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Abstract. An algorithm is presented for computing an equilibrium of an extensive
two-person game with perfect recall. The equilibrium is traced on a piecewise linear
path from an arbitrary starting point. If this is a pair of completely mixed strategies,
then the equilibrium is normal form perfect. The normal form computation is per-
formed efficiently using the sequence form, which has the same size as the extensive
game itself.
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1. Introduction

Consider a two-person game in extensive form where the players have perfect recall. This

paper presents an efficient algorithm for finding an equilibrium of such a game with ap-

pealing properties. Given the game, it computes a sample equilibrium that isnormal form

perfect. The algorithm generates a piecewise linear path in the strategy space. An arbi-

trary strategy pair is chosen asstarting point, serving as a parameter for the computation.

Various starting points can be tried to find possibly different equilibria. The probabilities

for playing strategies at the starting point become relativemistakeprobabilities for play-

∗B. von Stengel, Theoretische Informatik, ETH Zürich, 8092 Z̈urich, Switzerland. Email: sten-
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ing suboptimal strategies in mixed strategies that approximate the computed equilibrium.

Thus, this equilibrium is perfect if the starting point is completely mixed.

The algorithm is highly efficient because it uses a data structure that does not take

more space than the extensive game itself. This is thesequence formof the extensive

game (Romanovsky, 1962; von Stengel, 1996). In the sequence form, mixed strategies

of a player are identified in a natural way when they are realization equivalent, that is,

induce the same behavior along the path of play and therefore the same payoffs. After

this identification, they belong to a strategy space (a certain polytope) of low dimension,

which is equal to the total number of moves of the player. In contrast, the mixed strategy

simplex has typicallyexponentialdimension in the size of the game tree. This exponential

blowup makes standard methods applied to the normal form impractical.

The computation can be interpreted game-theoretically. In this interpretation, the

starting point represents aprior against which the players react initially. Next, they grad-

ually adjust their behavior by using information about the strategy that is actually played.

Each point on the piecewise linear path is an equilibrium of a restricted game where the

prior is played with some probability being initially one and then being decreased towards

zero (with possible intermittent increases). This mimicks thelinear tracing procedureas

formulated by Harsanyi and Selten (1988), who use it to determine an equilibrium for a

basic game starting from the given prior. Basic games result from the so-called standard

form of an extensive game after a reduction procedure. Here we emulate, up to projection,

the tracing procedure for the normal form, which can be considered as a special case of

the standard form for this purpose.

The sequence form strategy space of a player is a linear projection of his mixed

strategy simplex. The relevant properties of mixed strategies for the above interpretation

are preserved, like lying on a line or being completely mixed. In a sense, we merely

perform normal form computations efficiently. Therefore, the emulated tracing procedure

and the perfection of the equilibrium apply to the normal form of the game.

Our algorithm is a synthesis of previous, partly independent work by the authors

and Daphne Koller and Nimrod Megiddo. For bimatrix games, van den Elzen and Talman

(1991) (see also van den Elzen, 1993) described a complementary pivoting algorithm that

traces a given prior to an equilibrium. If the prior is completely mixed, the computed path
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leads to a perfect equilibrium. Generically, the algorithm represents the linear tracing

procedure by Harsanyi and Selten up to projection (van den Elzen and Talman, 1995).

Koller, Megiddo, and von Stengel (1996) applied the complementary pivoting algorithm

by Lemke (1965) to the sequence form. As a special case, it can also be applied to a

game in normal form. If one chooses in a specific way a certain parameter in Lemke’s

algorithm, the so-called covering vector, then one obtains the algorithm by van den Elzen

and Talman.

Here, we derive the covering vector for Lemke’s algorithm analogously from an

arbitrary starting point, but applied to the sequence form. As a consequence of this ini-

tialization, the generated path stays in the compact strategy space. This simplifies the

earlier proof of Koller, Megiddo, and von Stengel (1996) that the algorithm terminates,

which was very technical. However, degeneracy has to be dealt with properly (using a

known lexicographic pivoting rule) since it arises naturally from the game tree structure.

It can easily happen that along the generated path of strategies, it becomes no longer op-

timal to put weight on an entire branch of the game tree. At that moment more than one

variable becomes zero and degeneracy occurs. Thus, degeneracy in extensive form games

is related to the structure of the game tree. For generic bimatrix games, degeneracy could

be disregarded.

Charnes (1953) described the solution of “constrained” zero-sum games where each

player’s strategy space is a polytope. Romanovsky (1962) derived from an extensive game

such a constrained matrix game which is equivalent to the sequence form. However, this

Russian publication was overlooked in the English-speaking community. Eaves (1973)

applied Lemke’s algorithm to games which include polyhedrally constrained bimatrix

games, but with different parameters than we do. Dai and Talman (1993) described an al-

gorithm that corresponds to ours but requires simple polyhedra as strategy spaces, which

is not the case for the sequence form. Wilson (1972) described a method for solving ex-

tensive two-person games, where best responses, which serve as pivoting columns for the

Lemke–Howson algorithm, are generated directly from the game tree. This algorithm is

based on the normal form and efficient only in the sense that it uses few pure strategies

with positive probability, a claim made more precise by Koller and Megiddo (1996). Ex-

cept for very small game trees, the sequence form has smaller size than any normal form
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representation, among other things because of its sparse payoff matrix. Wilson (1992)

adapted the Lemke–Howson algorithm for computing a “simply stable” equilibrium of a

bimatrix game. The computed equilibrium is also perfect. The algorithm uses a lexico-

graphic perturbation technique implying that the mistake probabilities for pure strategies

in approximating mixed strategies have different orders of magnitude, according to an

initially chosen order of the pure strategies. In contrast, we can “fine-tune” mistake prob-

abilities with the choice of the starting point. It is open if Wilson’s algorithm for finding

simply stable equilibria can be usefully applied to the sequence form. Recent surveys on

algorithms for computing Nash equilibria are McKelvey and McLennan (1996) and von

Stengel (1997).

The setup of the paper is as follows. In Section 2 we recall the notion of the sequence

form and its derivation from the extensive form game, with particular emphasis on the

geometry of the strategy spaces. In Section 3 we consider optimal play in the sequence

form. Section 4 is devoted to Lemke’s algorithm, adapted for the particular covering

vector. The path computed by the algorithm is illustrated in Section 5. We elaborate on

the game-theoretic interpretation in Section 6. In the Appendix, we discuss the treatment

of degeneracy.

2. Sequence form strategy spaces

We consider extensive two-person games, with conventions similar to von Stengel (1996)

and Koller, Megiddo, and von Stengel (1996). An extensive game is given by a finite tree,

payoffs at the leaves, chance moves (with positive probabilities), and information sets

partitioning the set of decision nodes. Thechoicesof a player are denoted by labels of

tree edges. For simplicity, labels corresponding to different choices (anywhere in the tree)

are distinct. For a particular player, any node of the tree defines asequenceof choices

given by the respective labels (for his or her moves only) on the path from the root to the

node. We assume that both players haveperfect recall. By definition, this means that all

nodes in an information seth of a player define for him (or her) the same sequenceσh of

choices. Under that assumption, each choicec at h is the last choice of a unique sequence

σhc. This defines all possible sequences of a player except for the empty sequence/0. The
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set of choices at an information seth is denotedCh. The set of information sets of playeri

is Hi , and the set of his sequences isSi , so

Si = { /0} ∪ {σhc | h∈ Hi , c∈Ch}.

This implies that the number of sequences of playeri , apart from the empty sequence, is

equal to his total number of moves, that is,|Si |= 1+∑h∈Hi
|Ch|. This number is linear in

the size of the game tree.

A behavior strategyβ of player i is given by probabilitiesβ (c) for his choicesc

which fulfill β (c) ≥ 0 and ∑c∈Ch
β (c) = 1 for all h in Hi . This definition ofβ can be

extended to the sequencesσ in Si by writing

β [σ ] = ∏
c in σ

β (c). (2.1)

A pure strategyπ is a behavior strategy withπ(c) ∈ {0,1} for all choicesc. The set of

pure strategies of playeri is denotedPi . Thus,π[σ ] ∈ {0,1} for all sequencesσ in Si .

The pure strategiesπ with π[σ ] = 1 are those “agreeing” withσ by prescribing all the

choices inσ (and arbitrary choices at the information sets not touched byσ ).

In the normal formof the extensive game, one considers pure strategies and their

probability mixtures. Amixed strategyµ of player i assigns a probabilityµ(π) to every

π in Pi . In thesequence formof the extensive game, one considers the sequences of a

player instead of his pure strategies. A randomized strategy of playeri is described by

therealization probabilitiesof playing the sequencesσ in Si . For a behavior strategyβ ,

these are obviouslyβ [σ ] as in (2.1). For a mixed strategyµ of playeri , they are given by

µ [σ ] = ∑
π∈Pi

π[σ ]µ(π). (2.2)

For player 1, this defines a mapx from S1 to IR by x(σ) = µ [σ ] for σ in S1 which we call

therealization planof µ or a realization plan for player 1. A realization plan for player 2,

similarly defined onS2, is denotedy. Realization plans have the following important

properties (Koller and Megiddo, 1992; von Stengel, 1996).

Lemma 2.1. For player 1,x is the realization plan of a mixed strategy iffx(σ) ≥ 0 for

all σ ∈ S1 and
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x( /0) = 1,

∑
c∈Ch

x(σhc) = x(σh) for all h∈ H1.
(2.3)

A realization plany of player 2 is characterized analogously.

Lemma 2.2. Two mixed strategiesµ andµ ′ of playeri are realization equivalent iff they

have the same realization plan, that is, iffµ[σ ] = µ ′[σ ] for all σ ∈ Si .

The equations (2.3) hold for the realization probabilitiesx(σ) = β [σ ] for a behavior

strategyβ and thus for every pure strategyπ , and therefore for their convex combinations

in (2.2) with the probabilitiesµ(π).

For Lemma 2.2, equation (2.2) should be regarded the other way, defining a linear

map from IR|Pi | to IR|Si | that maps(µ(π))π∈Pi to (µ[σ ])σ∈Si with the fixed coefficients

π[σ ], π ∈ Pi . Mixed strategies with the same image under this map define the same re-

alization probabilities for all nodes of the tree irrespective of the strategy of the other

player, as stated in Lemma 2.2. The simplex of mixed strategies is thereby mapped to the

polytope defined by the linear constraints in Lemma 2.1. The vertices of this polytope are

the realization plans of pure strategies. These are unique except for identifying realization

equivalent pure strategies (as in thereduced normal formfor generic payoffs, here RNF

for short). These vertices may be exponential in number like in the mixed strategy sim-

plex, but the dimension of the polytope is much smaller since it is linear in the size of the

game tree. For playeri , this dimension is the number|Si | of variables minus the number

1+ |Hi | of equations (2.3) (which are linearly independent), so it is∑h∈Hi
(|Ch|−1). Be-

cause of this reduction in dimension, mixed strategies are “projected” to realization plans,

but without losing any relevant strategic information in the extensive game.

In the sequence form, thestrategy spaceof each player is the polytope of his realiza-

tion plans. A line in this strategy space is the image of a line in the mixed strategy simplex,

which is usually not unique, however. Any realization planx of player 1 (and similarly

y for player 2) naturally defines a behavior strategyβ where the probability for making

the movec is β (c) = x(σhc)/x(σh) (which is arbitrary — for example,β (c) = 1/|Ch| —

if x(σh) = 0, that is, the information seth is irrelevant). However, this is obviously not a

linear “inverse map” ifβ is regarded as a special mixed strategy.
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Figure 2.1. A two-person extensive game.

Figure 2.1 shows an extensive game where the choices of player 1 and player 2

are denoted by the upper and lower case lettersL,R,S,T anda,b,c,d, respectively. The

payoff vectors are listed at the bottom with the first and second component representing

the payoff to player 1 and 2, respectively. The sets of sequences areS1 = { /0,L,R,RS,RT}
andS2 = { /0,a,b,c,d}. We consider realization plans as vectorsx = (xσ )σ∈S1 andy =

(yσ )σ∈S2 , here both with five components; the sequences are written as subscripts unless

they are complicated expressions like in (2.3). According to Lemma 2.1, these vectors are

characterized by

x≥ 0, Ex= e and y≥ 0, Fy = f (2.4)

(the inequalities hold componentwise, and0 denotes a vector or matrix of zeroes), with

E =




1
−1 1 1

−1 1 1


 , F =




1
−1 1 1
−1 1 1


 , e= f =




1
0
0


 .

Each sequence appears exactly once on the left hand side of the equations (2.3), account-

ing for the entry 1 in each column ofE and F . The entry−1 in each row except the
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first stands for the right hand side in (2.3). Here, the polytope of realization plans has

dimension two for each player.

For player 1, it is useful to consider only the nonnegative variablesxL , xRS, xRT

which sum up to one sincex/0 = 1 andxR = xRS+xRT. This defines a triangle as strategy

space. The sequencesL, RS, RT are here in one-to-one correspondence with the pure

strategies(L,∗), (R,S), (R,T) in the RNF (in an obvious notation), so the simplex of

mixed strategies is also two-dimensional.

When does the RNF lead to strategy spaces of higher dimension than the sequence

form? This is the case when a player hasparallel information setsh and h′ , that is,

σh = σh′ . Then, all combinations of moves ath andh′ are part of separate strategies in

the RNF. If there are no parallel information sets, there is a one-to-one correspondence

between maximal sequencesσ and RNF strategies, since no moves other than those inσ

are relevant when playingσ . In that case (like for player 1 in the example), a player’s

mixed strategy simplex in the RNF has the same low dimension as his strategy space in

the sequence form.

For player 2, there are two pairsya,yb and yc,yd of strategic variables subject to

y≥ 0 and ya + yb = 1 and yc + yd = 1. This strategy space is a square rather than a

triangle. Its vertices correspond to the four pure strategies of player 2 (see also Figure 3.4

below). In the RNF, these correspond to the pure strategies(a,c), (a,d), (b,c), (b,d).

Thus, the mixed strategy simplex of player 2 is a tetrahedron, of one dimension higher

than the sequence form strategy space, because the two information sets of player 2 are

parallel.

3. Optimal play

Sequence form payoffs are defined for pairs of sequences whenever these lead to a leaf,

multiplied by the probabilities of chance moves on the path to the leaf. This defines two

sparse matricesA andB of dimension|S1|× |S2| for player 1 and player 2, respectively.

Then, the expected payoffs under the realization plansx andy arex>Ay andx>By, rep-

resenting the sum over all leaves of the payoffs at leaves multiplied by their realization

probabilities.
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We can characterize optimal play of a player by a pair of dual linear programs (LPs),

as follows. Ify is fixed, an optimal realization planx of player 1 maximizes his expected

payoff x>(Ay), subject tox ≥ 0, Ex = e. This LP has a dual LP with a vectoru of

unconstrained variables whose dimension is1+ |H1|, the number of rows ofE. This dual

LP is to minimizee>u subject to

E>u≥ Ay. (3.1)

For the extensive game in Figure 2.1, these constraints are indicated in Figure 3.1, where

the rows and columns ofE> andA are marked with the components ofx andu andy,

respectively. The sparse payoff matrixA has blank (zero) entries for the pairs of sequences

not leading to a leaf. Some zero entries are entered explicitly since they arise from payoffs

that are zero. The payoff 24 at one of the leaves is entered as 12 in the matrixA since it is

multiplied by the chance probability1/2 for reaching the leaf.

≥

x/0

xL

xR

xRS

xRT

u0 u1 u2 y/0 ya yb yc yd

1 −1

1

1 −1

1

1

11

0

3

0 0

6

12

0

Figure 3.1. Constraints (3.1) of best response LP for player 1 with dual vectoru.

Primal and dual LP have the same optimal value of the objective function. That is,x

is a best response toy iff there is a dual solutionu with x>(Ay) = e>u. Sincee> = x>E>,

this is equivalent to

x>(E>u−Ay) = 0. (3.2)

This is thecomplementary slacknessof a pair of dual linear programs (see, for example,

Schrijver, 1986).

Similarly, y is a best response tox iff y≥ 0, Fy = f , and there is an unconstrained

dual vectorv fulfilling

F>v≥ B>x (3.3)
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and

y>(F>v−B>x) = 0. (3.4)

Figure 3.2 shows (3.3) in its transposed formv>F ≥ x>B for our example, so that like in

Figure 3.1 rows and columns refer to sequences of player 1 and 2, respectively.

x/0

xL

xR

xRS

xRT

v0

v1

v2

y/0 ya yb yc yd

1

−1

−1

1 1

1 1

3

0

0

5 2

0

0

1

∨

Figure 3.2. Constraints (3.3) of best response LP for player 2 with dual vectorv.

The dual constraints (3.1) and (3.3) have the advantage that they stay linear even

if the realization plan of the other player is treated as a variable, because the variables

related to different players appear in different terms. These linear constraints and (2.4),

together with the orthogonality conditions (3.2) and (3.4), define alinear complementarity

problem(LCP) whose solutions(u,v,x,y) characterize the equilibria(x,y) of the game.

In our example, we can illustrate the solutions to this LCP by drawing the strategy

spaces of the two players. Figure 3.3 shows the strategy space of player 1 consisting of the

possible values of his strategic variablesxL , xRS, xRT. Figure 3.4 shows this for player 2

with the pairsya,yb andyc,yd represented by the vertical and horizontal coordinates of a

square. Note thatya = 0 iff yb = 1 and vice versa. The same holds foryc andyd. The

redundant variablesx/0, xR andy/0 are not shown since their value is known, and they also

have no payoff entry in Figure 3.1 and 3.2.

Figure 3.1 shows that the rows in (3.1) corresponding to the variablesxL , xRS, xRT

have the form
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Figure 3.3. Strategy space of player 1 with best response sequences of player 2 for the
sequence form of the game in Figure 2.1. The circled numbers are labels for
identifying easily the equilibria(x1,y1), (x2,y2), (x3,y3).

u1 ≥ 11ya +3yb

u2≥ 12yd

u2≥ 6yc .

(3.5)

The two other rows readu0−u1≥ 0 andu1−u2≥ 0. Sincex/0 = 1 > 0, the correspond-

ing inequality is always binding, that is,u0−u1 = 0, by the slackness conditions (3.2).

Similarly, u1−u2 = 0 wheneverxR > 0, that is, whenxRS or xRT is positive. SincexL ,

xRS, xRT are not all zero, one inequality in (3.5) is binding andu1 is the maximum of the

right hand sides in (3.5). Furthermore, only for binding inequalities (where the maximum

is achieved), which correspond to certain sequencesσ of player 1, the componentxσ of

x can be positive. In other words, only sequencesσ that are “best responses” for player 1
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Figure 3.4. Strategy space of player 2 with best response sequences of player 1.

can have positive realization probabilityxσ . For player 1, this is easy to interpret since

σ corresponds to a pure strategy in the RNF. Figure 3.4 shows the regions where the

sequencesL (region©1 ), RS(region©2 ), or RT (region©3 ), are such best responses (the

purpose of the circled numbers will be explained shortly). For example, (3.5) shows that

RSis preferred toRT iff 12yd ≥ 6yc = 6(1−yd), that is,yd ≥ 1/3.

For player 2, interpreting the slackness conditions (3.4) is easiest if sequences are

regarded as moves since player 2 does not pick a single sequence but one of each pair

a,b andc,d (as expressed by the equationsFy = f which are in this sense qualitatively

different fromEx= e). As Figure 3.2 illustrates,v0−v1−v2 = 0 sincey/0 > 0 and
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v1 ≥ 3xL

v1 ≥ 5xRS

v2≥ 2xRS

v2≥ xRT

(3.6)

so thatv1 andv2 have to be the maximum of the respective right hand sides in (3.6). Only

when an inequality in (3.6) is binding, the respective move in each paira,b andc,d can

be played with positive probability. (The values ofv1 andv2 represent partial payoffs at

the information sets of player 2 where these moves take place, see von Stengel, 1996.)

Figure 3.3 shows the strategy space of player 1, subdivided into different regions

where the sequences of player 2 are optimal. There are two pairs of regions, the regions

©4 and©5 corresponding to the movesa andb, and the regions©6 and©7 corresponding

to the movesc andd, where each point in the strategy space belongs to at least one region

of each pair. The line separating the regions©4 and©5 describing where the movea or

b is optimal depends by (3.6) only on the relative size ofxL versusxRS and not onxRT,

so this line goes through the vertexxRT = 1 of the triangle. This is due to the structure of

the extensive game (the sequencesa,b,RT occur in disjoint parts of the game tree) and

is independent of the payoffs at the leaves. This represents adegeneracy, meaning that

a move (herea or b) is optimal and played with zero probability at the same time (like

for xRT = 1, where the entire branch wherea andb are played is omitted from play, so

both moves are trivially optimal). For generic bimatrix games, such a degeneracy of the

structure of best response regions can be excluded, here it is unavoidable. Similarly, the

regions©6 and©7 wherec andd are best responses are separated by a line through the

vertexxL = 1.

Just as the four strategies(a,c), (a,d), (b,c) and(b,d) of player 2 appear as vertices

of his strategy space in Figure 3.4, they appear as intersections of best response regions in

Figure 3.3 whenever both moves specified in the strategy are optimal. The strategy space

of player 1 is thus divided into four such intersections, which would appear in the same

way as best response regions when the strategies of player 2 were considered directly (so

the degeneracies remain). The sequence form, however, gives here a more explanatory

picture than the normal form of the game.
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We can enumerate all equilibria of this game using a labeling technique similar

to Shapley (1974). Each of the sequencesL,RS,RT,a,b,c,d corresponds to a label

©1 , . . . ,©7 indicated by a circled number in Figure 3.3 and 3.4. There, these labels mark

the (closed) regions inside the strategy spaces when they are best responses of the other

player. Outside the strategy spaces, these labels mark the regions next to the facets of the

own strategy space where the respective sequence has probability zero.

A strategy pair(x,y) in the two strategy spaces is labeled with all the labels of the

regions thatx andy belong to. For example, the pair of verticesxRS= 1 andyb = 1, yc = 1

has the labels©1 , ©3 , ©5 , ©6 , and©3 , ©4 , ©7 . By complementary slackness,(x,y) is an

equilibrium iff it has all seven labels since then every sequence is either a best response

or played with probability zero. For the mentioned pair of vertices, this is not the case

since the label©2 (representingRS) is missing. One equilibrium, denoted(x1,y1), is in

the interior of the two strategy spaces,(x1
L,x

1
RS,x

1
RT) = (5/14,3/14,3/7) and(y1

a,y
1
b,y

1
c,y

1
d) =

(1/8,7/8,2/3,1/3). Another equilibrium, denoted(x2,y2), is (x2
L,x

2
RS,x

2
RT) = (0,1/3,2/3) and

(y2
a,y

2
b,y

2
c,y

2
d) = (0,1,2/3,1/3). These equilibria are non-degenerate in the sense that no

label occurs more than once. Finally, the vertexxL = 1 in Figure 3.3 carries five labels

©2 ,©3 ,©4 ,©6 ,©7 , while the two missing labels©1 and©5 mark two regions in Figure 3.4

which have a common boundary. All points on this boundary yield equilibria, indicated

by the pair of rectangular boxes. These equilibria are given byx3
L = 1, y3

a = 1, and

0≤ y3
d ≤ 11/12. It is easy to check that there are no further equilibria.

Shapley (1974) explained the Lemke–Howson algorithm for bimatrix games with

this labeling technique. Thereby, the edges separating the regions in Figure 3.3 and 3.4

define a graph. The outside regions are separated by edges which are connected to outer

verticesx = 0 andy = 0 in an extra dimension. Starting from the ficticious equilibrium

point (x,y) = (0,0) which has all labels, the Lemke–Howson method follows a path in

the (product) graph by dropping and picking up a label at a time until an equilibrium is

reached. Such a method could be applied to our example, but with a more sophisticated

change of labels since the graphs have non-uniform degree, partly due to degeneracies.

Defining this method generally for the sequence form is a topic of future research. Instead,

we will now describe a method of generating a path from an arbitrary starting point in each

strategy space.
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4. Complementary pivoting

The equilibrium conditions derived from the sequence form define a linear complemen-

tarity problem (LCP). The standard form of an LCP is characterized by ann-vectorq and

ann×n matrix M and requires to findn-vectorsz andw so that

z≥ 0

w = q+Mz≥ 0

z>w = 0.

(4.1)

The conditionz>w = 0 says that the nonnegative vectorsz = (z1, . . . ,zn)> and w =

(w1, . . . ,wn)> are complementary, that is, at least one variable of each pairzi ,wi for

1≤ i ≤ n is zero, whereas the other may be nonzero. AmixedLCP (see Cottle, Pang, and

Stone, 1992, p. 29) has more general constraints thanz,w≥ 0 in (4.1): some variableszi

may be unrestricted in sign where the corresponding variablewi is always zero. The LCP

derived from the sequence form with constraints (2.4) and (3.1)–(3.4) is such a mixed

LCP. It has variablesz= (u,v,x,y)> andw = (wu,wv,wx,wy)>. The sign restrictions are

none foru andv, whereasx≥ 0, y≥ 0, wu = 0, wv = 0, wx≥ 0, wy≥ 0. The requirement

z>w = 0 is then equivalent to

x>wx = 0, y>wy = 0. (4.2)

The dimension of the LCP isn = 2+ |H1|+ |H2|+ |S1|+ |S2|. The LCP data are

q =




−e
− f
0
0


 , M =




E
F

E> −A
F> −B>


 .

It is easy, but computationally not necessary, to convert this mixed LCP to the standard

form (4.1) by representingu and v as differences of nonnegative vectors and replacing

each equation inEx= e andFy = f by a pair of inequalities (see, for example, Koller,

Megiddo, and von Stengel, 1996).

Lemke (1965) described an algorithm for solving the LCP (4.1). It uses an additional

n-vectord, calledcovering vector, and a corresponding scalar variablez0, and computes
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with solutions to the augmented system

z, z0≥ 0

w = q+Mz+dz0≥ 0

z>w = 0.

(4.3)

An almost complementary basisis a set ofn basicvariables that contains at most one

variable of each complementary pairzi ,wi for 1≤ i ≤ n and possiblyz0 such that these

variables define a unique solution tow= q+Mz+dz0 if all other (nonbasic) variables are

zero. Suppose this solution fulfills (4.3), that is,z≥ 0, z0≥ 0, andw≥ 0. If z0 is nonbasic,

this solves (4.1). Otherwise, there is a pairzi ,wi of nonbasic variables. Allowing one of

them, designated asentering variable, to be nonnegative besides the basic variables, the

solutions of (4.3) to thesen+ 1 variables usually define a line segment that joins the

current almost complementary basis to another one. That new almost complementary

basis contains the entering variable, and some formerly basic variable that has become

zero hasleft the basis. If this is notz0, its complement is the next entering variable.

The resulting iterative change of bases is calledcomplementary pivoting. After a suitable

initialization, this generates a sequence of bases that define a piecewise linear path which,

under certain conditions, ends in a solution to the LCP (4.1). Koller, Megiddo, and von

Stengel (1996) give a more detailed exposition of Lemke’s algorithm and show that it

terminates for the LCP derived from the sequence form.

For the specific problem at hand, we choose a particular covering vectord that is

related to the starting position for our computation. Let(s, t) be an arbitrarystarting

vector, that is, a pair of realization plans for the two players, so that

s≥ 0, Es= e, t ≥ 0, Ft = f , (4.4)

and let

d =




e
f

−At
−B>s


 . (4.5)

The sign constraints for our mixed LCP and the equationsw = q+ Mz+ dz0 have then

the form
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x, y, z0≥ 0,

Ex + ez0 = e

Fy+ f z0 = f

wx = E>u −Ay− (At)z0≥ 0

wy = F>v−B>x − (B>s)z0≥ 0.

(4.6)

An initial solution to (4.6), which fulfills also (4.2), is given byz0 = 1, x = 0, y = 0, and

suitable vectorsu andv so thatE>u≥At andF>v≥B>s, that is,wx≥ 0 andwy≥ 0. We

also have to find an almost complementary basis representing this initial solution. There,

the problem is that some components ofx and y have to be taken as basic variables,

although with value zero, since otherwise the linear system (4.6) restricted to the basic

variables does not have full rankn. We will address this question shortly.

The conditions (4.6) and (4.2) are the equivalent of (4.3) and hold for all points on

the piecewise linear path computed by Lemke’s algorithm. The following lemma and the

discussion thereafter shows that this path induces a path in the product of the two strategy

spaces which begins at the starting vector(s, t) and ends at an equilibrium.

Lemma 4.1. In any solution(u,v,x,y,z0) to (4.6),x+sz0 is a realization plan for player 1,

y+ tz0 is a realization plan for player 2, andx/0 = y/0 = 1−z0≥ 0.

Proof. The constraints (4.6) and (4.4) implyx+sz0≥ 0, y+ tz0≥ 0,

E(x+sz0) = Ex+(Es)z0 = Ex+ez0 = e,

and similarlyF(y+tz0) = f . By (2.3), the first of each of these equations saysx/0+z0 = 1

andy/0 +z0 = 1, respectively.

By Lemma 4.1, any solution to (4.6) fulfills0≤ z0 ≤ 1. We can regardz0 as a

probability assigned to the starting vector, initiallyz0 = 1. The algorithm terminates

whenz0 = 0, so thatx andy are realization plans and(x,y) is an equilibrium by (4.2).

At intermittent steps of the computation with0 < z0 < 1, the pair(x+ sz0,y+ tz0) of

realization plans can be seen as a mixture of a pair(x,y) and the starting pair(s, t),

chosen with probabilities1− z0 andz0, respectively. Namely, letx = x ·1/(1− z0) and
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y = y·1/(1−z0), so that

x+sz0 = x(1−z0)+sz0, y+ tz0 = y(1−z0)+ t z0. (4.7)

By (4.6), Ex= e(1− z0) andFy = f (1− z0), which implies thatx andy are realization

plans.

The realization planx+sz0 of player 1 plays any sequenceσ in S1 with at leastz0

times the probabilitysσ it has unders, sincex≥ 0. Wheneverxσ > 0, the sequenceσ

has a larger probability than the probabilitysσ z0. Similarly, the realization plany+ tz0

selects some sequencesσ in S2 with probability tσ z0 if yσ = 0, the others with larger

probability yσ + tσ z0. The positive componentsxσ and yσ of x and y are the same as

the positive components ofx andy in (4.7), up to scalar multiplication with1− z0. By

the following lemma, these are best response sequences to the current pair of realization

plans.

Lemma 4.2. Consider a solution(u,v,x,y,z0) to (4.6) and (4.2) withz0 < 1, and let

x = x ·1/(1−z0) andy = y ·1/(1−z0). Then(x,y) is a pair of realization plans wherex

is a best response toy+ tz0 andy is a best response tox+sz0.

Proof. As shown above, (4.6) implies thatx andy are realization plans, and

E>u≥ A(y+ tz0).

By (4.2),x>(E>u−A(y+ tz0)) = x>wx = 0, which is the complementary slackness con-

dition (3.2) withy+ tz0 instead ofy showing thatx is a best response toy+ tz0 (andu a

corresponding optimal dual solution). Similarly,y is a best response tox+sz0.

In order to leave the starting vector(s, t), we need solutions to (4.6) and (4.2) where

z0 < 1 is possible. Wheneverz0 decreases from1, the conditions (2.3) for realization

plans imply that usuallyseveralcomponents ofx (and similarlyy) become simultaneously

nonzero in the equationsEx= e(1−z0), since these are the same homogeneous equations

asEx= e in (2.3), and only the first, nonhomogeneous equationx/0 = 1−z0 is different.

The initial solutionx = 0, y = 0 does not show which components ofx andy should be

increased. One of these components is the first entering variable, the others must belong to
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the initial almost complementary basis. We determine this basis by linear programming,

similarly to Kamiya and Talman (1990) and Dai and Talman (1993), as follows.

Our initialization step is motivated by Lemma 4.2. Compute a best responsex to

t and a best responsey to s. That is,x is a solution to the LP: maximizex>(At) sub-

ject to Ex = e, x ≥ 0, and y to the LP: maximize(s>B)y subject toFy = f , y ≥ 0.

This yields also corresponding optimal dual vectorsu and v so thatx>(E>u−At) = 0

and y>(F>v−B>s) = 0. We can assume thatx and y arebasic solutionsto these two

LPs, for example as they are computed by the simplex algorithm for linear programming.

That is, an invertible submatrix of each matrixE andF (which both have full row rank)

determines the respective basic componentsxσ andyσ which may be positive, and deter-

mines uniquelyu andv, respectively. Then, the initial almost complementary basis for

Lemke’s algorithm containsz0, all components ofu and v, all but one of the variables

xσ andyσ corresponding to the basic LP variablesxσ andyσ above (the missing one is

the first entering variable), and the slack variables(wx)σ and (wy)σ in wx = E>u−At

andwy = F>v−B>s for the other sequencesσ . Later, we come back to some fine points

concerning this initialization step. We summarize what we have found so far.

Algorithm 4.3. Consider an extensive game for two players with perfect recall, and its

sequence form with payoff matricesA andB and constraint matricesE andF for player 1

and player 2, respectively. Choose a starting vector(s, t) fulfilling (4.4). Construct the

mixed LCP with constraints (4.6) and (4.2). Solve this LCP as follows.

(a) Find an initial almost complementary basic solution withz0 = 1 where the basic

variables arez0, all components ofu andv, and all but one of the components ofx

andy representing best response sequences againstt ands, respectively.

(b) Iterate by complementary pivoting steps applied to pairsxσ ,(wx)σ or yσ ,(wy)σ of

complementary variables.

(c) As soon asz0 becomes zero, letz0 leave the basis and pivot. Terminate. The com-

puted equilibrium is(x,y).

We have shown in Lemma 4.1 that in the course of the computation, the values ofx,

y, andz0 determine always a pair of realization plansx+sz0 andy+ tz0 and thus a path
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in the product of the two strategy spaces. We are only interested in this path, since the

basic variables inu andv are uniquely determined.

It remains to show that the algorithmterminates. With the above interpretation, we

can excluderay termination, which may cause Lemke’s algorithm to fail, because the

path cannot leave the strategy space. Before, this was proved by Koller, Megiddo, and

von Stengel (1996) using a rather technical theorem. Thus, the algorithm terminates if the

path is unique in the sense that no basis is revisited. This requires systematicdegeneracy

resolution. We discuss this technical topic in the Appendix.

5. Finding equilibria

Our complementary pivoting algorithm originates with the algorithm by van den Elzen

and Talman (1991) for bimatrix (i.e., generic two-person normal form) games. They

consider a starting vector in the product of the two mixed strategy simplices which are the

players’ strategy spaces. A bimatrix game can be represented by the sequence form ifA

andB are the payoff matrices and bothE andF are just rows of ones ande= f = 1, so

that (2.4) says thatx andy are mixed strategies. With the covering vectord in (4.5), one

can see with the help of Lemma 4.1 that Lemke’s algorithm above is in fact equivalent to

the algorithm by van den Elzen and Talman. For a general sequence form, the shape of

the strategy spaces is new. We will illustrate this aspect with our example.

The starting vector(s, t) is used throughout the computation for reference, since

it determines the system (4.6). As mentioned, the first step is to find a pair(x,y) of

best responses to(s, t). Like van den Elzen and Talman (1991), we assume that these

best responses areunique, so that every optimal move (in a sequenceσ with positive

probability xσ or yσ ) is the only optimal one at its information set. This assumption

(which can be relaxed, see the Appendix) is true for a generic starting vector. Thus,x and

y represent pure strategies, which are vertices of the strategy spaces of player 1 and 2,

respectively.

Consider the line segment that joins(s, t) to (x,y). This is the set of pairs(x(1−
z0) + sz0,y(1− z0) + tz0) for 0 ≤ z0 ≤ 1. An initial part of this line segment, where

(x,y) corresponds to(x,y) by (4.7) andz0 assumes values in some interval[z0,1], is
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the first piece of the path computed by the algorithm. Then+ 1 variables (initial basic

variables and entering variable) whose solutions to (4.6) determine this first line segment

includez0, all variablesxσ andyσ for the sequencesσ that are best responses tot ands,

respectively, and the slack variables(wx)σ and(wy)σ in wx = E>u−A(y+ tz0) andwy =

F>v−B>(x+ sz0) for some of the nonoptimal sequencesσ . Because the best response

sequences are unique, all these slacks arepositivefor z0 = 1 and therefore stay positive if

z0 is slightly smaller than one.

As a side remark concerning the initialization step 4.3(a), note that we allow some

basic variablesxσ or yσ for nonoptimal sequencesσ (which have value zero and do not

matter) in order to get the necessary number of basic variables. This happens if certain

information sets are irrelevant for the best responsesx andy. Technically speaking, the

strategy spaces may not be simple polytopes; as one consequence, we cannot use the

algorithm by Dai and Talman (1993) for our problem.

We now illustrate the progress of the algorithm with our example above. We choose

the following starting vector(s, t), omitting as before the componentss/0, sR, andt /0:

(sL,sRS,sRT) = (3/10,7/20,7/20) and (ta, tb, tc, td) = (1/3,2/3,1/3,2/3).

The starting pointss and t are marked in Figure 5.1 and 5.2 by a dot in the interior of

each strategy space. The unique best response sequence of player 1 tot is RS, and the

unique best response sequences of player 2 tos areb andc, which defines the verticesx

andy, denoted byRSandb,c in Figure 5.1 and 5.2, respectively. Thus, two variables of

xRS,yb,yc are basic and one of them is the first entering variable. The other components of

x andy are nonbasic. The algorithm makes the following steps, indicated in the figures.

1. The first step is the line segment starting at(s, t) in direction(x,y), where with (4.7)

the two realization plansx+ sz0 and y+ tz0 of the two players depend jointly on

z0. That is, the two arrows marked “1.” are traversed simultaneously by reducingz0

from 1 to z0 = 9/16, where the path hits the best response region for the sequence

L of player 1 in Figure 5.2. In terms of the system (4.6), this means that the slack

(wx)L of the payoff for that sequence becomes zero.

In Figure 5.2, the end of the arrow “1.” is the corner of a square, a smaller-sized replica

of the strategy space containing the starting pointt at the same relative position. In other
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Figure 5.1. Strategy space of player 1 with best response sequences of player 2 and com-
putation steps, indicated by arrows or (underlined) steps with no change for
player 1. The starting points is (sL,sRS,sRT) = (3/10,7/20,7/20).

words, we expand a set fromt towards the corners of the strategy space of player 2. This

set contains all realization plans of player 2 where each sequenceσ is played at least with

probability tσ z0. At that corner, only the sequencesb and c of player 2 have positive

componentsyb and yc, whereasya = yd = 0. Similarly, the end of the arrow “1.” in

Figure 5.1 is the corner of a triangle which contains all realization plans of player 1 where

each sequenceσ is played at least with probabilitysσ z0. There, onlyxRS is positive, the

other sequences are played with minimum probability.

2. Since the slack(wx)L has become zero, it is replaced by its complementary variable

xL that is now increased. This is the complementary pivoting step (b) of Algo-

rithm 4.3 where(wx)L leaves andxL enters the basis. WhenxL is increased, then

z0 cannot decrease further, since this would makeRSnonoptimal, or increase, since
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Figure 5.2. Strategy space of player 2 with best responses of player 1 and computation
steps. The starting pointt is (ta, tb, tc, td) = (1/3,2/3,1/3,2/3).

this would makeL nonoptimal (see Figure 5.2), but bothxRS andxL are basic and

may have positive values. Soz0 stays as it is. Furthermore, onlyyb andyc are basic

for player 2, so his position in the corner of the square is unchanged, marked with

“2.” (underlined) in Figure 5.2. For player 1, the arrow “2.” in Figure 5.1 denotes

a relative increase ofxL until the best response set of the sequencea of player 2

is reached. Then, the basic slack variable(wy)a becomes zero and is exchanged

with ya.

3. Currently, the variablesxL andxRS of player 1 are basic, so that(wx)L and(wx)RS

are nonbasic and zero. For player 2, the computed path in Figure 5.2 is therefore now

a segment of the common boundary of the two best response regions forL andRS.

Thereby, the relative size ofya can only increase ifz0 is increased, which shrinks

the set of realizations plans where each sequenceσ has minimum probabilitytσ z0.

This generates a smaller square in Figure 5.2, and, by the same shrinking factor, a

smaller triangle in Figure 5.1, untilxRS becomes zero, which happens whenz0 is
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increased to60/77. That is, the end of the arrow “3.” points to the tip of the small

triangle wherexL is the only positive component ofx. The leaving variablexRS is

replaced by its complement(wx)RS which enters the basis, so that the best response

region forRSin Figure 5.2 can be left.

4. Nothing changes for player 1 in Figure 5.1 sinceya,yb,yc are all basic, soz0 remains

constant. Leaving the best response region forRSmeans thatya is increased, until

yb is zero. This variable is replaced by its complement(wy)b. The best response

region forb in Figure 5.1 can be left.

5. The current basis contains onlyxL,ya,yc, so the best response sequences areL for

player 1 anda and c for player 2. Then,z0 can be decreased again, in fact until

z0 = 0, reaching the equilibrium(x3,y3) with x3
L = 1 andy3

a = y3
c = 1, which is the

end of the computed path.

This example is specifically designed to show that an intermittent increase ofz0 is pos-

sible, which is usually rare, at least for low-dimensional strategy spaces or for bimatrix

games. This behavior, and which equilibrium is found in case the game has more than

one equilibrium, depend on the starting vector. The reader may verify that if the starting

point t of player 2 is changed so that all movesa,b,c,d have equal probability1/2, then

the same equilibrium is reached in three steps, first moving in directionL in Figure 5.1

and directionb,c in Figure 5.2, untila becomes a best response of player 2, then shift-

ing from b to a while z0 is fixed, and finally reaching the equilibrium. For yet another

starting vector where, in addition,s is changed so that all moves of player 1 have equal

probability, that is,sL = sR = 1/2 andsRS= sRT = 1/4, the same equilibrium is reached in

a single step.

By changing the starting vector it is also possible to compute other equilibria. For

example, when the algorithm starts from(s, t) with (sL,sRS,sRT) = (3/10,7/20,7/20) and

(ta, tb, tc, td) = (1/8,7/8,1/3,2/3), then it computes the equilibrium(x2,y2) (see Figures 3.3

and 3.4).

All the equilibria reachable in this manner have a negativeindex (the index of an

equilibrium is the sign of the determinant of a certain matrix related to that equilibrium;

see Shapley, 1974; van der Laan, 1984). However, it is also possible to find positively
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indexed equilibria. Crucial here is the observation that the set of realization plans sat-

isfying (4.6) and (4.2) is in general larger than the piecewise linear path connecting the

starting vector and the related equilibrium. This set includes all other Nash equilibria.

In the first example above with starting vector(s, t), there exists also a piecewise linear

path of vectors connecting the equilibria(x1,y1) and(x2,y2). All these strategy vectors

obey the conditions demanded for by the algorithm. We can therefore find the positively

indexed equilibrium(x1,y1) as follows. In the first stage we find the equilibrium(x2,y2)

when starting from(s, t). Then we consider the system (4.6), (4.2) derived from the first

starting vector(s, t). The equilibrium(x2,y2) is a solution to this system which is not on

the path starting at(s, t). Starting with(x,y) = (x2,y2) andz0 = 0, we start the algorithm

by lettingz0 enter the basis. Then the algorithm computes the equilibrium(x1,y1) by the

following steps.

1′. Basic variables are(wx)L , xRS, xRT, (wy)a, yb, yc, yd. The entering variablez0 is

increased to3/8, where(wx)L becomes zero and leaves the basis.

2′. The entering variablexL is increased to137/560, where (wy)a becomes zero and

leaves. No change occurs forz0 andy.

3′. The entering variableya is increased untilya = 1/8 wherez0 = 0. Thenz0 leaves the

basis. The algorithm terminates with(x,y) = (x1,y1).

In principle, the equilibrium(x1,y1) is computed at the end of step2′ wherex1 =

x+sz0 andy1 = y+ tz0. Since the path ends, van den Elzen and Talman (1991, 1995) let

the algorithm terminate here. We run the method as a special case of Lemke’s algorithm

and include the final step3′ . Driving z0 to zero is also appropriate for the equivalence with

Harsanyi and Selten’s tracing procedure, wherez0 is the probability of playing against the

prior (s, t). This is the topic of the next section.
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6. Game-theoretic interpretation

The computation of the algorithm can be interpreted game-theoretically. We will show

that it mimicks thetracing procedureby Harsanyi and Selten (1988), applied to the nor-

mal form of the game. Furthermore, if the starting vector is completely mixed, then the

computed equilibrium will benormal form perfect. For greater detail we refer to van den

Elzen and Talman (1995) who showed these properties for bimatrix games.

The tracing procedure starts from a commonprior. For two-person games, this is

a pair of strategies describing the preconceptions of the players about the other player’s

behavior. Initially, the players react optimally to these expectations. In general they

observe that their expectations are not fulfilled and thus adjust their expectations about

the behavior of the other player. Besides, more and more information about the game

is revealed. By simultaneously and gradually adjusting the expectations and reacting

optimally against these revised expectations, eventually an equilibrium is reached.

Consider first a bimatrix gameΓ with payoff matricesA andB, as a special case of

a game in sequence form. The tracing procedure generates a path of strategy pairs(x,y).

Each such pair is an equilibrium in a parameterized gameΓ(z0). The prior is the same as

our starting vector(s, t). The payoffs inΓ(z0) are as if each player plays with probability

z0 against the prior and with probability1−z0 against the actual strategy in(x,y) of the

other player. That is, player 1 receives inΓ(z0) expected payoffz0 · x>(At)+ (1− z0) ·
x>(Ay), and player 2 receives payoffz0 · (s>B)y+(1−z0) · (x>B)y.

The tracing procedure starts withz0 = 1, wherex andy are the players’ optimal re-

sponses to the prior. Thenz0 is decreased, changing(x,y) such that it stays an equilibrium

of Γ(z0). Sometimes, changing the value ofz0 may stall (similar to the computation steps

2. and 4. in the example in Section 5), tracing then instead a continuum of equilibria in

Γ(z0) which is usually one-dimensional (the non-standard case is discussed in Schanuel,

Simon, and Zame, 1991). These conditions define the so-calledlinear tracing procedure.

They generate a unique path except for degeneracies, which, given any starting vector,

do not occur for a bimatrix game with generic payoffs. Degeneracies are resolved by the

logarithmic tracing procedure(see Harsanyi and Selten, 1988), which we do not regard

here. The procedure ends withz0 = 0 whereΓ(0) = Γ.
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Generically, the linear tracing procedure suffices and coincides with the logarithmic

tracing procedure. Then, it corresponds to the computation by Algorithm 4.3. InΓ(z0),

player 1 receives payoffs that are the same as the original payoffs inΓ against the random-

ized strategyz0 · t +(1−z0) ·y. This holds because we are dealing with only two players.

Similarly, player 2 receives the original payoffs against the strategyz0 ·s+(1−z0) ·x. By

(4.7), this is the strategy pair(x+ sz0,y+ tz0) where the pair(x,y) is computed by the

algorithm and corresponds to(x,y). Lemma 4.2 asserts that(x,y) is an equilibrium of

Γ(z0).

Thus, the paths generated by the tracing procedure and by the algorithm coincide up

to projection. Whereas the tracing procedure traces a pair of strategies in the full strat-

egy space and considers convex combinations ofpayoffswith weightsz0 and1−z0, the

complementary pivoting algorithm generates the corresponding convex combinations of

strategieswhich belong to a restricted strategy set that expands and shrinks proportionally

to 1− z0. In other words, the tracing procedure generates a path of Nash equilibria for

games with perturbed payoffs, whereas the algorithm delivers a path of Nash equilibria

related to restricted strategy domains. Both methods terminate in the same equilibrium.

The preceding statements apply directly to bimatrix games, as shown by van den

Elzen and Talman (1995). By the same arguments, the computation emulates a suitably

defined tracing procedure for the sequence form. Moreover, we can show that the piece-

wise linear path computed by the algorithm applies also to thenormal formof the game,

where the strategy space of each player is the simplex of his mixed strategies. So far, the

computed path lies in the sequence form strategy space. In Section 2 we have shown that

this strategy space is the image of the simplex of mixed strategies under the linear map de-

fined by (2.2). A suitable pre-image under this map of the computed path in the sequence

form strategy space yields a piecewise linear path in mixed strategies, as follows.

Consider theendpointsof each line segment of the computed path (defined by two

successively computed almost complementary bases, see Section 4). Denote the end-

points of such a line segment by(x̃, ỹ) and(x̂, ŷ), say. LetSbe the line segment connect-

ing x̃ and x̂ in the strategy space of player 1 (the consideration for player 2 is similar).

Consider mixed strategies̃µ andµ̂ of player 1 that have realization plansx̃ andx̂, respec-

tively. In the mixed strategy simplex of player 1, the line segment connectingµ̃ and µ̂ is
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mapped under (2.2) toS since that map is linear. Thus,S can indeed be translated to a

line segment in mixed strategies.

The particular pre-image ofS in the mixed strategy simplex does not matter, because

mixed strategies with the same realization plans are realization equivalent and therefore

payoff equivalent, so the equilibrium property inΓ(z0) is preserved. A canonical choice

for µ̃ and µ̂ are the behavior strategies of player 1 with realization plansx̃ andx̂, respec-

tively. Note, however, that the entire line segmentS should not be translated to behavior

strategies, since this does not yield a line in the mixed strategy simplex if the convex

combinations ofµ̃ and µ̂ are not behavior strategies.

We have shown that we can consider the computed path as a trace in mixed strate-

gies. Following van den Elzen and Talman (1995), we can also show that the computed

equilibrium is normal form perfect if the prior(s, t) is completely mixed. A completely

mixed realization plan assigns positive realization probability to every sequence. The cor-

responding behavior strategy plays every move with positive probability, and considered

as a mixed strategy, it chooses every pure strategy with positive probability.

Lemma 6.1. If the starting vector(s, t) is completely mixed, then Algorithm 4.3 com-

putes an equilibrium that is normal form perfect.

Proof. Let the starting vector(s, t) be completely mixed and let(x∗,y∗) be the computed

equilibrium. Except for its endpoint(x∗,y∗), the last line segment of the computed path

consists of pairs(x+sz0,y+tz0) of realization plans wherez0 > 0, due to condition 4.3(c).

Therefore, these realization plans are, likes and t , completely mixed. The equilibrium

(x∗,y∗) is the limit of these realization plans whenz0 goes to zero, and is a pair ofbest

responsesto these realization plans because of the complementarity condition (4.2), since

x∗ andy∗ have the same basic (that is, positive) components asx andy (a similar argument

was made in the proof of Lemma 4.2). These properties hold also when the computed path

is translated to mixed strategies as described above. According to Selten (1975, Thm. 7),

they imply that the equilibrium(x∗,y∗) is perfect in the normal form.

For bimatrix games, each point on the computed path translates to an equilibrium

of the restrictedgame where each strategy is played at least with the probability it has

under(s, t) · z0. This can also serve to prove that the equilibrium is perfect. Using the
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sequence form, it is better to invoke Selten’s condition as in the preceding proof since

the probabilities for playing pure strategies may vary for realization equivalent mixed

strategies and are therefore not well defined.
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Figure 6.1. Extensive game where the equilibrium(R, r) is normal form perfect but not
extensive form perfect.

The tracing procedure, and the concept of a perfect equilibrium, are different when

they are defined for the extensive form instead of the normal form of the game. The ex-

tensive game in Figure 6.1, taken from van Damme (1987, p. 114), has an equilibrium

(R, r) in pure strategies in the reduced normal form. In the full normal form, the equi-

librium would be written(RS, r). This equilibrium is not extensive form perfect since it

is not even subgame perfect. The only subgame perfect equilibrium is(LS, l). However,

the equilibrium(R, r) is normal form perfect. It is computed by Algorithm 4.3 when

started from the prior(s, t) where(sLS,sLT ,sR) = (1/4,1/2,1/4) and(tl , tr) = (1/5,4/5), say.

The dominated sequence (and strategy)LT has probability zero in the equilibrium(R, r).

However, the sequenceLS has also probability zero, and in approaching the equilibrium,

the probabilities for themovesS and T are as prescribed in the starting vector, which

implies a non-vanishing probability for the dominated moveT . Only at the equilibrium

these move probabilities become undefined.

“Unreasonable” behavior at unreached information sets cannot be excluded with

normal form approaches. Computing with the sequence form is such an approach. How-
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ever, it is trivial to solve subgames first. In Figure 6.1, this removes the equilibrium(R, r)

that is not subgame perfect. Furthermore, perfect equilibria of the RNF are reasonable

solutions for the extensive form game: At unreached information sets, one can define

suitable choices such that the resulting equilibrium isweakly sequentially rational(Reny,

1992; Siniscalchi, 1996). Finally, one can try several (for example, randomly chosen) pri-

ors, to test the sensitivity of the computed equilibrium with respect to the starting point.

We suggest this as a topic for future research.

Appendix: Degeneracy resolution

In an extensive game, certain equilibria may avoid entire branches of the tree. Then, the

behavior of one player in these unreached branches is to some extent arbitrary, like the

probability yd for the sequenced in the set of equilibria(x3,y3) above. In particular,

one of these equilibria hasyd = 0 even thoughd is optimal, that is,(wy)d = 0. This is

a degeneracy, namely, a basis containing a basic variable (eitheryd or (wy)d) which has

value zero. It arises due to the structure of the game tree, even for generic payoffs, and

applies not only to the sequence form but also to the more redundant normal form of the

game.

Degeneracy must be dealt with properly, partly for the following technical reason.

The complementary pivoting algorithm terminates if no almost complementary basis is

revisited. This is the case if the leaving variable is always unique. If there are two vari-

ables that may leave the basis, one of them will stay basic and have value zero after the

pivoting step, so the resulting basis is degenerate. Thus, if degeneracy can somehow be

avoided, the algorithm will terminate in a finite number of steps.

This is achieved by the well-knownlexicographic method, adapted by Koller, Megiddo,

and von Stengel (1996) for our type of algorithm. Consider the system

Iw−Mz−dz0 = q

which is equivalent tow = q+ Mz+ dz0 in (4.3), whereI is the n× n identity matrix.

A basis corresponds to an invertiblen×n submatrixC of [I ,−M,−d], so that the vector

of basic variables isC−1q. An infinitesimal perturbance ofq, replacingq by q(ε) = q+
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(ε,ε2, . . . ,εn)> for some positive but vanishingly smallε , then defines a vectorC−1q(ε)

of basic variables. These are all positive (although some of them may be vanishingly

small) iff the matrix [C−1q,C−1] is lexicographically positive, that is, the first nonzero

entry of each row is positive. The basis is then calledlexico-positive. The invariant that

all computed bases are lexico-positive is preserved by pivoting with the “lexico-minimum

ratio test”, which determines the leaving variable uniquely. The actual values of the basic

variables are stillC−1q, so the computation is unchanged.
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Figure A.1. Partial view of the strategy spaces after artificial perturbance of the LCP data
to achieve nondegeneracy. The labels show that only one equilibrium(x4,y4)
marked with remains from the corresponding infinite set of equilibria in
Figures 3.3 and 3.4.

Applied to our example, this (simulated) perturbation of the LCP data, if it actually

took place withε > 0, would remove the degeneracies in Figure 3.3 and reduce the infinite

set of equilibria(x3,y3) marked by boxes in Figures 3.3 and 3.4 to a singleton. Namely,

the line in Figure 3.3 separating the best response regions forc andd would no longer

hit the vertexxL = 1 but one of the sides of the triangle. Figure A.1 shows one possible

effect of this perturbation, where the set of equilibria becomes the single equilibrium

(x4,y4) in pure strategies withx4
L = 1 and (y4

a,y
4
b,y

4
c,y

4
d) = (1,0,1,0), as can be seen

from the labels of the regions. The other possibility is shown in Figure A.2, where the

equilibrium is(x5,y5) with x5
L being nearly one andx5

RSnearly zero, and(y5
a,y

5
b,y

5
c,y

5
d) =

(1,0,1/12,11/12). Above, we have considered the caseε = 0, wherex3 = x4 = x5 and any

convex combinationy3 of y4 andy5 is an equilibrium strategy of player 2.
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Figure A.2. Similar to Figure A.1, a different perturbance leaves the other extreme equi-
librium (x5,y5) in the formerly infinite set of equilibria.

For the particular order of LCP variablesxL,xRS,xRT,ya,yb,yc,yd that we chose in

this example, the lexicographic rule corresponds to the situation in Figure A.2 (where

x5 is indistinguishable from the vertexxL = 1). In the final computation step shown

in Figure 5.1, the path reaches the degenerate vertexxL = 1 and the algorithm terminates

sincez0 = 0, according to 4.3(c). Applied to the perturbed problem in Figure A.2, it in fact

hits first the best response region for sequenced (labeled©7 in Figure A.2), so that another

pivoting step happens:(wy)d leaves andyd enters the basis, which is increased whilez0 =

0, until the best response region forRSis reached (foryd = 11/12), whereuponxRS enters

the basis, but stays at value zero, andz0 finally leaves. That is, the algorithm, using the

lexicographic rule alone, finds the above equilibrium(x5,y5) rather than the pure strategy

equilibrium (x4,y4). The final degenerate pivoting step is interesting for the following

reason. Koller, Megiddo, and von Stengel (1996) have shown that the algorithm, using

the lexicographic rule untilz0 leaves the basis, terminates in an equilibrium. It may

happen that the variablez0 could leave the basis earlier because it is zero, but thatz0 is

not chosen by the tie-breaking lexicographic rule. So far, it was open whether the extra

test if z0 can leave the basis can shorten the computation. The example shows that such a

shortcut is indeed possible. On the other hand, one may explicitly not take this shortcut

and note that there is an equilibrium, but keep on computing to find a possibly different

equilibrium, here(x5,y5). In Algorithm 4.3, condition (c) prevents this.
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The initial almost complementary basis should also be lexico-positive. This basis,

for z0 = 1, is highly degenerate since it has many basic variables with value zero, namely

the components ofx andy which are basic variables. Which variables should be basic,

and which should be the first entering variable? In order to solve this problem, Lemke’s

algorithm for the standard (not the mixed) LCP can be used from the very beginning,

as described in the remainder of this section. This avoids altogether the initialization

(a) in Algorithm 4.3 by linear programming. However, this is merely a computationally

convenient simplification, and does not affect the interpretation of the algorithm given in

the text, including the initial step. We modify our problem as follows.

Assumption A.1. Every leaf has negative payoffs. The starting vector(s, t) is completely

mixed, that is, it assigns positive probability to every sequenceσ .

Negative payoffs can be achieved by subtracting a suitable constant, which does not

alter the game. Then, the sparse payoff matrices fulfillA≤ 0 andB≤ 0. This implies that

u andv are never positive in any optimal solutions to the dual LPs with constraints (3.1)

and (3.3), respectively, due to the structure ofE andF . Thus, we can replaceu by −u

and require that this new vectoru is nonnegative. Then the problem of maximizing the

expected payoffx>(Ay) has the dual LP: minimize−e>u subject to−E>u≥ Ay, u≥ 0.

The primal LP, in turn, is to maximizex>(Ay) subject toEx≥ e, x≥ 0. That is, instead

of convertingEx= e to the pair of inequalitiesEx≥ e andEx≤ e, we only use the first

of these inequalities. The same is done for the second player.

This yields an LCP in standard inequality form without increasing its dimension.

The new LCP data are

q =




−e
− f
0
0


 , M =




E
F

−E> −A
−F> −B>


 . (A.1)

The LCP variablesz= (u,v,x,y)> andw = (wu,wv,wx,wy)> are all nonnegative.

SinceA≤ 0 andB≤ 0, the covering vectord given by (4.5) is nonnegative and has

positive componentsdi wheneverqi < 0. We can therefore use the original initialization

of Lemke’s algorithm: Letw be the first vector of basic variables. Determine the smallest
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z0 such thatq+ dz0 ≥ 0. This is z0 = 1, where all components ofwu and wv become

zero. Withz0 as entering variable, a component ofw is chosen to leave the basis. Using

the lexicographic rule, all bases are lexico-positive from then on. The components ofwu

and wv, and certain components ofwx and wy, are then successively replaced as basic

variables by components ofu andv andx andy, respectively. These initial pivots are all

degenerate, changing the basis but not the values of the basic variables, untilz0 < 1. The

computation proceeds as before if we can guarantee that the slacks inwu andwv never

become positive.

Lemma A.2. Under Assumption A.1, consider the LCP (4.1) withq,M as in (A.1) and

covering vectord as in (4.5). Then Lemke’s algorithm, using the lexicographic rule and

letting z0 leave the basis as soon asz0 becomes zero, solves (4.1) and finds an equilibrium

(x,y). No component ofwu or wv assumes a positive value during the computation.

Proof. By Theorem 4.4 of Koller, Megiddo, and von Stengel (1996), the algorithm ter-

minates, since, among other things, the matrixM is copositive, that is, z≥ 0 implies

z>Mz≥ 0, which holds becausez>Mz= x>(−A−B)y.

Consider an almost complementary basis computed during the algorithm. We are

interested in the values ofz0,x,y,wu,wv. Assume that, contrary to our claim, there is a

proper inequality inwu = Ex−e(1−z0)≥ 0 with a positive component ofwu. By (2.3),

this means eitherx( /0) > 1−z0 or

∑
c∈Ch

x(σhc) > x(σh) (A.2)

for some information seth. So for some choicec at h, the componentx(σhc) of x is

positive and could be reduced by the value of the slack variable. If the sequenceσhc does

not lead to a leaf, it leads to an information seth′ following h in the tree and appears as

right hand sidex(σh′) in (A.2). By induction, we finally obtain a sequenceσ leading to

a leaf wherexσ can be reduced by a positive amount. Ifx( /0) > 1− z0, this can also be

σ = /0.

By the complementarity condition, the currentx maximizes the linear expression

x>A(y+ tz0) (with y andz0 fixed) subject to

Ex≥ e(1−z0), x≥ 0. (A.3)
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However, the vectorA(y+ tz0) is nonpositive. We have shown that for a sequenceσ

leading to a leaf,xσ can be reduced while preserving (A.3). But this yields a contradiction

since the corresponding component(A(y+ tz0))σ is negative. Indeed, we may assume

z0 > 0 since this is true for the preceding almost complementary basis (otherwise the

algorithm would have terminated) and thus on the last line segment on the computed

path (possibly excluding its endpoint). Furthermore,t is completely mixed, so the leaf is

reached with positive probability. It suffices thaty is nonnegative. Note thaty+ tz0 is not

necessarily a realization plan sinceF(y+ tz0) ≥ f may a priori not hold with equality.

Thus,wu stays zero throughout the algorithm, and so doeswv.

Note that in Lemma A.2, some components ofwu andwv may stay basic variables,

but they will not assume positive values. Of course, once they are replaced by their

complementary components ofu or v, respectively, one can as in 4.3(b) make sure that

they never enter the basis again. The components ofw, in particular ofwu and wv,

correspond to the columns ofI in the matrix[I ,−d,−M] above. These are useful to keep

for the lexicographic rule when pivoting is performed using thetableauC−1[q, I ,−d,−M]

with the basis matrixC.

With a detailed analysis of the tableau during the initial pivoting operations (which

is too long to be presented here), Lemma A.2 can be shown under slightly weaker as-

sumptions. In particular,s and t do not have to be completely mixed. However, this

assumption is also conceptually useful for computing normal form perfect equilibria, as

shown in Section 6.
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