm, the so-called covering vector, then one obtains the algorithm by van den Elzen
and Talman.

Here, we derive the covering vector for Lemke’s algorithm analogously from an
arbitrary starting point, but applied to the sequence form. As a consequence of this ini-
tialization, the generated path stays in the compact strategy space. This simplifies the
earlier proof of Koller, Megiddo, and von Stengel (1996) that the algorithm terminates,
which was very technical. However, degeneracy has to be dealt with properly (using a
known lexicographic pivoting rule) since it arises naturally from the game tree structure.

It can easily happen that along the generated path of strategies, it becomes no longer op-
timal to put weight on an entire branch of the game tree. At that moment more than one
variable becomes zero and degeneracy occurs. Thus, degeneracy in extensive form games
is related to the structure of the game tree. For generic bimatrix games, degeneracy could
be disregarded.

Charnes (1953) described the solution of “constrained” zero-sum games where each
player’'s strategy space is a polytope. Romanovsky (1962) derived from an extensive game
such a constrained matrix game which is equivalent to the sequence form. However, this
Russian publication was overlooked in the English-speaking community. Eaves (1973)
applied Lemke’s algorithm to games which include polyhedrally constrained bimatrix
games, but with different parameters than we do. Dai and Talman (1993) described an al-
gorithm that corresponds to ours but requires simple polyhedra as strategy spaces, which
is not the case for the sequence form. Wilson (1972) described a method for solving ex-
tensive two-person games, where best responses, which serve as pivoting columns for the
Lemke—Howson algorithm, are generated directly from the game tree. This algorithm is
based on the normal form and efficient only in the sense that it uses few pure strategies
with positive probability, a claim made more precise by Koller and Megiddo (1996). Ex-
cept for very small game trees, the sequence form has smaller size than any normal form



representation, among other things because of its sparse payoff matrix. Wilson (1992)
adapted the Lemke—Howson algorithm for computing a “simply stable” equilibrium of a
bimatrix game. The computed equilibrium is also perfect. The algorithm uses a lexico-
graphic perturbation technique implying that the mistake probabilities for pure strategies
in approximating mixed strategies have different orders of magnitude, according to an
initially chosen order of the pure strategies. In contrast, we can “fine-tune” mistake prob-
abilities with the choice of the starting point. It is open if Wilson’s algorithm for finding
simply stable equilibria can be usefully applied to the sequence form. Recent surveys on
algorithms for computing Nash equilibria are McKelvey and McLennan (1996) and von
Stengel (1997).

The setup of the paper is as follows. In Section 2 we recall the notion of the sequence
form and its derivation from the extensive form game, with particular emphasis on the
geometry of the strategy spaces. In Section 3 we consider optimal play in the sequence
form. Section 4 is devoted to Lemke’s algorithm, adapted for the particular covering
vector. The path computed by the algorithm is illustrated in Section 5. We elaborate on
the game-theoretic interpretation in Section 6. In the Appendix, we discuss the treatment
of degeneracy.

2. Sequence form strategy spaces

We consider extensive two-person games, with conventions similar to von Stengel (1996)
and Koller, Megiddo, and von Stengel (1996). An extensive game is given by a finite tree,
payoffs at the leaves, chance moves (with positive probabilities), and information sets
partitioning the set of decision nodes. Ttiwicesof a player are denoted by labels of
tree edges. For simplicity, labels corresponding to different choices (anywhere in the tree)
are distinct. For a particular player, any node of the tree defirsjaencef choices

given by the respective labels (for his or her moves only) on the path from the root to the
node. We assume that both players hpgdect recall By definition, this means that all
nodes in an information sétof a player define for him (or her) the same sequemncef
choices. Under that assumption, each chaiagéh is the last choice of a unique sequence
onc. This defines all possible sequences of a player except for the empty se@udinee



set of choices at an information geis denotedC;,. The set of information sets of player
is Hi, and the set of his sequencesSisso

S={0} U {onc|hecH,ceC}.

This implies that the number of sequences of playapart from the empty sequence, is

equal to his total number of moves, that|iS,

= 14 Shen, [Ch|. This number is linear in
the size of the game tree.

A behavior strategy3 of playeri is given by probabilitieg3(c) for his choicesc
which fulfill B(c) > 0 and ¥, B(c) = 1 for all hin H;. This definition of 3 can be
extended to the sequencesn § by writing

Blo] = [] B©. (2.1)

cino

A pure strategyrt is a behavior strategy with(c) € {0,1} for all choicesc. The set of
pure strategies of playeris denoted?. Thus, o] € {0,1} for all sequencew in S.
The pure strategier with o] = 1 are those “agreeing” witlw by prescribing all the
choices ino (and arbitrary choices at the information sets not touched oy

In the normal formof the extensive game, one considers pure strategies and their
probability mixtures. Amixed strategyu of playeri assigns a probability: (1) to every
min B. In thesequence fornof the extensive game, one considers the sequences of a
player instead of his pure strategies. A randomized strategy of plageatescribed by
therealization probabilitiesof playing the sequenceas in S. For a behavior strategy,
these are obviousl@[o] as in (2.1). For a mixed strategyof playeri, they are given by

ulol = 5 miolu(m. (22)

S o]

For player 1, this defines a magrom S to R by x(o) = u[o] for o in S; which we call
therealization planof u or a realization plan for player 1. A realization plan for player 2,
similarly defined onS,, is denotedy. Realization plans have the following important
properties (Koller and Megiddo, 1992; von Stengel, 1996).

Lemma 2.1. For player 1 is the realization plan of a mixed strategyx{foc) > O for
alloe S and



X(0) =1,

Z X(onc) =x(on)  forallh e Hy. (2.3)
celyp

A realization plary of player 2 is characterized analogously.

Lemma 2.2. Two mixed strategieg andy’ of playeri are realization equivalent iff they

have the same realization plan, that isftr] = ’[o] forall o € S.

The equations (2.3) hold for the realization probabilitiés) = 3[o] for a behavior
strategyp and thus for every pure strategy and therefore for their convex combinations
in (2.2) with the probabilitieg ().

For Lemma 2.2, equation (2.2) should be regarded the other way, defining a linear
map from R%! to RIS| that maps(u(m))ep to (u[0])ses With the fixed coefficients
ro], me B. Mixed strategies with the same image under this map define the same re-
alization probabilities for all nodes of the tree irrespective of the strategy of the other
player, as stated in Lemma 2.2. The simplex of mixed strategies is thereby mapped to the
polytope defined by the linear constraints in Lemma 2.1. The vertices of this polytope are
the realization plans of pure strategies. These are unique except for identifying realization
equivalent pure strategies (as in tieeluced normal fornfior generic payoffs, here RNF
for short). These vertices may be exponential in number like in the mixed strategy sim-
plex, but the dimension of the polytope is much smaller since it is linear in the size of the
game tree. For player this dimension is the numbég| of variables minus the number
1+ |Hi| of equations (2.3) (which are linearly independent), so fjisy. (|Cn| —1). Be-
cause of this reduction in dimension, mixed strategies are “projected” to realization plans,
but without losing any relevant strategic information in the extensive game.

In the sequence form, tistrategy spacef each player is the polytope of his realiza-
tion plans. Aline in this strategy space is the image of a line in the mixed strategy simplex,
which is usually not unique, however. Any realization plaof player 1 (and similarly
y for player 2) naturally defines a behavior stratggyyvhere the probability for making
the movec is (c) = x(oxc) /X(on) (wWhich is arbitrary — for examplg3(c) = 1/|C,| —
if x(on) =0, that is, the information sét is irrelevant). However, this is obviously not a
linear “inverse map” ifB3 is regarded as a special mixed strategy.
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Figure 2.1. A two-person extensive game.

Figure 2.1 shows an extensive game where the choices of player 1 and player 2
are denoted by the upper and lower case lette’S T anda,b,c,d, respectively. The
payoff vectors are listed at the bottom with the first and second component representing
the payoff to player 1 and 2, respectively. The sets of sequenc&s ar¢d,L,R RSRT}
and$ = {0,a,b,c,d}. We consider realization plans as vect&rs (Xqg)ges, andy =
(Yo)oes,, here both with five components; the sequences are written as subscripts unless
they are complicated expressions like in (2.3). According to Lemma 2.1, these vectors are
characterized by

x>0, Ex=e and y>0, Fy=f (2.4)

(the inequalities hold componentwise, ahdenotes a vector or matrix of zeroes), with

1 1 1
E=(-1 1 1 , F=[-1 1 1 , e=f=[(0].
-1 1 1 ~1 11 0

Each sequence appears exactly once on the left hand side of the equations (2.3), account-
ing for the entry 1 in each column & andF. The entry—1 in each row except the
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first stands for the right hand side in (2.3). Here, the polytope of realization plans has
dimension two for each player.

For player 1, it is useful to consider only the nonnegative variaklers, XrT
which sum up to one sincg = 1 andXxr = Xrs+ XrT. This defines a triangle as strategy
space. The sequencks RS RT are here in one-to-one correspondence with the pure
strategies(L,*), (R'S), (R, T) in the RNF (in an obvious notation), so the simplex of
mixed strategies is also two-dimensional.

When does the RNF lead to strategy spaces of higher dimension than the sequence
form? This is the case when a player h@mallel information setsh and h', that is,
Oh = 0yy. Then, all combinations of moves htandh are part of separate strategies in
the RNF. If there are no parallel information sets, there is a one-to-one correspondence
between maximal sequencesand RNF strategies, since no moves other than those in
are relevant when playing. In that case (like for player 1 in the example), a player’s
mixed strategy simplex in the RNF has the same low dimension as his strategy space in
the sequence form.

For player 2, there are two paiys, Yy, andye,Yyq of strategic variables subject to
y>0andy;+Yy,=1andy.+Yyq = 1. This strategy space is a square rather than a
triangle. Its vertices correspond to the four pure strategies of player 2 (see also Figure 3.4
below). In the RNF, these correspond to the pure stratdgies, (a,d), (b,c), (b,d).

Thus, the mixed strategy simplex of player 2 is a tetrahedron, of one dimension higher
than the sequence form strategy space, because the two information sets of player 2 are
parallel.

3. Optimal play

Sequence form payoffs are defined for pairs of sequences whenever these lead to a leaf,
multiplied by the probabilities of chance moves on the path to the leaf. This defines two
sparse matrice8 andB of dimension|S;| x |S| for player 1 and player 2, respectively.
Then, the expected payoffs under the realization plaasdy arex' Ay andx' By, rep-
resenting the sum over all leaves of the payoffs at leaves multiplied by their realization
probabilities.



We can characterize optimal play of a player by a pair of dual linear programs (LPs),
as follows. Ify is fixed, an optimal realization planof player 1 maximizes his expected
payoff x" (Ay), subject tox > 0, Ex=e. This LP has a dual LP with a vectar of
unconstrained variables whose dimensioh-s|H;|, the number of rows oE. This dual
LP is to minimizee' u subject to

E"u> Ay. (3.1)

For the extensive game in Figure 2.1, these constraints are indicated in Figure 3.1, where
the rows and columns d& ' and A are marked with the componentsofindu andy,
respectively. The sparse payoff matfbhas blank (zero) entries for the pairs of sequences
not leading to a leaf. Some zero entries are entered explicitly since they arise from payoffs
that are zero. The payoff 24 at one of the leaves is entered as 12 in the Aatnige it is

multiplied by the chance probability, for reaching the leaf.

Up U1 Uz Yo Ya Yb Yc Yd
X | 1 -1
XL 1 11 3
XR 1-1 >
XRS 1 0O 0 0 12
XRT 1 6 O

Figure 3.1. Constraints (3.1) of best response LP for player 1 with dual vector

Primal and dual LP have the same optimal value of the objective function. Thkat is,
is a best response ¥aiff there is a dual solution with x" (Ay) = e u. Sincee” =x"E ",
this is equivalent to
x"(ETu—Ay) =0. (3.2)
This is thecomplementary slacknes$ a pair of dual linear programs (see, for example,
Schrijver, 1986).

Similarly, y is a best response toiff y > 0, Fy = f, and there is an unconstrained
dual vectorv fulfilling
F'v>BTx (3.3)



and
y'(FTv—B'x)=0. (3.4)

Figure 3.2 shows (3.3) in its transposed foriF > x' B for our example, so that like in
Figure 3.1 rows and columns refer to sequences of player 1 and 2, respectively.

Yo Ya Yo Yc Yd

Vo 1

vi -1 1 1

vo |—1 1 1
VI

Xp

X 3 0

XR

XRS 0 5 20

XRT 0 1

Figure 3.2. Constraints (3.3) of best response LP for player 2 with dual wector

The dual constraints (3.1) and (3.3) have the advantage that they stay linear even
if the realization plan of the other player is treated as a variable, because the variables
related to different players appear in different terms. These linear constraints and (2.4),
together with the orthogonality conditions (3.2) and (3.4), defilmesar complementarity
problem(LCP) whose solutiongu, Vv, x,y) characterize the equilibrig,y) of the game.

In our example, we can illustrate the solutions to this LCP by drawing the strategy
spaces of the two players. Figure 3.3 shows the strategy space of player 1 consisting of the
possible values of his strategic variables xrs, Xr7. Figure 3.4 shows this for player 2
with the pairsya, yp andy, yq represented by the vertical and horizontal coordinates of a
square. Note thagy = 0 iff y, = 1 and vice versa. The same holds fgrandyy. The
redundant variableg, xgr andyp are not shown since their value is known, and they also
have no payoff entry in Figure 3.1 and 3.2.

Figure 3.1 shows that the rows in (3.1) corresponding to the variabless, XrT
have the form
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@

Xrs=1 @ X

XrT =1

Figure 3.3. Strategy space of player 1 with best response sequences of player 2 for the
sequence form of the game in Figure 2.1. The circled numbers are labels for
identifying easily the equilibrigx®,y%), (x2,y?), (x°,y®).

ur > 1lya+3yp

up > 12y4 (3.5)

Uy > 6yc-
The two other rows readp — u; > 0 andu; — Uz > 0. Sincexp = 1 > 0, the correspond-
ing inequality is always binding, that isip — u; = 0, by the slackness conditions (3.2).
Similarly, us — up = 0 wheneverxg > 0, that is, wherxgs or XgT is positive. Sincex,
Xrs, XrT are not all zero, one inequality in (3.5) is binding amdis the maximum of the
right hand sides in (3.5). Furthermore, only for binding inequalities (where the maximum
is achieved), which correspond to certain sequemces player 1, the component, of
x can be positive. In other words, only sequenagethat are “best responses” for player 1
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ye=1

ya:1| ya:].
@ ®

Yo=1 . Yo=1
Ye=1 y @ Ya=1

Figure 3.4. Strategy space of player 2 with best response sequences of player 1.

can have positive realization probability. For player 1, this is easy to interpret since

o corresponds to a pure strategy in the RNF. Figure 3.4 shows the regions where the
sequencesk (region(®), RS(region(?), or RT (region(3), are such best responses (the
purpose of the circled numbers will be explained shortly). For example, (3.5) shows that
RSis preferred taRT iff 12y4 > 6y, = 6(1—Vqy), thatis,yq > 1/3.

For player 2, interpreting the slackness conditions (3.4) is easiest if sequences are
regarded as moves since player 2 does not pick a single sequence but one of each pair
a,b andc,d (as expressed by the equatidig= f which are in this sense qualitatively
different fromEx= €e). As Figure 3.2 illustratesjy — v; — v» = 0 sinceyp > 0 and

12



Vi > 3X

Vi

v

5XRS
(3.6)
Vo > 2XRs

Vo > XRT

so thatv; andv, have to be the maximum of the respective right hand sides in (3.6). Only
when an inequality in (3.6) is binding, the respective move in eachghiandc,d can

be played with positive probability. (The valueswafandv, represent partial payoffs at
the information sets of player 2 where these moves take place, see von Stengel, 1996.)

Figure 3.3 shows the strategy space of player 1, subdivided into different regions
where the sequences of player 2 are optimal. There are two pairs of regions, the regions
(% and(® corresponding to the movesandb, and the region$) and(?) corresponding
to the moves andd, where each point in the strategy space belongs to at least one region
of each pair. The line separating the regig®sand (5) describing where the mowe or
b is optimal depends by (3.6) only on the relative sizexolversusxgs and not onxgr,
so this line goes through the vertexy = 1 of the triangle. This is due to the structure of
the extensive game (the sequeneds RT occur in disjoint parts of the game tree) and
is independent of the payoffs at the leaves. This represetiég@neracymeaning that
a move (herea or b) is optimal and played with zero probability at the same time (like
for xgT = 1, where the entire branch wheaeand b are played is omitted from play, so
both moves are trivially optimal). For generic bimatrix games, such a degeneracy of the
structure of best response regions can be excluded, here it is unavoidable. Similarly, the
regions(6 and (7) wherec andd are best responses are separated by a line through the

vertexx, = 1.

Just as the four strategiés c), (a,d), (b,c) and(b,d) of player 2 appear as vertices
of his strategy space in Figure 3.4, they appear as intersections of best response regions in
Figure 3.3 whenever both moves specified in the strategy are optimal. The strategy space
of player 1 is thus divided into four such intersections, which would appear in the same
way as best response regions when the strategies of player 2 were considered directly (so
the degeneracies remain). The sequence form, however, gives here a more explanatory
picture than the normal form of the game.
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We can enumerate all equilibria of this game using a labeling technique similar
to Shapley (1974). Each of the sequenteRSRT,a, b,c,d corresponds to a label
@,...,@ indicated by a circled number in Figure 3.3 and 3.4. There, these labels mark
the (closed) regions inside the strategy spaces when they are best responses of the other
player. Outside the strategy spaces, these labels mark the regions next to the facets of the
own strategy space where the respective sequence has probability zero.

A strategy pair(x,y) in the two strategy spaces is labeled with all the labels of the
regions thak andy belong to. For example, the pair of verticggg=1andy, =1,y =1
has the labelsD, 3, ®, ®, and®, @, (?. By complementary slackness,y) is an
equilibriumiff it has all seven labels since then every sequence is either a best response
or played with probability zero. For the mentioned pair of vertices, this is not the case
since the labe® (representindRS is missing. One equilibrium, denotéda!, y'), is in
the interior of the two strategy spacég;, Xk Xkt) = (5/14,%/14,%7) and(ys,ye, ye,Y5) =
(Ys,7/8,%/3,Y/3). Another equilibrium, denote?,y?), is (X, X35 X&1) = (0,%/3,2/3) and
(¥3,Y2,¥2,¥3) = (0,1,2/3,/3). These equilibria are non-degenerate in the sense that no
label occurs more than once. Finally, the verkgx= 1 in Figure 3.3 carries five labels
2, ®, @, ®, @, while the two missing labeld@) and® mark two regions in Figure 3.4
which have a common boundary. All points on this boundary yield equilibria, indicated
by the pair of rectangular boxes. These equilibria are given<:|'_byh 1, y2=1, and
0< yg <1115, Itis easy to check that there are no further equilibria.

Shapley (1974) explained the Lemke—Howson algorithm for bimatrix games with
this labeling technique. Thereby, the edges separating the regions in Figure 3.3 and 3.4
define a graph. The outside regions are separated by edges which are connected to outer
verticesx = 0 andy = 0 in an extra dimension. Starting from the ficticious equilibrium
point (x,y) = (0,0) which has all labels, the Lemke—Howson method follows a path in
the (product) graph by dropping and picking up a label at a time until an equilibrium is
reached. Such a method could be applied to our example, but with a more sophisticated
change of labels since the graphs have non-uniform degree, partly due to degeneracies.
Defining this method generally for the sequence form is a topic of future research. Instead,
we will now describe a method of generating a path from an arbitrary starting pointin each
strategy space.
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4. Complementary pivoting

The equilibrium conditions derived from the sequence form define a linear complemen-
tarity problem (LCP). The standard form of an LCP is characterized myactorq and

ann x n matrix M and requires to finah-vectorsz andw so that
z>0
w=qg+Mz>0 (4.1)
z'w=0.
The conditionz'w = 0 says that the nonnegative vectars= (zl,...,zn)T and w =

(Wi, ...,wn)"

1<i<nis zero, whereas the other may be nonzermiredLCP (see Cottle, Pang, and

are complementarythat is, at least one variable of each paiw; for

Stone, 1992, p. 29) has more general constraintszha> 0 in (4.1): some variableg

may be unrestricted in sign where the corresponding variabie always zero. The LCP
derived from the sequence form with constraints (2.4) and (3.1)—(3.4) is such a mixed
LCP. It has variableg = (u,v,x,y) " andw = (W, W, Wx, W) " . The sign restrictions are
none foru andv, whereas<> 0, y > 0, wy, = 0, wy, = 0, wy > 0, wy > 0. The requirement

z'w = 0is then equivalent to
X'Wwy=0, y'wy=0. (4.2)

The dimension of the LCP is = 2+ |Hy| + [H2| + |S1| +|S|. The LCP data are

—e E

—f F
=lo| MFle ~A

0 FT -BT

It is easy, but computationally not necessary, to convert this mixed LCP to the standard
form (4.1) by representing andv as differences of nonnegative vectors and replacing
each equation ilEx= e andFy = f by a pair of inequalities (see, for example, Koller,
Megiddo, and von Stengel, 1996).

Lemke (1965) described an algorithm for solving the LCP (4.1). It uses an additional
n-vectord, calledcovering vectarand a corresponding scalar varialade and computes
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with solutions to the augmented system
z, n>0
w=q+Mz+dz >0 (4.3)
z'w=0.

An almost complementary basis a set ofn basicvariables that contains at most one
variable of each complementary pajrw; for 1 <i < n and possiblyzy such that these
variables define a unique solutionio= g+ Mz+ dz if all other (honbasig variables are

zero. Suppose this solution fulfills (4.3), thats; 0, zg > 0, andw > 0. If z5 is nonbasic,

this solves (4.1). Otherwise, there is a paiw; of nonbasic variables. Allowing one of
them, designated amtering variable to be nonnegative besides the basic variables, the
solutions of (4.3) to thesa+ 1 variables usually define a line segment that joins the
current almost complementary basis to another one. That new almost complementary
basis contains the entering variable, and some formerly basic variable that has become
zero hadeft the basis. If this is noky, its complement is the next entering variable.
The resulting iterative change of bases is catlethplementary pivotingAfter a suitable
initialization, this generates a sequence of bases that define a piecewise linear path which,
under certain conditions, ends in a solution to the LCP (4.1). Koller, Megiddo, and von
Stengel (1996) give a more detailed exposition of Lemke’s algorithm and show that it
terminates for the LCP derived from the sequence form.

For the specific problem at hand, we choose a particular covering vedtat is
related to the starting position for our computation. Iet) be an arbitrarystarting
vector, that is, a pair of realization plans for the two players, so that

s>0, Es=¢ t>0 Ft=f, (4.4)
and let
e
da=| | (4.5)
A | )
—-BTs

The sign constraints for our mixed LCP and the equatwns g+ Mz-+ dz have then
the form
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X7 y7 20207

Ex + ep=e

Fy+ fz=f (4.6)
wy=E"u —Ay— (At)zp>0
w= F'v-B'x —(B's)p>0.

An initial solution to (4.6), which fulfills also (4.2), is given lzg =1, x=0, y=0, and
suitable vectorsi andv so thatE "'u > At andF v > B's, that is,wy > 0 andw, > 0. We

also have to find an almost complementary basis representing this initial solution. There,
the problem is that some componentsxoéndy have to be taken as basic variables,
although with value zero, since otherwise the linear system (4.6) restricted to the basic
variables does not have full ramk We will address this question shortly.

The conditions (4.6) and (4.2) are the equivalent of (4.3) and hold for all points on
the piecewise linear path computed by Lemke’s algorithm. The following lemma and the
discussion thereafter shows that this path induces a path in the product of the two strategy
spaces which begins at the starting veg¢®t) and ends at an equilibrium.

Lemma4.1. In any solutionu,V, x,Y, Zp) to (4.6),X+ Sz is a realization plan for player 1,
y—+1tzy is a realization plan for player 2, amg = yp = 1—29 > 0.

Proof. The constraints (4.6) and (4.4) imphk#sz > 0, y+tzg > 0,
E(x+sz) =Ex+ (Egzg=Ex+en=e¢,

and similarlyF (y+tzy) = f. By (2.3), the first of each of these equations sqys 7o = 1
andyp + 2o = 1, respectively. O

By Lemma 4.1, any solution to (4.6) fulfille < zy < 1. We can regardg as a
probability assigned to the starting vector, initialty = 1. The algorithm terminates
whenzy = 0, so thatx andy are realization plans angk,y) is an equilibrium by (4.2).
At intermittent steps of the computation with< 7y < 1, the pair(X+ Sz,y + tzg) of
realization plans can be seen as a mixture of a ay) and the starting paifs,t),
chosen with probabilitied — zg and zy, respectively. Namely, let = x-1/(1— z5) and
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y=y-1/(1-12), so that

Xx+sp=X(1-2)+sn, Y+tzo=y(1-2)+t2. (4.7)

By (4.6), Ex=e(1—2zy) andFy = f(1—z), which implies thatx andy are realization
plans.

The realization plax+ sz of player 1 plays any sequencein S; with at leastzy
times the probabilitysy it has unders, sincex > 0. Wheneverx,; > 0, the sequence
has a larger probability than the probabilgyzg. Similarly, the realization play +tzy
selects some sequenceasin S, with probability t;zg if yo = 0, the others with larger
probability y; +tszg. The positive components; andy, of x andy are the same as
the positive components afandy in (4.7), up to scalar multiplication with — zy. By
the following lemma, these are best response sequences to the current pair of realization
plans.

Lemma 4.2. Consider a solutiorfu,v,x,y,zy) to (4.6) and (4.2) withzg < 1, and let
Xx=X-1/(1—2z) andy=y-1/(1—1zy). Then(X,y) is a pair of realization plans where
Is a best response Yo+tzg andy is a best response ¥+ Sz.

Proof. As shown above, (4.6) implies thatandy are realization plans, and
E'u>A(y+tz).

By (4.2),x" (ETu—A(y+1tz)) = X"wy = 0, which is the complementary slackness con-
dition (3.2) withy +tzy instead ofy showing thaiX is a best response to+tzy (andu a
corresponding optimal dual solution). Similarfyjs a best response 16+ sz. O

In order to leave the starting vect(s;t), we need solutions to (4.6) and (4.2) where
Zp < 1 is possible. Whenevery decreases from, the conditions (2.3) for realization
plans imply that usuallgeverakcomponents ox (and similarlyy) become simultaneously
nonzero in the equatiorisx= e(1— zy), since these are the same homogeneous equations
asEx=ein (2.3), and only the first, nonhomogeneous equatips 1 — zj is different.
The initial solutionx = 0, y = 0 does not show which componentsandy should be
increased. One of these components is the first entering variable, the others must belong to
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the initial almost complementary basis. We determine this basis by linear programming,
similarly to Kamiya and Talman (1990) and Dai and Talman (1993), as follows.

Our initialization step is motivated by Lemma 4.2. Compute a best respottse
t and a best responseto s. That is, X is a solution to the LP: maximize' (At) sub-
ject to Ex=e, x> 0, andy to the LP: maximize(s' B)y subject toFy = f, y > 0.
This yields also corresponding optimal dual vectorandv so thatx' (E"u— At) =0
andy' (F'v—B'"s) = 0. We can assume thatandy arebasic solutiongo these two
LPs, for example as they are computed by the simplex algorithm for linear programming.
That is, an invertible submatrix of each matéxandF (which both have full row rank)
determines the respective basic compong&atandy, which may be positive, and deter-
mines uniquelyu andyv, respectively. Then, the initial almost complementary basis for
Lemke’s algorithm containgy, all components ofi andv, all but one of the variables
Xg andyg corresponding to the basic LP variabbes andy, above (the missing one is
the first entering variable), and the slack variableg), and (wy)g in wy = ETu— At
andwy = F "v—B' s for the other sequences. Later, we come back to some fine points
concerning this initialization step. We summarize what we have found so far.

Algorithm 4.3. Consider an extensive game for two players with perfect recall, and its
sequence form with payoff matricésandB and constraint matricds andF for player 1
and player 2, respectively. Choose a starting veay fulfilling (4.4). Construct the
mixed LCP with constraints (4.6) and (4.2). Solve this LCP as follows.

(a) Find an initial almost complementary basic solution vagh= 1 where the basic
variables areg, all components o andv, and all but one of the components>of
andy representing best response sequences agansts, respectively.

(b) Iterate by complementary pivoting steps applied to pgitgwy)o Or Yo, (Wy)g Of
complementary variables.

(c) As soon agy becomes zero, lat leave the basis and pivot. Terminate. The com-
puted equilibrium igX,y).

We have shown in Lemma 4.1 that in the course of the computation, the valyges of
y, andzp determine always a pair of realization plans sz andy+tzy and thus a path
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in the product of the two strategy spaces. We are only interested in this path, since the

basic variables im andv are uniquely determined.

It remains to show that the algorithterminates With the above interpretation, we
can excluderay termination which may cause Lemke’s algorithm to fail, because the
path cannot leave the strategy space. Before, this was proved by Koller, Megiddo, and
von Stengel (1996) using a rather technical theorem. Thus, the algorithm terminates if the
path is unique in the sense that no basis is revisited. This requires systdaggiteracy
resolution We discuss this technical topic in the Appendix.

5. Finding equilibria

Our complementary pivoting algorithm originates with the algorithm by van den Elzen
and Talman (1991) for bimatrix (i.e., generic two-person normal form) games. They
consider a starting vector in the product of the two mixed strategy simplices which are the
players’ strategy spaces. A bimatrix game can be represented by the sequenceXorm if
andB are the payoff matrices and bohandF are just rows of ones anel= f =1, so

that (2.4) says that andy are mixed strategies. With the covering veatan (4.5), one

can see with the help of Lemma 4.1 that Lemke’s algorithm above is in fact equivalent to
the algorithm by van den Elzen and Talman. For a general sequence form, the shape of
the strategy spaces is new. We will illustrate this aspect with our example.

The starting vecto(s,t) is used throughout the computation for reference, since
it determines the system (4.6). As mentioned, the first step is to find a&ir of
best responses t(s,t). Like van den Elzen and Talman (1991), we assume that these
best responses artmique so that every optimal move (in a sequerzeawith positive
probability X, or y,) is the only optimal one at its information set. This assumption
(which can be relaxed, see the Appendix) is true for a generic starting vector. XTéuug,
y represent pure strategies, which are vertices of the strategy spaces of player 1 and 2,

respectively.

Consider the line segment that joi(st) to (X,y). This is the set of pairgx(1—
20) + S%,Y(1— 79) +tzg) for 0 < zp < 1. An initial part of this line segment, where
(x,y) corresponds tdXx,y) by (4.7) andzp assumes values in some interyal, 1], is
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the first piece of the path computed by the algorithm. Thel variables (initial basic
variables and entering variable) whose solutions to (4.6) determine this first line segment
includezy, all variablesx; andy, for the sequences that are best responsesttands,
respectively, and the slack variabl@g) s and(wy)g in wy = ETu—A(y+tzg) andw, =
F'v—B'(x+sz) for some of the nonoptimal sequenags Because the best response
sequences are unigue, all these slackpasttivefor zy = 1 and therefore stay positive if

Zp is slightly smaller than one.

As a side remark concerning the initialization step 4.3(a), note that we allow some
basic variablex, or yy for nonoptimal sequences (which have value zero and do not
matter) in order to get the necessary number of basic variables. This happens if certain
information sets are irrelevant for the best resporssasdy. Technically speaking, the
strategy spaces may not be simple polytopes; as one consequence, we cannot use the
algorithm by Dai and Talman (1993) for our problem.

We now illustrate the progress of the algorithm with our example above. We choose
the following starting vectofs,t), omitting as before the componerss sr, andtp:

(sL,SRs SRT) = (310,720, 720)  and  (ta,tp,tc,ta) = (Y3,%/3,Y/3,%/3).

The starting points andt are marked in Figure 5.1 and 5.2 by a dot in the interior of
each strategy space. The unique best response sequence of playeis R® and the
unique best response sequences of playerszare b andc, which defines the vertices

andy, denoted byrRSandb, c in Figure 5.1 and 5.2, respectively. Thus, two variables of
XRS Yb, Yc are basic and one of them is the first entering variable. The other components of
x andy are nonbasic. The algorithm makes the following steps, indicated in the figures.

1. The first step is the line segment startingsat) in direction(X,y), where with (4.7)
the two realization plang + sz andy+tzy of the two players depend jointly on
Zp. That is, the two arrows marked “1.” are traversed simultaneously by redaging
from 1 to o = 916, Where the path hits the best response region for the sequence
L of player 1 in Figure 5.2. In terms of the system (4.6), this means that the slack
(wy)L of the payoff for that sequence becomes zero.

In Figure 5.2, the end of the arrow “1.” is the corner of a square, a smaller-sized replica
of the strategy space containing the starting pbitthe same relative position. In other

21



RS RT

Figure 5.1. Strategy space of player 1 with best response sequences of player 2 and com-
putation steps, indicated by arrows or (underlined) steps with no change for

player 1. The starting poirgis (s.,Srs SrRT) = (310, /20, //20)-

words, we expand a set frontowards the corners of the strategy space of player 2. This
set contains all realization plans of player 2 where each sequersplayed at least with
probability t;zg. At that corner, only the sequencbsand c of player 2 have positive
componentsy, andy., whereasy, = yq = 0. Similarly, the end of the arrow “1.” in
Figure 5.1 is the corner of a triangle which contains all realization plans of player 1 where
each sequence is played at least with probability;zy. There, onlyxgsis positive, the
other sequences are played with minimum probability.

2. Since the slackwy). has become zero, it is replaced by its complementary variable
X_ that is now increased. This is the complementary pivoting step (b) of Algo-
rithm 4.3 where(wy ), leaves and_ enters the basis. When is increased, then
Zp cannot decrease further, since this would mBEnonoptimal, or increase, since
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a,C a,d

RT

b,c b,d

Figure 5.2. Strategy space of player 2 with best responses of player 1 and computation
steps. The starting pointis (ta, to, tc, ta) = (/3,%/3,%/3,%/3).

this would makel. nonoptimal (see Figure 5.2), but baths andx_ are basic and
may have positive values. S stays as it is. Furthermore, onyy andy, are basic

for player 2, so his position in the corner of the square is unchanged, marked with
“2.” (underlined) in Figure 5.2. For player 1, the arrow “2.” in Figure 5.1 denotes
a relative increase of. until the best response set of the sequeaad player 2

is reached. Then, the basic slack variaplg), becomes zero and is exchanged
with ya.

3. Currently, the variables andxrs of player 1 are basic, so thaivw),_ and (Wx)rs
are nonbasic and zero. For player 2, the computed path in Figure 5.2 is therefore now
a segment of the common boundary of the two best response regidnsaifaRS
Thereby, the relative size gf can only increase if is increased which shrinks
the set of realizations plans where each sequenbas minimum probability, 7.
This generates a smaller square in Figure 5.2, and, by the same shrinking factor, a
smaller triangle in Figure 5.1, untdrs becomes zero, which happens wigns
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increased t§%7. That is, the end of the arrow “3.” points to the tip of the small
triangle wherex_ is the only positive component of The leaving variablegs is
replaced by its complemeifivy)rs Which enters the basis, so that the best response
region forRSin Figure 5.2 can be left.

4. Nothing changes for player 1 in Figure 5.1 siygey, Y are all basic, s@ remains
constant. Leaving the best response regiorRBmeans thay;, is increased, until
Yo is zero. This variable is replaced by its complememf),. The best response
region forb in Figure 5.1 can be left.

5. The current basis contains ony, ya,Yc, SO the best response sequenced_ ai@r
player 1 anda andc for player 2. Thengzy can be decreased again, in fact until
2o = 0, reaching the equilibriunix3,y%) with x> = 1 andy3 = y2 = 1, which is the
end of the computed path.

This example is specifically designed to show that an intermittent increagei®pos-

sible, which is usually rare, at least for low-dimensional strategy spaces or for bimatrix
games. This behavior, and which equilibrium is found in case the game has more than
one equilibrium, depend on the starting vector. The reader may verify that if the starting
pointt of player 2 is changed so that all movad, c,d have equal probability/,, then

the same equilibrium is reached in three steps, first moving in direttionFigure 5.1

and directionb, c in Figure 5.2, untila becomes a best response of player 2, then shift-
ing from b to a while zj is fixed, and finally reaching the equilibrium. For yet another
starting vector where, in additios,is changed so that all moves of player 1 have equal
probability, that iss = sg = 1, andsgs= sr1 = /4, the same equilibrium is reached in

a single step.

By changing the starting vector it is also possible to compute other equilibria. For
example, when the algorithm starts fraf®t) with (3_.,5:s RT) = (3/10, /20, ’/20) and
(Ta, To,Te,Tq) = (Ys, /s, 1/3,%/3), then it computes the equilibriuix?, y?) (see Figures 3.3
and 3.4).

All the equilibria reachable in this manner have a negaitiex (the index of an
equilibrium is the sign of the determinant of a certain matrix related to that equilibrium;
see Shapley, 1974; van der Laan, 1984). However, it is also possible to find positively
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indexed equilibria. Crucial here is the observation that the set of realization plans sat-
isfying (4.6) and (4.2) is in general larger than the piecewise linear path connecting the
starting vector and the related equilibrium. This set includes all other Nash equilibria.
In the first example above with starting veciart), there exists also a piecewise linear
path of vectors connecting the equilibiig!,y') and (x2,y?). All these strategy vectors
obey the conditions demanded for by the algorithm. We can therefore find the positively
indexed equilibrium(x!,y) as follows. In the first stage we find the equilibriunt, y?)

when starting from(s,t). Then we consider the system (4.6), (4.2) derived from the first
starting vector(s,t). The equilibrium(x?,y?) is a solution to this system which is not on

the path starting afs,t). Starting with(x,y) = (x?,y?) andzy = 0, we start the algorithm

by letting zy enter the basis. Then the algorithm computes the equilibtidny!) by the

following steps.

1'. Basic variables ar@wy)., Xrs, XrT, (Wy)a, Yo, Yc, Yd- The entering variablep is

increased t&/g, where(wy). becomes zero and leaves the basis.

2'. The entering variableq is increased td/s50, Where (wy)a becomes zero and

leaves. No change occurs fay andy.

3. The entering variablg, is increased untiy, = 1/3 wherezg = 0. Thenz, leaves the
basis. The algorithm terminates witk y) = (x!,y%).

In principle, the equilibrium(x,y!) is computed at the end of st&pwherex! =
X+ sz andy! = y+tzy. Since the path ends, van den Elzen and Talman (1991, 1995) let
the algorithm terminate here. We run the method as a special case of Lemke’s algorithm
and include the final step. Driving 7y to zero is also appropriate for the equivalence with
Harsanyi and Selten’s tracing procedure, wigris the probability of playing against the
prior (s,t). This is the topic of the next section.
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6. Game-theoretic interpretation

The computation of the algorithm can be interpreted game-theoretically. We will show
that it mimicks thetracing procedureby Harsanyi and Selten (1988), applied to the nor-
mal form of the game. Furthermore, if the starting vector is completely mixed, then the
computed equilibrium will benormal form perfectFor greater detail we refer to van den
Elzen and Talman (1995) who showed these properties for bimatrix games.

The tracing procedure starts from a comnprior. For two-person games, this is
a pair of strategies describing the preconceptions of the players about the other player’s
behavior. Initially, the players react optimally to these expectations. In general they
observe that their expectations are not fulfilled and thus adjust their expectations about
the behavior of the other player. Besides, more and more information about the game
is revealed. By simultaneously and gradually adjusting the expectations and reacting
optimally against these revised expectations, eventually an equilibrium is reached.

Consider first a bimatrix gamié with payoff matricesA andB, as a special case of
a game in sequence form. The tracing procedure generates a path of stratedy, pairs
Each such pair is an equilibrium in a parameterized ga(zg). The prior is the same as
our starting vectofs,t). The payoffs i (z)) are as if each player plays with probability
Zp against the prior and with probability— zy against the actual strategy (R,y) of the
other player. That is, player 1 receiveslifizy) expected payofty - X (At) + (1 —2z) -
X' (Ay), and player 2 receives payd- (s'B)y+ (1—z) - (X' B)y.

The tracing procedure starts with = 1, wherex andy are the players’ optimal re-
sponses to the prior. They is decreased, changirig,y) such that it stays an equilibrium
of '(zp). Sometimes, changing the valuezgfmay stall (similar to the computation steps
2. and 4. in the example in Section 5), tracing then instead a continuum of equilibria in
I'(z0) which is usually one-dimensional (the non-standard case is discussed in Schanuel,
Simon, and Zame, 1991). These conditions define the so-dadésat tracing procedure
They generate a unique path except for degeneracies, which, given any starting vector,
do not occur for a bimatrix game with generic payoffs. Degeneracies are resolved by the
logarithmic tracing procedurésee Harsanyi and Selten, 1988), which we do not regard
here. The procedure ends with= 0 wherel' (0) =T .
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Generically, the linear tracing procedure suffices and coincides with the logarithmic
tracing procedure. Then, it corresponds to the computation by Algorithm 4.3(zk),
player 1 receives payoffs that are the same as the original paydffagainst the random-
ized strategyy -t + (1— 2p) - y. This holds because we are dealing with only two players.
Similarly, player 2 receives the original payoffs against the stratggy+ (1— 7o) - X. By
(4.7), this is the strategy paix+ sz, y+tzp) where the pairx,y) is computed by the
algorithm and corresponds {&,y). Lemma 4.2 asserts thé,y) is an equilibrium of
M (20).

Thus, the paths generated by the tracing procedure and by the algorithm coincide up
to projection. Whereas the tracing procedure traces a pair of strategies in the full strat-
egy space and considers convex combinationsagbffswith weightszg and1 — z, the
complementary pivoting algorithm generates the corresponding convex combinations of
strategiesvhich belong to a restricted strategy set that expands and shrinks proportionally
to 1—zy. In other words, the tracing procedure generates a path of Nash equilibria for
games with perturbed payoffs, whereas the algorithm delivers a path of Nash equilibria
related to restricted strategy domains. Both methods terminate in the same equilibrium.

The preceding statements apply directly to bimatrix games, as shown by van den
Elzen and Talman (1995). By the same arguments, the computation emulates a suitably
defined tracing procedure for the sequence form. Moreover, we can show that the piece-
wise linear path computed by the algorithm applies also totdrenal formof the game,
where the strategy space of each player is the simplex of his mixed strategies. So far, the
computed path lies in the sequence form strategy space. In Section 2 we have shown that
this strategy space is the image of the simplex of mixed strategies under the linear map de-
fined by (2.2). A suitable pre-image under this map of the computed path in the sequence
form strategy space yields a piecewise linear path in mixed strategies, as follows.

Consider theendpointsof each line segment of the computed path (defined by two
successively computed almost complementary bases, see Section 4). Denote the end-
points of such a line segment lo¥, ) and (X,y), say. LetS be the line segment connect-
ing X andX in the strategy space of player 1 (the consideration for player 2 is similar).
Consider mixed strategigsand i of player 1 that have realization plaRgndX, respec-
tively. In the mixed strategy simplex of player 1, the line segment connefitiagd [1 is
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mapped under (2.2) t8 since that map is linear. ThuS,can indeed be translated to a
line segment in mixed strategies.

The particular pre-image @&in the mixed strategy simplex does not matter, because
mixed strategies with the same realization plans are realization equivalent and therefore
payoff equivalent, so the equilibrium propertyliizy) is preserved. A canonical choice
for [i and 1 are the behavior strategies of player 1 with realization pfaasdX, respec-
tively. Note, however, that the entire line segm&rghould not be translated to behavior
strategies, since this does not yield a line in the mixed strategy simplex if the convex
combinations ofii and i are not behavior strategies.

We have shown that we can consider the computed path as a trace in mixed strate-
gies. Following van den Elzen and Talman (1995), we can also show that the computed
equilibrium is normal form perfect if the prids,t) is completely mixedA completely
mixed realization plan assigns positive realization probability to every sequence. The cor-
responding behavior strategy plays every move with positive probability, and considered

as a mixed strategy, it chooses every pure strategy with positive probability.

Lemma 6.1. If the starting vectoKs,t) is completely mixed, then Algorithm 4.3 com-
putes an equilibrium that is normal form perfect.

Proof. Let the starting vectofs,t) be completely mixed and l€k*,y*) be the computed
equilibrium. Except for its endpointx*,y*), the last line segment of the computed path
consists of pair$x+ sz, y+tzp) of realization plans wherg) > 0, due to condition 4.3(c).
Therefore, these realization plans are, I&kandt, completely mixed. The equilibrium
(x*,y*) is thelimit of these realization plans whem goes to zero, and is a pair bést
response$o these realization plans because of the complementarity condition (4.2), since
X" andy* have the same basic (thatis, positive) componentsaasly (a similar argument

was made in the proof of Lemma 4.2). These properties hold also when the computed path
Is translated to mixed strategies as described above. According to Selten (1975, Thm. 7),
they imply that the equilibriungx*,y*) is perfect in the normal form. ]

For bimatrix games, each point on the computed path translates to an equilibrium
of the restrictedgame where each strategy is played at least with the probability it has
under(s,t) - zp. This can also serve to prove that the equilibrium is perfect. Using the
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sequence form, it is better to invoke Selten’s condition as in the preceding proof since
the probabilities for playing pure strategies may vary for realization equivalent mixed
strategies and are therefore not well defined.

(2)

S T
2
I \r I / r
4 1 0 0
1 0 0 1
Figure 6.1. Extensive game where the equilibrigRar) is normal form perfect but not
extensive form perfect.

The tracing procedure, and the concept of a perfect equilibrium, are different when
they are defined for the extensive form instead of the normal form of the game. The ex-
tensive game in Figure 6.1, taken from van Damme (1987, p. 114), has an equilibrium
(R,r) in pure strategies in the reduced normal form. In the full normal form, the equi-
librium would be written(RSr). This equilibrium is not extensive form perfect since it
is not even subgame perfect. The only subgame perfect equilibrigbgjs). However,
the equilibrium (R r) is normal form perfect. It is computed by Algorithm 4.3 when
started from the priofs,t) where(s.s,s.1,R) = (Y4,12,Y4) and (t;,t,) = (Y5,%5), say.

The dominated sequence (and stratdgly)has probability zero in the equilibriutiR;r).
However, the sequendsS has also probability zero, and in approaching the equilibrium,
the probabilities for thenovesS and T are as prescribed in the starting vector, which
implies a non-vanishing probability for the dominated madveOnly at the equilibrium
these move probabilities become undefined.

“Unreasonable” behavior at unreached information sets cannot be excluded with
normal form approaches. Computing with the sequence form is such an approach. How-
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ever, it is trivial to solve subgames first. In Figure 6.1, this removes the equilikjiRim)

that is not subgame perfect. Furthermore, perfect equilibria of the RNF are reasonable
solutions for the extensive form game: At unreached information sets, one can define
suitable choices such that the resulting equilibriunwéskly sequentially rationgReny,

1992; Siniscalchi, 1996). Finally, one can try several (for example, randomly chosen) pri-

ors, to test the sensitivity of the computed equilibrium with respect to the starting point.

We suggest this as a topic for future research.

Appendix: Degeneracy resolution

In an extensive game, certain equilibria may avoid entire branches of the tree. Then, the
behavior of one player in these unreached branches is to some extent arbitrary, like the
probability yy for the sequence in the set of equilibria(x,y®) above. In particular,

one of these equilibria hag = 0 even thoughd is optimal, that is,(wy)q = 0. This is
adegeneracynamely, a basis containing a basic variable (eitheor (wy)q) which has

value zero. It arises due to the structure of the game tree, even for generic payoffs, and
applies not only to the sequence form but also to the more redundant normal form of the

game.

Degeneracy must be dealt with properly, partly for the following technical reason.
The complementary pivoting algorithm terminates if no almost complementary basis is
revisited. This is the case if the leaving variable is always unique. If there are two vari-
ables that may leave the basis, one of them will stay basic and have value zero after the
pivoting step, so the resulting basis is degenerate. Thus, if degeneracy can somehow be
avoided, the algorithm will terminate in a finite number of steps.

This is achieved by the well-knowexicographic methodcadapted by Koller, Megiddo,
and von Stengel (1996) for our type of algorithm. Consider the system

Iw—Mz—dz=q

which is equivalent tov = g+ Mz+ dz in (4.3), wherel is then x n identity matrix.
A basis corresponds to an invertibiex n submatrixC of [I, —M, —d]|, so that the vector
of basic variables i€~1qg. An infinitesimal perturbance daf, replacingq by g(&) = q+
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(g,€2,...,eMT for some positive but vanishingly smal| then defines a vect@1q(¢)

of basic variables. These are all positive (although some of them may be vanishingly
small) iff the matrix[C~1q,C~1] is lexicographically positive, that is, the first nonzero
entry of each row is positive. The basis is then caledco-positive The invariant that

all computed bases are lexico-positive is preserved by pivoting with the “lexico-minimum
ratio test”, which determines the leaving variable uniquely. The actual values of the basic
variables are stilC~1q, so the computation is unchanged.

ye=1 ®

Figure A.1. Partial view of the strategy spaces after artificial perturbance of the LCP data
to achieve nondegeneracy. The labels show that only one equilitoritif)
marked with[_] remains from the corresponding infinite set of equilibria in
Figures 3.3 and 3.4.

Applied to our example, this (simulated) perturbation of the LCP data, if it actually
took place withe > 0, would remove the degeneracies in Figure 3.3 and reduce the infinite
set of equilibria(x3,y®) marked by boxes in Figures 3.3 and 3.4 to a singleton. Namely,
the line in Figure 3.3 separating the best response regionsdad d would no longer
hit the vertexx. = 1 but one of the sides of the triangle. Figure A.1 shows one possible
effect of this perturbation, where the set of equilibria becomes the single equilibrium
(x*,y*) in pure strategies with! = 1 and (y4,y5. &, y4) = (1,0,1,0), as can be seen
from the labels of the regions. The other possibility is shown in Figure A.2, where the
equilibrium is (x°,y°) with x? being nearly one angig nearly zero, andy3, yg,y2,Y3) =
(1,0,%/1,,1Y15). Above, we have considered the case 0, wherex® = x* = x® and any
convex combinatioty® of y* andy? is an equilibrium strategy of player 2.
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Figure A.2. Similar to Figure A.1, a different perturbance leaves the other extreme equi-
librium (x°,y°) in the formerly infinite set of equilibria.

For the particular order of LCP variableg, Xrs XRT, Ya, Yb, Yc, Yd that we chose in
this example, the lexicographic rule corresponds to the situation in Figure A.2 (where
x5 Is indistinguishable from the vertex. = 1). In the final computation step shown
in Figure 5.1, the path reaches the degenerate vgrtexl and the algorithm terminates
sincezy =0, according to 4.3(c). Applied to the perturbed problem in Figure A.2, itin fact
hits first the best response region for sequahflabeled?) in Figure A.2), so that another
pivoting step happengwy)q leaves angy enters the basis, which is increased wiage-
0, until the best response region f@Sis reached (foyy = 11/15), whereuporgs enters
the basis, but stays at value zero, agdinally leaves. That is, the algorithm, using the
lexicographic rule alone, finds the above equilibrigxd, y°) rather than the pure strategy
equilibrium (x*,y*). The final degenerate pivoting step is interesting for the following
reason. Koller, Megiddo, and von Stengel (1996) have shown that the algorithm, using
the lexicographic rule untiky leaves the basis, terminates in an equilibrium. It may
happen that the variablg could leave the basis earlier because it is zero, butzhat
not chosen by the tie-breaking lexicographic rule. So far, it was open whether the extra
test if zg can leave the basis can shorten the computation. The example shows that such a
shortcut is indeed possible. On the other hand, one may explicitly not take this shortcut
and note that there is an equilibrium, but keep on computing to find a possibly different
equilibrium, here(x®,y?). In Algorithm 4.3, condition (c) prevents this.

32



Theinitial almost complementary basis should also be lexico-positive. This basis,
for zp = 1, is highly degenerate since it has many basic variables with value zero, namely
the components af andy which are basic variables. Which variables should be basic,
and which should be the first entering variable? In order to solve this problem, Lemke’s
algorithm for the standard (not the mixed) LCP can be used from the very beginning,
as described in the remainder of this section. This avoids altogether the initialization
(a) in Algorithm 4.3 by linear programming. However, this is merely a computationally
convenient simplification, and does not affect the interpretation of the algorithm given in
the text, including the initial step. We modify our problem as follows.

Assumption A.1. Every leaf has negative payoffs. The starting vetsdr is completely
mixed, that is, it assigns positive probability to every sequence

Negative payoffs can be achieved by subtracting a suitable constant, which does not
alter the game. Then, the sparse payoff matrices félfifl 0 andB < 0. This implies that
u andv are never positive in any optimal solutions to the dual LPs with constraints (3.1)
and (3.3), respectively, due to the structurecofnd F. Thus, we can replace by —u
and require that this new vectaris nonnegative. Then the problem of maximizing the
expected payofk' (Ay) has the dual LP: minimize-e" u subject to—E "u> Ay, u> 0.
The primal LP, in turn, is to maximize' (Ay) subject toEx> e, x > 0. That is, instead
of convertingEx = e to the pair of inequalitieEx > e andEx < e, we only use the first
of these inequalities. The same is done for the second player.

This yields an LCP in standard inequality form without increasing its dimension.
The new LCP data are

_e E
—f F
0 —-FT BT

The LCP variablegz = (u,v,x,y) " andw = (Wu,w\,,wx,wy)T are all nonnegative.

SinceA < 0 andB < 0, the covering vectod given by (4.5) is nonnegative and has
positive componentd; wheneverg; < 0. We can therefore use the original initialization
of Lemke’s algorithm: Letv be the first vector of basic variables. Determine the smallest
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Zp such thatg+dz > 0. This iszy = 1, where all components ofi, andw, become
zero. Withzy as entering variable, a componentwis chosen to leave the basis. Using
the lexicographic rule, all bases are lexico-positive from then on. The componemgs of
andwy, and certain components of andwy, are then successively replaced as basic
variables by components afandv andx andy, respectively. These initial pivots are all
degenerate, changing the basis but not the values of the basic variablez, «ntil The
computation proceeds as before if we can guarantee that the slagksaind w, never
become positive.

Lemma A.2. Under Assumption A.1, consider the LCP (4.1) wifiM as in (A.1) and
covering vectod as in (4.5). Then Lemke’s algorithm, using the lexicographic rule and
letting zy leave the basis as soonzgshecomes zero, solves (4.1) and finds an equilibrium
(x,y¥). No component ofw, orw, assumes a positive value during the computation.

Proof. By Theorem 4.4 of Koller, Megiddo, and von Stengel (1996), the algorithm ter-
minates, since, among other things, the malixis copositive that is,z > 0 implies
z"Mz> 0, which holds becausg’ Mz= x" (—~A—B)y.

Consider an almost complementary basis computed during the algorithm. We are
interested in the values @b, Xx,y,wy,Wy. Assume that, contrary to our claim, there is a
proper inequality inv, = Ex— e(1—7) > 0 with a positive component ofy,. By (2.3),
this means eithex(0) > 1— 7 or

Z X(onc) > x(op) (A.2)

for some information selh. So for some choice at h, the componenk(oxc) of x is
positive and could be reduced by the value of the slack variable. If the seqagndees
not lead to a leaf, it leads to an information &&following h in the tree and appears as
right hand sidex(ojy) in (A.2). By induction, we finally obtain a sequenceleading to

a leaf wherex, can be reduced by a positive amountx(0) > 1 — 7y, this can also be
o=0.

By the complementarity condition, the currenimaximizes the linear expression
x"A(y+1tzo) (with y andz, fixed) subject to

Ex>e(1-27), x> 0. (A.3)
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However, the vectoA(y +tzp) is nonpositive. We have shown that for a sequeace
leading to a leafx, can be reduced while preserving (A.3). But this yields a contradiction
since the corresponding compondAly +t2)), is negative. Indeed, we may assume

Zp > 0 since this is true for the preceding almost complementary basis (otherwise the
algorithm would have terminated) and thus on the last line segment on the computed
path (possibly excluding its endpoint). Furthermdres completely mixed, so the leaf is
reached with positive probability. It suffices thais nonnegative. Note thgt+tzy is not
necessarily a realization plan sinE€y+tz) > f may a priori not hold with equality.
Thus,w, stays zero throughout the algorithm, and so degs O

Note that in Lemma A.2, some componentsxgfandw, may stay basic variables,
but they will not assume positive values. Of course, once they are replaced by their
complementary components ofor v, respectively, one can as in 4.3(b) make sure that
they never enter the basis again. The components,ah particular ofw, and w,
correspond to the columns bin the matrix[l, —d, —M] above. These are useful to keep
for the lexicographic rule when pivoting is performed usingtti#eauC—1[q, 1, —d, —M]

with the basis matrixC.

With a detailed analysis of the tableau during the initial pivoting operations (which
is too long to be presented here), Lemma A.2 can be shown under slightly weaker as-
sumptions. In particulars andt do not have to be completely mixed. However, this
assumption is also conceptually useful for computing normal form perfect equilibria, as

shown in Section 6.
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