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Abstract. The minimax theorem for zero-sum games is easily proved from the strong 
duality theorem of linear programming. For the converse direction, the standard proof by 
Dantzig is known to be incomplete. We explain and combine classical theorems about solv
ing linear equations with nonnegative variables to give a correct alternative proof more 
directly than Adler. We also extend Dantzig’s game so that any max-min strategy gives 
either an optimal LP solution or shows that none exists.
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1. Introduction and Summary
LP duality (the strong duality theorem of linear programming) is a central result in optimization. It helps proving 
many results with ease, such as the minimax theorem for zero-sum games, first proved by von Neumann in 1928 
(von Neumann [27]). In October 1947, George Dantzig explained his nascent ideas on linear programming to 
John von Neumann (Dantzig [9], p. 45). In response, he got an “eye-popping” lecture on LP duality, which von 
Neumann conjectured to be equivalent to his minimax theorem. This “equivalence” is commonly assumed 
(Schrijver [22], p. 218), but on closer inspection does not hold at all.

“Equivalence” is actually not a good term: All theorems, as logical statements without free variables, are 
equivalent, to “true.” We therefore say that theorem A proves (rather than “implies”) theorem B, typically by a 
suitable but different use of the variables in theorem A, and state straightforward proof relations of this kind as 
propositions (see Proposition 1 for an example).

The classic proof by Dantzig [7] of LP duality from the minimax theorem needs an additional assumption about 
the game solution, namely strict complementarity in the last column of the game matrix that corresponds to the 
right-hand side of the LPs. (We state Dantzig’s game in (35); it differs from the original in a trivial change of signs so 
that the primal LP is a maximization problem subject to upper bounds, in line with the row player in a zero-sum 
game as the maximizer.) This complementarity assumption, acknowledged by Dantzig [7, 8, p. 291], applies only to 
nongeneric LPs and seems technical. Adler [1] fixed this “hole” in Dantzig’s proof and showed how an algorithm 
that solves a zero-sum game can be used to either solve an LP or certify that it has no optimal solution. Recently, 
Brooks and Reny [3] gave a zero-sum game whose solution directly provides such a solution or certificate.

The aim of this article is to clarify the underlying problem, with two new main results (explained later). Our 
narrative is self-contained, not least because LP duality is so familiar that it can be overlooked as a silent assump
tion. For example, reducing optimality of maximizing c⊤x subject to Ax ≤ b, x ≥ 0 to feasibility of Ax ≤ b, x ≥
0, A⊤y ≥ c, y ≤ 0, b⊤y ≤ c⊤x assumes that there cannot be a positive “duality gap” b⊤y� c⊤x, which is the strong 
duality theorem. Our presentation shows how one could prove, in full, LP duality via the minimax theorem, if 
one were to take that route. Some of the presented less-known elegant proofs from the literature are also of his
torical interest.

Dantzig’s assumption holds if a pure strategy that is a best response in every solution of the zero-sum game 
has positive probability in some solution. As noted by Adler [1, p. 167], this can be shown (Raghavan [21, 
p. 742]) using a version of the lemma of Farkas [10]. However, the lemma of Farkas proves LP duality directly. 
Our first, easy observation is that Dantzig’s assumption amounts to the lemma of Tucker [25]. This, in turn, 
directly proves the lemma of Farkas [25, p. 7], even for the special case of Dantzig’s game (Proposition 6). The 
assumption is therefore extremely strong and in a sense useless for proving LP duality from the minimax theo
rem. Curiously, Tucker did not consider the converse that in nearly the same way the lemma of Farkas 
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proves his lemma (see Proposition 8). This suggests that Tucker thought he had proved a more general state
ment. Tucker’s proof of his lemma is indeed short and novel, but in this light, we agree with Adler’s view of 
Tucker’s lemma as a “variant of Farkas’s lemma” (Adler [1], p. 174).

LP duality and the minimax theorem are closely related to solving, respectively, inhomogeneous and homoge
neous linear equations in nonnegative variables. The lemma of Farkas characterizes when the inhomogeneous 
linear equations Ax � b have no solution vector x such that x ≥ 0. The theorem of Gordan [14] characterizes when 
the homogeneous equations Ax � 0 have no solution x ≥ 0 other than the trivial one x � 0. Gordan’s theorem and 
its “inequality version” due to Ville [26] prove the minimax theorem and vice versa.

Our first main result, Theorem 6 in Section 7, is a proper proof of LP duality from the minimax theorem. 
Inspired by Adler [1, section 4], we use Gordan’s theorem to prove the theorem of Tucker [25], an easy but pow
erful generalization of his lemma (like Broyden [4], we think that it deserves more recognition). Tucker’s theorem 
shows that any system of homogeneous equations Ax � 0 such that x ≥ 0 has a natural partition of its solution 
vector x into a set of variables that can take positive values and the others that are zero in any nonnegative solu
tion. It is easy to see that one can drop the nonnegativity requirement for the variables that can be positive. By 
eliminating these unconstrained variables from the system Ax � 0 with a bit of linear algebra, applying Gordan’s 
theorem to the variables that are always zero in any nonnegative solution then gives Tucker’s theorem. Com
pared with the detailed computations of this variable elimination by Adler [1], our proof is self-contained and 
more direct. Using Dantzig’s game (35), Tucker’s theorem proves LP duality in a stronger version, namely the 
existence of a “strictly complementary” solution to the LPs if they are feasible (Proposition 10).

Our second main result, Theorem 7 in Section 8, extends Dantzig’s elegant game (35) with an extra row in (51) 
that “enforces” the desired complementarity in the last column. Every max-min strategy of this game either gives 
an optimal pair of solutions to the primal and dual LPs or represents an unbounded ray for at least one of the 
LPs if it is feasible, so that the other LP is therefore infeasible. This result is similar to Adler’s “Karp-type” reduc
tion of an LP to a zero-sum game (Adler [1], section 3), but with the extra certificate of infeasibility. It is also simi
lar to, and inspired by, the main result of Brooks and Reny [3]. The proof of Theorem 7 (in a separate Theorem 8) 
does not rely on LP duality and was surprisingly hard to find. Compared with either Adler [1] or Brooks and 
Reny [3], our game (51) more naturally extends Dantzig’s original game. Similar to both, it imposes an upper 
bound on the LP variables that does not affect whether the LPs are feasible. This bound follows from Carathéod
ory’s theorem (Carathéodory [5]) that nonnegative solutions x to Ax � b can be found using only linearly inde
pendent columns of A (of which there are only finitely many sets). That bound is determined a priori and of 
polynomial encoding size from the sizes of the entries of A and b if these are integer or algebraic numbers, other
wise abstractly from all “basic solutions” x to Ax � b.

We give a self-contained introduction to linear programming duality (for LPs in inequality form) and to the 
minimax theorem in Section 2. Section 3 recalls how LP duality is proved from the lemma of Farkas. The theo
rems of Gordan [14] and Ville [26] are the topic of Section 4. Stiemke [23] gave a two-page proof of the theorem 
of Gordan (without referencing it, even though published in the same journal, presumably with no editor around 
to remember it). His proof uses implicitly that the null space and row space of a matrix are orthogonal comple
ments. However, there are no matrices in these papers: People manipulated linear equations with their 
unknowns instead. For historical interest and because of its structural similarity to Tucker’s proof of his lemma 
(Tucker [25], pp. 5–7), we reproduce Stiemke’s proof in Section 5. We also present a most elegant half-page proof 
of the minimax theorem due to Loomis [17], which then leads to Gordan’s theorem as an easy additional step. As 
we explain at the end of Section 5, it seems difficult to extend the proof by Loomis to proving LP duality directly, 
which was the original aim of this research.

Section 6 presents the classic derivation of LP duality from the minimax theorem due to Dantzig [7]. Although 
its additional assumption looks minor, we show that it amounts to the lemma of Tucker [25], which, as noted by 
Tucker [25, p. 7], proves the lemma of Farkas. This shows that the assumption is way too strong to make Dant
zig’s derivation useful.

Section 7 proves Tucker’s theorem and thus LP duality from the minimax theorem using Gordan’s theorem. 
As mentioned, this is distilled from Adler [1, section 4]. In Section 8, we add another row to Dantzig’s game to 
obtain a new game where every max-min strategy either gives a solution to the LP or a certificate that no optimal 
solution exists. Theorems 6 and 7 in Sections 7 and 8 are the main results of this paper.

Section 9 gives a detailed comparison of our work with the closely related papers by Adler [1] and Brooks and 
Reny [3].

In Section 10, we present a little-known gem of a proof of the lemma of Farkas from Conforti et al. [6]. Their 
theorem states that a system of inequalities Ax ≤ b is minimally infeasible if and only if the corresponding 
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equalities Ax � b are minimally infeasible. Because the linear equations are infeasible, a suitable linear combina
tion of them states 0 ��1, which proves the lemma of Farkas in this context.

2. LP Duality and the Minimax Theorem
Throughout, m and n are positive integers, and [n] � {1, : : : , n}. All vectors are column vectors. The jth compo
nent of a vector x is written xj. All matrices have real entries. The transpose of a matrix A is written A⊤. Vectors 
and scalars are treated as matrices of appropriate dimension, so that a vector x times a scalar α is written as xα, 
and a row vector x⊤ times a scalar α as αx⊤. The matrix A with all entries multiplied by the scalar α is written as 
αA. We usually transpose vectors rather than the matrix, to emphasize that Ax is a linear combination of the col
umns of A and y⊤A is a linear combination of the rows of A. The all-zero and the all-one vector are written as 0 �
(0, : : : , 0)⊤ and 1 � (1, : : : , 1)⊤, their dimension depending on the context, and the all-zero matrix just as 0. Inequal
ities between vectors or matrices such as x ≥ 0 hold between all components.

An LP in inequality form is given by an m × n matrix A and vectors b ∈ Rm and c ∈ Rn and states, with a vector 
x ∈ Rn of variables:

maximize
x

c⊤x subject to Ax ≤ b, x ≥ 0: (1) 

This LP is called feasible if there is some x ∈ Rn that fulfills the constraints Ax ≤ b and x ≥ 0, otherwise infeasible. If 
there are arbitrarily large values of c⊤x with Ax ≤ b and x ≥ 0, then the LP is called unbounded.

With (1) considered the primal LP, its dual LP states, with a vector y ∈ Rm of variables:

minimize
y

y⊤b subject to y⊤A ≥ c⊤, y ≥ 0, (2) 

with feasibility and unboundedness defined accordingly. An equivalent way of writing the dual constraints in 
(2) is A⊤y ≥ c, which transposes only the matrix and can be more readable.

The weak duality theorem states that if both primal and dual LP have feasible solutions x and y, respectively, 
then their objective function values are mutual bounds, that is,

c⊤x ≤ y⊤b, (3) 

which holds because feasibility implies c⊤x ≤ y⊤Ax ≤ y⊤b. Hence, if there are feasible solutions x and y so that the 
two objective functions are equal, c⊤x � y⊤b, then both are optimal. The (strong) LP duality theorem states that this 
is always the case if the two LPs are feasible.

Theorem 1 (LP Duality). If the primal LP (1) and the dual LP (2) are feasible, then there exist feasible x and y with 
c⊤x � y⊤b, which are therefore optimal solutions.

A zero-sum game is given by an m × n matrix A and is played between a row player, who chooses a row i of the 
matrix, simultaneously with the column player, who chooses a column j of the matrix, after which the row player 
receives the matrix entry aij from the column player as a payoff (which is a cost to the column player). That is, the 
row player is the maximizer and the column player the minimizer. The rows and columns are called the players’ 
pure strategies.

The players can randomize their actions by choosing them according to a probability distribution, called a mixed 
strategy. The other player may know the probability distribution but not the chosen pure strategy. The row player 
is then assumed to maximize his expected payoff and the column player to minimize her expected cost. We denote 
the set of mixed strategies of the row player by

Y � {y ∈ Rm |y ≥ 0, 1⊤y � 1}, (4) 

and of the column player by

X � {x ∈ Rn |x ≥ 0, 1⊤x � 1}, (5) 

to stay close to the LP notation (normally row and column player are considered as first and second player, 
respectively, so that the letters for their mixed strategies should be in alphabetical order, but this is already vio
lated with the very common naming of the LP variables x ∈ Rn and y ∈ Rm).

With mixed strategies y and x of row and column player, the expected payoff to the maximizing row player 
and expected cost to the minimizing column player is y⊤Ax.

The minimizing column player who chooses a mixed strategy x should expect that the row player responds 
with a mixed strategy y (called a best response) that maximizes her payoff y⊤Ax. That best-response payoff 
maxy∈Yy⊤Ax is the weighted sum 

P
i∈[m]yi(Ax)i of the expected payoffs (Ax)i for the rows i and therefore equal to 
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their maximum, which in turn is the least upper bound v of these row payoffs. That is,
max
y∈Y

y⊤Ax �max
i∈[m]

(Ax)i �min{v ∈ R |Ax ≤ 1v}: (6) 

A min-max strategy x of the column player minimizes this worst-case cost v that he has to pay, that is, it is an opti
mal solution to

minimize
x, v

v subject to Ax ≤ 1v, x ∈ X, (7) 

and then v is called the min-max value of the game.
Similarly, a max-min strategy y and the max-min value u is an optimal solution to

maximize
y, u

u subject to y⊤A ≥ u1⊤, y ∈ Y: (8) 

The minimax theorem of von Neumann [27] states
max
y∈Y

min
x∈X

y⊤Ax � v � min
x∈X

max
y∈Y

y⊤Ax, (9) 

where the unique real number v is called the value of the game. Via (6) and the corresponding expression for 
minx∈Xy⊤Ax (the best-response cost to y ∈ Y), we state this as follows.

Theorem 2 (Minimax Theorem). Consider optimal x, v for (7) and y, u for (8). Then u � v (the value of the game), x is a 
min-max strategy, and y is a max-min strategy.

The LP (7) is in general form with an equation 1⊤x � 1 and an unconstrained variable v (with –v to be maxi
mized), and so is (8), which is the dual LP to (7) with u as the unconstrained variable (with – u to be minimized) 
that corresponds to the equation for X written as �1⊤x ��1. Because both LPs are feasible, the strong duality 
theorem (which also holds for LPs in general form) implies that their optimal values are equal (�v ��u), which 
proves Theorem 2.

One can avoid stating LPs in general form by ensuring that the min-max value is positive, by adding a con
stant α to the payoffs aij, which defines a new payoff matrix A+ 1α1⊤. Then for y ∈ Y and x ∈ X:

y⊤(A+ 1α1⊤)x � y⊤Ax+ y⊤1α1⊤x � y⊤Ax+ α, (10) 

which shows that best responses and min-max and max-min strategies are unaffected and the corresponding 
values just shifted by α. If all entries of A are positive, then v > 0 for any feasible v in (7). Division of each row in 
(7) by v (where we now maximize 1=v) then gives the LP

maximize
x

1⊤x subject to Ax ≤ 1, x ≥ 0, (11) 

with its dual
minimize

y
y⊤1 subject to y⊤A ≥ 1⊤, y ≥ 0: (12) 

Both LPs are feasible with nonzero optimal solutions x and y, which give the min-max and max-min strategies xv 
and yv with v � 1=1⊤x � 1=1⊤y and game value v.

These are the standard ways to derive the minimax theorem from LP duality (Dantzig [8], section 13-2). Section 
6 describes the classical converse approach, which we show to be incomplete.

3. Lemma of Farkas and LP Duality
The standard way to prove the LP duality theorem uses the lemma of Farkas [10], stated in (13), which charac
terizes when an inhomogeneous system Ax � b of linear equations has no solution x ≥ 0 in nonnegative variables. 
Two related theorems are (14) and (15). The following proposition asserts how close they are by using the respec
tive matrix in different ways (we say “proves” rather than “implies” because it is not the same matrix).

Proposition 1. Let A ∈ Rm×n and b ∈ Rm. Then each of the following three assertions proves the others: The lemma of Far
kas with equalities and nonnegative variables

@x ∈ Rn : Ax � b, x ≥ 0 � ∃y ∈ Rm : y⊤A ≥ 0⊤, y⊤b < 0, (13) 

the lemma of Farkas with inequalities and nonnegative variables

@x ∈ Rn : Ax ≤ b, x ≥ 0 � ∃y ∈ Rm : y⊤A ≥ 0⊤, y ≥ 0, y⊤b < 0, (14) 
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and the lemma of Farkas with inequalities and unconstrained variables

@x ∈ Rn : Ax ≤ b � ∃y ∈ Rm : y⊤A � 0⊤, y ≥ 0, y⊤b < 0: (15) 

Proof. In (13), (14), and (15), the direction “⇐” is immediate, for example in (13) because y⊤A ≥ 0⊤ and Ax � b, 
x ≥ 0 imply y⊤b � y⊤Ax ≥ 0 which contradicts y⊤b < 0. We therefore only consider “⇒.” Condition (13) proves 
(14) by writing Ax ≤ b as Ax + s � b, s ≥ 0 for a vector of slack variables s ∈ Rm, and then applying (13) to the matrix 
[A I] instead of A, where I is the m × m identity matrix.

Conversely, if there is no solution x ≥ 0 to Ax � b, that is, to Ax ≤ b and �Ax ≤�b, then by (14), there are non
negative y+, y� ∈ Rm with (y+)⊤A� (y�)⊤A ≥ 0⊤ and (y+)⊤b� (y�)⊤b < 0. This shows (13) with y � y+� y�.

Condition (15) follows from (14) by writing Ax ≤ b in (15) as Ax+ �Ax� ≤ b with nonnegative x+ and x–. The 
converse holds by writing Ax ≤ b, x ≥ 0 in (14) as Ax ≤ b, � x ≤ 0 in (15). w

These versions of the lemma of Farkas are “theorems of the alternative” in that exactly one of two conditions is 
true, as in (13): Either there is a solution x to Ax � b, x ≥ 0, or a solution y to y⊤A ≥ 0⊤, y⊤b < 0, but not to both. 
We always state such theorems so that “⇒” is the nontrivial direction.

The following is standard (Gale [11], p. 79), and similar arguments as used in the proof will be used 
repeatedly.

Proposition 2. The inequality version (14) of the lemma of Farkas proves LP duality.

Proof. Suppose that the primal LP (1) has a feasible solution x and the dual LP (2) has a feasible solution y and 
that, contrary to the claim of the LP duality theorem, there are no feasible x and y so that c⊤x � y⊤b. That is, the 
system of inequalities

Ax ≤ b
�A⊤y ≤�c

b⊤y� c⊤x ≤ 0 (16) 

has no solution (y, x) ∈ Rm × Rn with y ≥ 0 and x ≥ 0. Hence, by (14) (written transposed), there are nonnegative 
(ŷ, x̂, t) ∈ Rm × Rn × R such that

�Ax̂ + bt ≥ 0
A⊤ŷ� ct ≥ 0

b⊤ŷ� c⊤x̂ < 0: (17) 

If t > 0, then x̂ 1
t and ŷ 1

t are feasible solutions to the primal (1) and dual (2) with 1t ŷ⊤b < c⊤x̂ 1
t in violation of weak 

duality (3). If t � 0, then Ax̂ ≤ 0 and ŷ⊤A ≥ 0⊤. The last inequality in (17) implies that at least one of the inequal
ities ŷ⊤b < 0 or 0 < c⊤x̂ holds. Suppose the latter. For α ∈ R we have A(x + x̂α) ≤ b and x + x̂α ≥ 0, but c⊤(x +
x̂α) →∞ as α→∞, that is, the objective function of the primal LP is unbounded, contradicting its upper bound 
y⊤b from the dual LP. Similarly, ŷ⊤b < 0 implies that the dual LP is unbounded and thus the primal LP infeasible, 
again a contradiction. This shows that (16) has a nonnegative solution (y, x) with y⊤b ≤ c⊤x and thus y⊤b � c⊤x by 
weak duality, as claimed. w

The converse also holds, as well as a useful extension of LP duality.

Proposition 3. The LP duality Theorem 2 proves (14). Moreover, if the primal LP (1) is infeasible and the dual LP (2) is 
feasible, then the dual LP is unbounded.

Proof. Suppose there is no x ≥ 0 with Ax ≤ b. Then the LP (with a new scalar variable t)

maximize
x, t

�t subject to Ax� 1t ≤ b, x ≥ 0, t ≥ 0 (18) 

(which is feasible by choosing t ≥�bi for all i ∈ [m] and x � 0) has an optimum solution with t > 0. The dual LP to 
(18) states

minimize
y

y⊤b subject to y⊤A ≥ 0⊤, � y⊤1 ≥�1, y ≥ 0, (19) 

is feasible with y � 0, and therefore has an optimal solution y ≥ 0 with equal objective function value to the pri
mal, that is, y⊤b ��t < 0. This shows (14).
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To prove the second part, suppose y⊤A⊤ ≥ c⊤ for some y ≥ 0. Then with the preceding y ≥ 0 such that y⊤b < 0 
we have (y⊤ + αy⊤)A ≥ c⊤ and y + yα ≥ 0 and (y⊤ + αy⊤)b→�∞ as α→∞. w

4. Theorems of Gordan and Ville
The lemma of Farkas with equalities (13) characterizes when the inhomogeneous linear equations Ax � b have no 
solution x ≥ 0 in nonnegative variables. The following theorem (20) of Gordan [14] for homogeneous equations 
characterizes when the system Ax � 0 has no nontrivial solution x ≥ 0. Its “inequality version” (21) is known as 
the theorem of Ville [26]. Ville’s theorem essentially states the minimax theorem for a game with positive value. 
To prove the minimax theorem from Ville’s theorem, the game should have its value normalized to zero. A com
mon way to achieve this is to symmetrize the game (Gale et al. [12]). Instead, we shift the payoffs as in (10) so 
that the max-min value is zero. The min-max and max-min values in (7) and (8) exist without having to assume 
LP duality.

Proposition 4. Let A ∈ Rm×n. Then the following theorem (20) of Gordan proves the theorem (21) of Ville and vice versa, 
and (21) proves the minimax theorem and vice versa:

@x ∈ Rn : Ax � 0, x ≥ 0, x ≠ 0 � ∃y ∈ Rm : y⊤A > 0⊤, (20) 

@x ∈ Rn : Ax ≤ 0, x ≥ 0, x ≠ 0 � ∃y ∈ Rm : y⊤A > 0⊤, y ≥ 0: (21) 

Proof. Assume (20) holds. We prove (21). Suppose there is no x ∈ Rn with Ax ≤ 0, x ≥ 0, x ≠ 0. Then there is no 
x ∈ Rn and s ∈ Rm with Ax+ s � 0 and x ≥ 0, s ≥ 0, and (x, s)≠ (0, 0) (this clearly holds if x ≠ 0, and if x � 0, then 
s � 0). Hence, by (20), there is some y ∈ Rm with y⊤A > 0⊤ and y > 0 and thus y ≥ 0. This shows the nontrivial 
direction “⇒” in (21).

Conversely, suppose there is no x ≥ 0, x ≠ 0 with Ax � 0 and hence no x ≥ 0, x ≠ 0 with Ax ≤ 0 and �Ax ≤ 0. 
Then by (21), there exist y+ ≥ 0 and y� ≥ 0 with (y+)⊤A+ (y�)⊤(�A) > 0⊤, that is, (y+� y�)⊤A > 0⊤, which shows 
(20) with y � y+ � y�.

Assume the minimax Theorem 2 holds for the game matrix A. The left-hand side of (21) states that the value v 
of the game is positive, because otherwise there would be a mixed strategy x ∈ X with nonpositive min-max 
value v in (7). With the optimal y ∈ Y and u > 0 in (8), we have y⊤A ≥ u1⊤ > 0⊤ as asserted in (21).

Conversely, assume (21) and consider a game matrix A. Let u be its max-min value and y ∈ Y be a max-min 
strategy as in (8). Let A′ � A� 1u1⊤. Then y⊤A′ � y⊤A� u1⊤ ≥ 0⊤. We claim that A′x ≤ 0 for some x ∈ X. If not 
then there is no x ≥ 0, x ≠ 0 with A′x ≤ 0 (otherwise scale x so that x ∈ X), and therefore by (21), we have y⊤A′ >
0⊤ for some y ≥ 0. Because y ≠ 0, we can scale y such that y ∈ Y and choose ε > 0 such that y⊤A′ ≥ ε1⊤ and hence 
y⊤A ≥ (u+ ε)1⊤, which contradicts the maximality of u in (8). Hence, there is x ∈ X with A′x ≤ 0, so A′ has min- 
max value zero and therefore A has min-max value u, which proves the minimax theorem. w

5. Theorems of Stiemke and Loomis
This section is about two proofs of the minimax theorem, for example, to use it for proving LP duality. For histor
ical interest, we first reproduce a short proof of Gordan’s theorem (20) by Stiemke [23]. In modern language, it 
uses the property that the null space and row space of a matrix are orthogonal complements, as stated in (25). 
We state this property as the following “theorem of the alternative” about the solvability of linear equations 
without nonnegativity constraints, which is well known (Kuhn [15]). We also use this lemma in Section 10 for a 
short proof of the lemma of Farkas.

Lemma 1. Let A ∈ Rm×n and b ∈ Rm. Then

@x ∈ Rn : Ax � b � ∃y ∈ Rm : y⊤A � 0⊤, y⊤b ≠ 0: (22) 

Proof. We show the nontrivial direction “⇒.” Assume that b is not a linear combination of the columns 
A1, : : : , An of A. Let k be the column rank of A and {Aj}j∈K be a basis of the column space of A, with |K | � k ≥ 0, 
and let AK be the matrix of these columns. By assumption, the m × (k+ 1) matrix [AK b] has rank k + 1, which is 
also its row rank. Its rows span therefore all of R1×(k+1), in particular the vector (0⊤, 1), that is, y⊤AK � 0⊤ and 
y⊤b � 1 for some y ∈ Rm. Any other column Aj of A for j ∉ K is a linear combination of the basis columns, Aj �

AKz(j) for some z(j) ∈ Rk, which implies y⊤Aj � y⊤AKz(j) � 0. This shows that overall y⊤A � 0⊤ and y⊤b ≠ 0, as 
required. w
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Theorem 3 (Stiemke [23]). Let A ∈ Rm×n. Then

@y ∈ Rm : y⊤A ≥ 0⊤, y⊤A ≠ 0 � ∃x ∈ Rn : Ax � 0, x > 0: (23) 

Proof. Define
rowspace(A) � {y⊤A |y ∈ Rm},
nullspace(A) � {x ∈ Rn |Ax � 0}:

(24) 

We have for c ∈ Rn

c⊤ ∈ rowspace(A) � ∀x ∈ nullspace(A) : c⊤x � 0, (25) 

because this is equivalent to

∃y : y⊤A � c⊤ � @x : Ax � 0, c⊤x ≠ 0, (26) 

which (with both sides negated) is the transposed version of (22).
The nontrivial direction in (23) is “⇒.” It states: Suppose 0⊤ is the only nonnegative vector in rowspace(A). 

Then there is some x ∈ nullspace(A) with x > 0. We show this by induction on n. If n � 1, then the single column of 
A is 0, and we can choose x � 1. Let n > 1 and suppose the claim is true for n � 1.

Case 1. There is some a ∈ Rn�1, a ≥ 0, a ≠ 0 so that (1, � a⊤) ∈ rowspace(A). Consider a set of row vectors (1, � a⊤), 
(0, a⊤2 ), … , (0, a⊤m) that span rowspace(A) (easily obtained from the rows of A). There is no w ∈ Rm�1 such that c⊤ �
Pm

i�2 wi�1 a⊤i is nonnegative and nonzero, because otherwise (0, c⊤) is in rowspace(A) and nonnegative and non
zero. Hence, by inductive hypothesis, there is some z ∈ Rm�1, z > 0, such that a⊤i z � 0 for 2 ≤ i ≤m. Then 

x1 � a⊤z > 0, and x � x1
z

� �

∈ nullspace(A) by (25) because (1, � a⊤)x � 0 and (0, a⊤i )x � 0 for 2 ≤ i ≤m, and x > 0.

Case 2. Otherwise, consider any y ∈ Rm and let (c1, c⊤) � y⊤A with c ∈ Rm�1. Then c ≥ 0 implies c � 0, which holds 
by assumption if c1 ≥ 0, and if c1 < 0 and c ≥ 0, c ≠ 0 then (1, 1

c1
c⊤) ∈ rowspace(A) and Case 1 applies. By inductive 

hypothesis, there is some z ∈ Rm�1, z > 0, such that A
�

0
z

�
� 0. If x1 � 0 for all x ∈ nullspace(A) then by (25), we 

have (1, 0, : : : , 0) ∈ rowspace(A) contrary to assumption. Therefore, there is some x′ ∈ nullspace(A) with x′1 > 0, and 
therefore x � x′ε+

�
0
z

�
> 0 for sufficiently small ε > 0, where Ax � 0. This completes the induction. w

The preceding theorem is statement I of Stiemke [23], and Gordan’s theorem (20) is statement II.

Proposition 5. Stiemke’s Theorem 3 proves Gordan’s theorem (20).

Proof. Let A ∈ Rm×n. Let {b1, : : : , bk} with k ≥ 1 be a spanning set of nullspace(A) and B � [b1: : :bk]. Then for b and c 
in Rn:

b ∈ nullspace(A)� b⊤ ∈ rowspace(B⊤), (27) 
and, using (25),

c⊤ ∈ rowspace(A)
� ∀x ∈ nullspace(A) : c⊤x � 0
� c⊤bi � 0 (1 ≤ i ≤ k)
� c⊤B � 0⊤

� c ∈ nullspace(B⊤): (28) 

Stiemke’s theorem (23) applied to B⊤ instead of A states

@b⊤ ∈ rowspace(B⊤), b ≥ 0, b ≠ 0 � ∃ c ∈ nullspace(B⊤) : c > 0, (29) 

which by (27) and (28) is equivalent to

@b ∈ nullspace(A), b ≥ 0, b ≠ 0 � ∃ c⊤ ∈ rowspace(A) : c > 0, (30) 

which is Gordan’s theorem (20). w

Via Propositions 4 and 5, Stiemke’s Theorem 3 therefore proves the minimax theorem. Using symmetric 
games, this was also shown by Gale et al. [12].

Our favorite proof of the minimax theorem is based on the following theorem.

von Stengel: Zero-Sum Games and Linear Programming Duality 
Mathematics of Operations Research, 2024, vol. 49, no. 2, pp. 1091–1108, © 2023 INFORMS 1097 



Theorem 4 (Loomis [17]). Let A and B be two m × n matrices with B > 0. Then there exist x ∈ X, y ∈ Y, and v ∈ R such 
that Ax ≤ Bxv and y⊤A ≥ vy⊤B.

The case B � 1 1⊤ gives the minimax theorem. Conversely, the minimax theorem proves Theorem 4 (Laraki et al. 
[16], p. 19): Because B > 0, the value of the game A� αB is negative for sufficiently large α, positive for sufficiently 
negative α, is a continuous function of α, and therefore zero for some α, which then gives Theorem 4 with v � α.

The following is the proof by Loomis [17] of Theorem 4 specialized to the minimax theorem. It is an induction 
proof about the min-max value v and max-min value u (which exist, irrespective of LP duality). It is easy to 
remember: If the players have optimal strategies that equalize v and u for all rows and columns, then u � v. Oth
erwise (if needed by exchanging the players), there is at least one row with lower payoff than v, which will any
how not be chosen by the row player. By omitting this row from the game, the minimax theorem holds (using a 
bit of convexity and continuity) by the inductive hypothesis.

Proof of Theorem 2. Consider optimal solutions v, x to (7) and u, y to (8), where
u � u1⊤x ≤ y⊤Ax ≤ y⊤1v � v: (31) 

We prove u � v by induction on m + n. It holds trivially for m+ n � 2. If all inequalities in (31) hold as equalities, 
then u � v. Hence, assume that at least one inequality is strict, say (Ax)k < v for some row k ∈ [m] (the case for a 
column is similar). Let A be the matrix A with the kth row deleted. By induction hypothesis, A has game value v 
with Ax ≤ 1v for some x ∈ X, where it is easy to see that

v ≤ v, v ≤ u, (32) 

because, compared with A, the game A strengthens the minimizing column player.
We claim that v � v. Namely, if v < v, let 0 < ε ≤ 1 and consider the strategy x(ε) � x(1� ε) + xε where x ∈ X 

because X is convex. Then
Ax(ε) � A(x(1� ε) + xε) ≤ 1v(1� ε) + 1vε � 1(v� ε(v� v)) < 1v: (33) 

For the missing row k of A where (Ax)k < v, we have for sufficiently small ε
(Ax(ε))k � (Ax)k(1� ε) + (Ax)kε < v: (34) 

Hence, Ax(ε) < 1v for some x(ε) ∈ X, in contradiction to the minimality of v in (7). This shows v � v, and, by (32), 
v ≤ u ≤ v � v and therefore u � v. This completes the induction. w

The proof by Loomis [17] has been noted (in particular by von Neumann and Morgenstern [28], p. vi) but is not 
widely known, and should be a standard textbook proof (as in von Stengel [29], p. 216). (A better title of Loomis’s 
paper would have been “An elementary proof of the minimax theorem,” given that Theorem 4 is not substantially 
more general.) It was, in essence, rediscovered by Owen [19]. However, Owen needlessly manipulates the max- 
min strategy y; the proof by Loomis is more transparent. Owen’s proof is discussed further by Binmore [2].

The research in this paper originated with an attempt to extend the induction proof by Loomis to a direct proof 
of LP duality, via the existence of a strictly complementary pair of optimal strategies in a zero-sum game, applied 
to Dantzig’s game in (35). This existence seems to be difficult to prove within this induction. For example, the 

game 1 2 0
1 0 2

� �

has a max-min and min-max strategy where every pure best response is played with positive 

probability (such as both players mixing uniformly), but also the left column as a pure min-max strategy. How
ever, omitting the unplayed second or third column in an induction would alter the game substantially, because 
then a strictly complementary pair has the first column as a unique min-max strategy, with a positive slack in the 
column that was not omitted.

6. Minimax Theorem and LP Duality
The following theorem assumes the minimax theorem.

Theorem 5 (Dantzig [7]). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Consider the zero-sum game with the payoff matrix B (with k �
m+ n+ 1 rows and columns) defined by

B �

" 0 A �b
�A⊤ 0 c

b⊤ �c⊤ 0

#

: (35) 
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Then B has value zero, with a min-max strategy z � (y, x, t) ∈ Rm × Rn × R that is also a max-min strategy, with Bz ≤ 0. If 
zk � t > 0 then x 1

t is an optimal solution to the primal LP (1) and y 1
t is an optimal solution to dual LP (2). If (Bz)k < 0 then 

t � 0 and at least one of the LPs (1) or (2) is infeasible.

Proof. Because B ��B⊤, this game is symmetric, and its game value v is zero. Let z � (y, x, t). Then Bz ≤ 0 states 
Ax� bt ≤ 0, �A⊤y+ ct ≤ 0, and b⊤y� c⊤x ≤ 0. If t > 0, then x 1

t and y 1
t are primal and dual feasible with b⊤y 1

t ≤

c⊤x 1
t and therefore optimal.

If (Bz)k < 0, that is, b⊤y� c⊤x < 0, then t > 0 would violate weak duality, so t � 0. Moreover, Ax ≤ 0 and 
y⊤A ≥ 0⊤, and y⊤b < 0 or 0 < c⊤x. As shown following (17), this implies infeasibility of at least one of the LPs (1) 
or (2). w

Hence, Theorem 5 seems to show that the minimax theorem proves LP duality. The known “hole” in this argu
ment is that it is does not cover the case of a min-max strategy z where zk � 0 and (Bz)k � 0, which is therefore 
uninformative, as noted by Dantzig [8, p. 291]. Luce and Raiffa [18, p. 421] claim without proof (or forgot a refer
ence, e.g., to corollary 3A in Goldman and Tucker [13]) that if (Bz)k � 0 for all min-max strategies z, then zk > 0 
for some max-min strategy z. Because B is skew-symmetric (B ��B⊤), this would solve the problem with z as a 
min-max strategy. We will show that this assumption is essentially the lemma of Tucker [25, p. 5] for the case of 
a skew-symmetric matrix. Already for the special case of B in (35), this proves the lemma of Farkas (14) (see also 
Broyden [4], theorem 1.1), and this defeats the purpose of proving LP duality from the minimax theorem.

Proposition 6. Consider B in (35) with c � 0, and suppose that there is always some z ≥ 0 with Bz ≤ 0 and zk� (Bz)k > 0. 
Then this proves (14).

Proof. Let z � (y, x, t) as described, where Ax� bt ≤ 0 and �A⊤y ≤ 0 and b⊤y ≤ 0 because Bz ≤ 0, and zk� (Bz)k �
t� b⊤y > 0. Then if t > 0, we have Ax 1

t ≤ b, and if t � 0, then y⊤A ≥ 0⊤ and y⊤b < 0, which proves (14). w

The lemma of Tucker comes in several variants.

Proposition 7. Let A ∈ Rm×n. Then the following lemma of Tucker

∃y ∈ Rm, x ∈ Rn : y⊤A ≥ 0⊤, x ≥ 0, Ax � 0, xn + (y⊤A)n > 0 (36) 

proves the following inequality version and vice versa:

∃y ∈ Rm, x ∈ Rn : y ≥ 0, y⊤A ≥ 0⊤, x ≥ 0, Ax ≤ 0, xn + (y⊤A)n > 0, (37) 

and similarly its version for a skew-symmetric matrix B ∈ Rk×k, that is, B ��B⊤:

∃z ∈ Rk : z ≥ 0, Bz ≤ 0, zk� (Bz)k > 0: (38) 

Proof. Applying (36) to the matrix [I A] with the identity matrix I gives (37). For the converse, write Ax � 0 as 
Ax ≤ 0, �Ax ≤ 0.

Condition (38) follows from (37) with A � B and z � x+ y because �Bz � z⊤B and yn ≥ 0 and (x⊤B)n ≥ 0. For the 

converse, use B � 0 A
�A⊤ 0

� �

and z � y
x

� �

. w

Tucker [25, p. 7] used (36) to prove the lemma of Farkas in its version (13). Less known, but similarly easy, is 
that the converse holds as well.

Proposition 8. The lemma of Farkas (13) proves Tucker’s lemma (36).

Proof. Let A � [A1 ⋯ An] ∈ Rm×n. By (13), either 
Pn�1

j�1 Ajzj ��An for some z ∈ Rn�1 with z ≥ 0, in which case let 

x � z
1

� �

and y � 0, or otherwise y⊤Aj ≥ 0 for 1 ≤ j < n and y⊤(�An) < 0 for some y ∈ Rm, in which case let x � 0. In 

both cases we have Ax � 0 and xn + y⊤An > 0, and (36) holds. w

In the next section, we show a proper way of proving LP duality from the minimax theorem.

7. Proving Tucker’s Theorem from Gordan’s Theorem
In Tucker’s lemma (36), the last (nth) column of the matrix A plays a special role, which can be taken by any other 
column. This proves the following stronger version (39) known as the theorem of Tucker [25, p. 8].
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Proposition 9. Let A ∈ Rm×n. Tucker’s lemma (36) proves Tucker’s theorem

∃y ∈ Rm, x ∈ Rn : y⊤A ≥ 0⊤, x ≥ 0, Ax � 0, x⊤ + y⊤A > 0⊤: (39) 

Proof. Let j ∈ [n]. By applying (36) to the jth column of A with j instead of n, choose y(j) ∈ Rm and x(j) ∈ Rn such 
that

(y(j))⊤A ≥ 0⊤, x(j) ≥ 0, Ax(j) � 0, x(j)j + ((y
(j))⊤A)j > 0: (40) 

Then y �
P

j∈[n]y(j) and x �
P

j∈[n]x(j) fulfill (39). w

Tucker’s theorem (39) is a very versatile theorem that proves a number of theorems of the alternative (Tucker 
[25]), for example, immediately Gordan’s theorem (20) or Stiemke’s Theorem 3.

Theorem 6 in this section shows that Gordan’s theorem (20) proves Tucker’s theorem (39). It is based on the 
following observation. If Ax � 0 and x ≥ 0, then any y with y⊤A ≥ 0⊤ has the property that if xj > 0 then (y⊤A)j � 0 
because otherwise 0 � y⊤Ax �

P
j∈[n](y⊤A)jxj > 0. Hence, (39) implies that the support

S � supp(x) � {j ∈ [n] |xj > 0} (41) 

of x is unique. The main idea is that the nonnegativity constraints for the variables xj for j ∈ S can be dropped 
and these variables therefore be eliminated, which allows applying Gordan’s theorem to the remaining variables. 
The following proof is distilled from the more complicated computational approach of Adler [1, section 4].

Theorem 6. Gordan’s theorem (20) proves Tucker’s theorem (39).

Proof. Let A � [A1 ⋯ An]. For any S ⊆ [n] and J � [n]� S write A � [AJ AS] and x � (xJ, xS) for x ∈ Rn. If 
Ax � 0, x ≥ 0, Ax′ � 0, x′ ≥ 0, then A(x+ x′) � 0, x+ x′ ≥ 0, and supp(x+ x′) � supp(x) ∪ supp(x′). Choose S as the 
inclusion-maximal support of any x ≥ 0 such that Ax � 0. Then any y with y⊤A ≥ 0⊤ fulfills y⊤AS � 0⊤ (because 
otherwise y⊤Ax � y⊤ASxS > 0).

Conversely, (39) states xj + y⊤Aj > 0 for all j ∈ [n], which requires y⊤Aj > 0 for j ∈ J � [n]� S. We now show that 
there indeed exist y ∈ Rm and x � (0, xS) such that

y⊤AJ > 0⊤, y⊤AS � 0⊤, Ax � ASxS � 0, xS > 0, (42) 

which implies (39). Consider some x̃ ≥ 0 with maximum support S � supp(x̃) such that Ax̃ � 0, that is, x̃S > 0. 
If S � [n] we are done. Let k be the rank of AS. Suppose k � m. We claim that then S � [n], which implies (39) 
with y � 0. Namely, if j ∈ [n]� S, then Aj � ASx̂S for some x̂S because AS has full rank, and, therefore, 
Aj +AS(x̃Sα� x̂S) � 0, where x̃Sα� x̂S > 0 for sufficiently large α, which gives a solution x ≥ 0 to Ax � 0 with 
supp(x) � {j} ∪ S in contradiction to the maximality of S.

Hence, let k < m. To apply Gordan’s theorem (20), we eliminate the variables xS from the system Ax � AJxJ +

ASxS � 0 by replacing it with an equivalent system CAx � 0 with a suitable invertible m × m matrix C. Let aiS be the 
ith row of AS for i ∈ [m]. Suppose for simplicity that the last k rows of AS are linearly independent and define the 
matrix F, and that for i � 1, : : : , m� k, we have aiS � z(i)F for some row vector z(i) in R1×k. Then the m × m matrix

C �

1 ⋯ 0 �z(1)

⋱ ⋮
0 ⋯ 1 �z(m�k)

0 ⋯ 0 1 ⋯ 0
⋮ ⋱

0 ⋯ 0 0 ⋯ 1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

(43) 

is clearly invertible, and any solution (xJ, xS) to AJxJ +ASxS � 0 is a solution to
CAJxJ +CASxS � 0 (44) 

and vice versa, with

CAJ �
D
E

� �

, CAS �
0
F

� �

, (45) 

where D ∈ R(m�k)× | J | , E ∈ Rk× | J | , and F ∈ Rk× |S | .
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Suppose there is some xJ ∈ R | J | with
DxJ � 0, xJ ≥ 0, xJ ≠ 0: (46) 

Because F has rank k, there exists xS so that FxS ��ExJ. Then ExJ + FxS � 0 and hence CAJxJ +CASxS � 0 and thus 
AJxJ +ASxS � 0. With x(α) � (xJ, xS + x̃Sα) we have Ax(α) � 0 (because ASx̃S � 0) and x(α) ≥ 0 for α→∞, where 
x(α) has larger support that S, but S was maximal. Hence, there is no xJ so that (46) holds. By Gordan’s theorem 
(20), there is some w ∈ Rm�k with w⊤D > 0⊤; that is,

(w⊤, 0⊤) D
E

� �

> 0⊤, (w⊤, 0⊤) 0
F

� �

� 0⊤:

With y⊤ � (w⊤, 0⊤)C and (45), this implies (42) with x � x̃, as claimed. w

Because the minimax theorem proves Gordan’s theorem (see Proposition 4), it proves Tucker’s theorem (39), 
Tucker’s lemma (36), the lemma of Farkas, and therefore LP duality.

Instead of the minimax theorem we can by Proposition 5 use Stiemke’s Theorem 3 to prove Gordan’s theorem 
(20). The short proof by Tucker [25, pp. 5–7] of his lemma (36) has some structural similarities to Stiemke’s proof 
but uses more explicit computations.

We conclude this section to show how the theorem of Tucker [25] proves, as one of its main applications (theo
rem 6), the condition of strict complementarity in linear programming. For the LP (1) and its dual LP (2), a feasible 
pair x, y of solutions is optimal if and only if we have equality in (3), that is, c⊤x � y⊤Ax � y⊤b, which means

y⊤(b�Ax) � 0, (y⊤A� c⊤)x � 0: (47) 
This orthogonality of the nonnegative vectors y and b � Ax, and of y⊤A� c⊤ and x, means that they are comple
mentary in the sense that in each component at least one of them is zero:

yi(b�Ax)i � 0 (i ∈ [m]), (y⊤A� c⊤)j xj � 0 (j ∈ [n]), (48) 
also called “complementary slackness.” The following theorem asserts strict complementarity, namely that if (1) 
and (2) are feasible, then they have feasible solutions x and y where exactly one of each component in (48) is zero.

Proposition 10. If the LPs (1) and (2) are feasible, then they have optimal solutions x and y such that (47) holds and
y + (b� Ax) > 0, x⊤ + (y⊤A� c⊤) > 0⊤: (49) 

Proof. Optimality of x and y means c⊤x � y⊤b and therefore (47). Similar to Proposition 7 and (38), Tucker’s theo
rem (39) proves that for a skew-symmetric matrix B, there is some z such that

z ≥ 0, Bz ≤ 0, z�Bz > 0: (50) 

Applied to the game matrix B in (35), because the LPs are feasible, this gives a solution z � (y′, x′, t′) with t′ > 0, 
where y � y′ 1

t and x � x′ 1
t fulfill (49). w

The proof of Proposition 10 demonstrates a very good use of Dantzig’s game B in (35). Geometrically, the LP 
solutions x and y are then in the relative interior of the set of optimal solutions. Unless this set is a singleton, x 
and y are not unique, but their supports supp(x) and supp(y) are unique, shown similarly to the initial argument 
in the proof of Theorem 6.

8. Extending Dantzig’s Game
In this section, we give a longer but more constructive proof of LP duality from the minimax theorem. We pre
sent a natural extension of Dantzig’s game B in (35) by adding an extra row to B, giving the game BM in (51). The 
aim is to “enforce” the last column of B to be played with positive probability t if that is possible. Any max-min 
strategy for BM gives not only information about solutions to the LPs (1) and (2) if both are feasible, but also a cer
tificate in (52) if not.

Theorem 7. There is some M ∈ R with the following properties: If both the primal LP (1) and its dual (2) are feasible, then 
they also have respective feasible solutions x and y with 1⊤x+ 1⊤y+ 1 ≤M. Moreover, consider the zero-sum game

BM �

0 A �b
�A⊤ 0 c

b⊤ �c⊤ 0
1⊤ 1⊤ �M

2

6
6
6
6
4

3

7
7
7
7
5

(51) 

with value v. Then v ≥ 0, and 
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(a) v � 0 with min-max strategy (y, x, t) and max-min strategy (y, x, t, 0) for BM if and only if (1) and (2) are feasible, in 
which case x 1

t is optimal for (1) and y 1
t is optimal for (2).

(b) If v > 0 with max-min strategy (y, x, r, s) for BM, then r � 0, s � v, and

Ax ≤ 0, x ≥ 0, A⊤y ≥ 0, y ≥ 0, b⊤y� c⊤x < 0, (52) 

which proves that (1) or (2) is infeasible. Moreover, v < 1, and the smallest number w such that

Ax ≤ b+ 1w, x ≥ 0, �A⊤y ≤�c+ 1w, y ≥ 0 (53) 

has feasible solutions x and y is given by

w � M+ 1
1=v� 1 : (54) 

(c) If the entries of A, b, and c are rational numbers, let α be the maximum of the absolute value of the numerators of these 
numbers, let β be the maximum denominator, and ℓ �m+ n+ 1. Then a suitable choice of M is

M � ℓ! ℓαℓβℓ
2+ℓ + 1, (55) 

which in bit-size is polynomial in the bit size of A, b, and c.

We first discuss Theorem 7. We will prove it (in Theorem 8) without using LP duality, which will therefore be 
an alternative proof of LP duality from the minimax theorem. Although this proof is longer than that of Theorem 
6, it provides a reduction of the problem of solving an LP (in the sense of providing an optimal solution or a cer
tificate that the LP is unbounded or infeasible) to the problem of solving a zero-sum game. This reduction is 
new, as discussed further in Section 9.

Some observations in Theorem 7 are immediate: The value v of BM is nonnegative because the row player can 
ignore the last row and play as in Dantzig’s game B in (35). Furthermore, if v � 0, then the second-to-last row in 
BM states 1⊤y+ 1⊤x�Mt ≤ 0 for any min-max strategy (y, x, t), which means t > 0. That strategy can be used as a 
max-min strategy (with the last row of BM unplayed), with optimal solutions x 1

t and y 1
t to (1) and (2). For the con

verse, however, (1) and (2) may have feasible solutions x and y, respectively, but none of them fulfill c⊤x ≥ y⊤b 
unless we assume the LP duality theorem (which then proves (a)). To avoid using strong LP duality, we have to 
argue more carefully, as done in Theorem 8. Also, the optimal strategies x 1

t and y 1
t fulfill 1⊤y 1

t + 1⊤x 1
t ≤M, so this 

constraint does not (and must not) affect feasibility of (1) and (2).
Theorem 7(b) gives a certificate that at least one of the LPs (1) and (2) is infeasible, if that is the case, via any 

max-min strategy (y, x, r, s). Then (52) holds (which follows from r � 0 and s � v), which implies c⊤x > 0 or b⊤y <
0 (or both) and thus unbounded solutions to (1) or (2), respectively, if either LP is feasible (and then the other LP 
is not). Furthermore, the value v of BM defines, in a strictly monotonic relation (54), the minimal constant w in 
(53) added as extra slack to the right-hand sides that makes both LPs feasible. Given A, b, and c, the value of w in 
(53) is clearly unique (and finite and independent of M), whereas the game value v of BM depends on M.

Theorem 7(c) shows that a suitable constant M can be found by identifying the largest numerator (in absolute 
value) α and denominator β of the entries in A, b, and c if these are given as rational numbers. (A similar a priori 
bound is known if these entries are algebraic numbers (Adler [1], p. 172), but not if they are general real numbers.) 
Although M in (55) is large, its description as a binary number is of polynomial size in the description of A, b, and 
c. The conversion of the LPs (1) and (2) to the game matrix BM is therefore a polynomial “Karp-type” reduction, 
where any minimax solution of BM either solves the LPs or proves the infeasibility of at least one of them.

Finding M as in Theorem 7 uses the following well-known concept. A basic solution x to Ax � b is given by a 
solution x where the columns Aj of A with xj ≠ 0 are linearly independent, which then determine uniquely the 
solution x. These columns are then easily extended to a basis of the column space of A and define a basis matrix. 
If A has full row rank m, then a basis has size m, and the basis matrix is an invertible m × m matrix. A basic feasible 
solution x also fulfills x ≥ 0. A basic feasible solution to inequalities Ax ≤ b (and x ≥ 0) is meant to be a basic feasi
ble solution to the system Ax + p � b (and x, p ≥ 0), which has full row rank.

Part (b) in the following lemma and its proof are from Ilan Adler (personal communication, 2022).

Lemma 2. Let A ∈ Rmxn, b ∈ Rm, c ∈ Rn, 
(a) If Ax � b, x ≥ 0 has a feasible solution x, then it also has a basic feasible solution.

Furthermore, suppose the LP: minimize c⊤x subject to Ax � b, x ≥ 0 is feasible and has a known lower bound λ, that is, c⊤x ≥
λ for all feasible x. Then

(b) for every feasible solution x to Ax � b, x ≥ 0 there is a basic feasible solution x∗ with c⊤x∗ ≤ c⊤x,
(c) and min{c⊤x∗ |Ax∗ � b, x∗ ≥ 0, x∗ is basic} �min{c⊤x |Ax � b, x ≥ 0}.
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Proof. Choose a feasible x to Ax � b, x ≥ 0 with minimal support. Then the columns Aj of A for xj > 0 are linearly 
independent: Namely, if Az � 0 for some z ≠ 0 where zj ≠ 0 implies xj > 0, let P � {j |zj > 0} where P ≠ ∅ (other
wise replace z by �z). Then with

α �min{xj=zj | j ∈ P}, x′ � x� zα, (56) 

we have Ax′ � b, x′ ≥ 0, and x′ of smaller support than x. Hence, no such z exists, which proves the claimed linear 
independence. This shows (a).

To show (b), suppose Ax � b and x ≥ 0, and x is not basic, with Az � 0 for some z ≠ 0, where zj ≠ 0 implies xj >

0 as before. If c⊤z < 0, or if c⊤z � 0 and z ≤ 0, replace z by �z. Let P � {j |zj > 0}. Then P ≠ ∅, which holds if c⊤z � 0 
because z ≠ 0, and if P � ∅ and c⊤z > 0 then z ≤ 0, and x� zα is feasible but c⊤(x� zα) is arbitrarily negative as 
α→∞, which contradicts boundedness. Then with α and x′ as in (56), x′ has smaller support than x and 
c⊤x′ ≤ c⊤x. If A has n columns, then this process terminates after at most n steps with a basic feasible solution x∗
with c⊤x∗ ≤ c⊤x, as claimed.

Part (c) follows from (b) because there are finitely many basic feasible solutions, so the minimum on the left 
exists, and the minimum on the right also exists and equals its infimum. w

With the added equation 1⊤x � 1, Lemma 2(a) is Carathéodory’s theorem: Any convex combination b of points in 
Rm is already the convex combination of a suitable set of at most m + 1 of these points (Carathéodory [5], p. 200).

We prove Theorem 7 using Theorem 8 (mostly to simplify notation) applied to

C � 0 A
�A⊤ 0

� �

, d � b
�c

� �

: (57) 

The proof of Theorem 8 does not use strong LP duality.

Theorem 8. Let C ∈ Rk×k such that C ��C⊤, and d ∈ Rk. Let (z, w) � (z∗, w∗) ∈ Rk × R be a basic feasible solution that 
minimizes w subject to

Cz� 1w ≤ d, d⊤z�w ≤ 0, z ≥ 0, w ≥ 0, (58) 

and let M ∈ R with

1⊤z∗ + 1 ≤M: (59) 

Consider the zero-sum game

DM �

C �d
d⊤ 0
1⊤ �M

2

6
4

3

7
5 (60) 

with game value v. Then v ≥ 0 and 
(a) v � 0 if and only if w∗ � 0. If w∗ � 0, let t � 1

1⊤z∗+1 and z � z∗t. Then (z, t) is a min-max strategy and (z, t, 0) is a max- 
min strategy for DM.

(b) Suppose v > 0. Then every max-min strategy (q, r, s) of DM fulfills r � 0, s � v, and

Cq ≤ 0, d⊤q < 0, (61) 

which proves that there is no z ≥ 0 with Cz ≤ d.

Proof. In the following, letters (and their decorated versions) q and z denote vectors in Rk, and r, s, t, u, v, w denote 
scalars in R.

System (58) is feasible, for example, with z � 0 and large enough w, and w is bounded from below, so that (58) 
has an optimal basic feasible solution (z∗, w∗) by Lemma 2(c).

We have v ≥ 0, because the game matrix

D �
C �d
d⊤ 0

" #

(62) 

is skew-symmetric and has game value 0, so by adopting any max-min strategy for D and not playing the last 
row in DM the row player will get at least zero.

For the “if” part of case (a), if w∗ � 0 then with t � 1
1⊤z∗+1 and z � z∗t, we have 1⊤z�Mt ≤�t < 0 by (59). This 

shows that (z, t) is a min-max strategy and (z, t, 0) a max-min strategy for DM, and v � 0. For the “only if” part, if 
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v � 0 then a min-max strategy (z′, t) for DM requires t > 0 to get a nonpositive cost in the last row, and then z �
z′ 1

t solves (58) with w � 0.
To show (b), let v > 0. The following properties hold for any optimal strategies of DM. The min-max value of 

DM with min-max strategy (z, t) is the smallest real number v such that

Cz� dt ≤ 1v
d⊤z ≤ v

1⊤z�Mt ≤ v
1⊤z + t � 1

z, t ≥ 0 (63) 

The max-min value of DM with max-min strategy (q, r, s) is the largest v such that

q⊤C + rd⊤ + s1⊤ ≥ v1⊤

q⊤(�d)� sM ≥ v

q⊤1 + r + s � 1

q, r, s ≥ 0: (64) 

Then 0 < s < 1 because if s � 0 then (q, r, 0) would be a max-min strategy for the symmetric game D in (62) with 
max-min value v > 0, which is not possible, and if s � 1 then the last row of DM alone would be a max-min strat
egy for DM, but that row has the negative entry – M.

Because s > 0, we have 1⊤z�Mt � v in (63), and, using 1⊤z � 1� t,
v � 1� (M+ 1)t: (65) 

We show that v ≤ s. If v > s, then by (64),
q⊤C + rd⊤ ≥ (v� s)1⊤
q⊤(�d) ≥ v+Ms, (66) 

which would define a max-min strategy q 1
1�s , r

1�s
� �

with positive max-min value for the symmetric game D, a 
contradiction.

Hence, 0 < v ≤ s < 1 and by (65),
t � 1� v

M+ 1 > 0: (67) 

Then (63) implies
Cz 1

t ≤ d + 1
v
t , d⊤z 1

t ≤
v
t , (68) 

and therefore
w∗ ≤ v

t
�

v(M + 1)
1� v

: (69) 

To show that every max-min strategy (q, r, s) for DM is of the form (q, 0, v), we will in essence use weak duality. 
We write s � u+ v with u ≥ 0 (we know s ≥ v) and let v in (64) be fixed where we now in essence maximize u. That 
is, we consider the constraints

q⊤C+ rd⊤ + u1⊤ ≥ 0⊤

q⊤(�d)� uM ≥ v(M+ 1)
q⊤1+ r+ u � 1� v

q, r, u ≥ 0 : (70) 

They have solutions with the current max-min strategy (q, r, s) and u � s� v. We use that Cz∗� d� 1w∗ ≤ 0 and 
d⊤z∗�w∗ ≤ 0 in (58), and �1 ≥ 1⊤z∗ �M�w∗ by (59), and v(M+ 1)� (1� v)w∗ ≥ 0 by (69) in the following chain 
of inequalities, obtained by multiplying the first inequality in (70) by z∗, the second by 1, and the equation by 
�w∗ and summing up:

0 ≥ �u
≥ q⊤(Cz∗ � d� 1w∗) + r(d⊤z∗ �w∗) + u(1⊤z∗ �M�w∗)
≥ v(M+ 1)� (1� v)w∗ ≥ 0: (71) 
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Hence, all inequalities hold as equalities, in particular

w∗ � M + 1
1=v� 1 (72) 

and u � 0. This shows s � v in any solution (q, r, s) to (64). In addition, q⊤C+ rd⊤ ≥ 0⊤, that is, Cq� dr ≤ 0, and 
q⊤d ≤�v(M+ 1) < 0. The skew-symmetry of C implies q⊤Cq � (q⊤Cq)⊤ � q⊤C⊤q ��q⊤Cq and therefore q⊤Cq � 0, 
for any q. If we had r > 0, then Cq 1

r ≤ d and 0 � q⊤Cq 1
r ≤ q⊤d < 0, a contradiction, which shows r � 0. This shows 

Cq ≤ 0 and d⊤q < 0 as claimed in (61). In turn, this shows that there is no z ≥ 0 with Cz ≤ d, because this would 
imply 0 ≤ z⊤(�Cq) � z⊤C⊤q � q⊤Cz ≤ q⊤d < 0: w

Proof of Theorem 7. We apply Theorem 8 to C and d in (57). Let v be the value of the game DM. Then by Theo
rem 8(a), v � 0 implies feasibility and optimality of the LPs (1) and (2). Conversely, suppose that (1) and (2) are 
feasible. Then v � 0, because if v > 0, then (61) contradicts feasibility. This shows part (a) in Theorem 7 and also 
part (b) via (72).

To show Theorem 7(c), suppose first that β � 1; that is, all entries of A, b, c are integers. The system (58) has ℓ 
rows and, written as equations with slack variables, has entries from A, b, c or 0, 1, � 1. Any basic solution is 
uniquely determined by the basis matrix, where each variable is the quotient of two determinants where the 
denominator is at least one and the numerator bounded in absolute value by ℓ!αℓ. Only the ℓ basic variables can 
be nonzero, so that we can choose M � ℓ! ℓαℓ + 1 by (59). See also Papadimitriou and Steiglitz [20, p. 30] or Adler 
[1, p. 172]; I did not find the next description, clearly standard, if β > 1.

If β > 1, multiply each column of C
d⊤

� �

and d
0

� �

in (58) with the least common multiple of the denominators 
in that column, called the scale factor σj for that column j (with j � 0 if the column is d). This gives an integral sys
tem where each basic solution has to be changed by multiplying each variable in column j with its scale factor σj 

and dividing it by σ0 to give the solution to the original system. Each entry of the integral system has been multi
plied by at most βℓ (this is an overestimate because each column of C in (57) has m or n zeros), so we have to 
replace αℓ by αℓ(βℓ)ℓ, with the extra factor βℓ for the rescaling of the variables, which shows (55). The number of 
bits to represent M is its binary logarithm, which is polynomial in ℓ and in the bit sizes of α and β, and hence in 
the bit size of A, b, and c. w

9. Discussion and Related Work
Because Dantzig’s proof in Theorem 5 works for generic LPs, a first question is if genericity can be achieved by 
perturbing a given LP. However, this may alter its feasibility. For example, consider the LP of maximizing x2 sub
ject to x2 ≤ 1, x ≥ 0, x ∈ R2. The corresponding game B in (35) has an all-zero row and column, which, when 
played as an optimal pure-strategy pair, does not play the last column (t � 0). The LP has optimal solutions 
(x1, 1) for any x1 ≥ 0. However, maximizing the perturbed objective function εx1 + x2 (for some small ε > 0) with 
the same constraints gives an unbounded LP. Hence, there is no obvious way of perturbing the LP to make Dant
zig’s proof generally applicable.

The closest related works to ours are Adler [1] and Brooks and Reny [3]. We continue here our discussion from 
the introduction.

A main goal of Adler [1] is to reduce the computational problem of solving an LP (in the sense of finding an 
optimal solution or proving there is none) to the problem of solving a zero-sum game by means of a strongly 
polynomial-time reduction. Adler considers the feasibility problem with equalities, that is, to find x ∈ Rn such 
that

Ax � b, x ≥ 0, (73) 

for an m × n matrix A, or to show that no such x exists. He constructs a symmetric game with m+ n+ 3 rows and 
columns. An optimal strategy to that game produces either a solution to (73), or a vector y ∈ Rm such that y⊤A ≥
0⊤ and y⊤b < 0 (which by (13) shows that (73) is infeasible), or some x̃ ≠ 0 such that Ax̃ � 0 and x̃ ≥ 0. The first 
two cases answer whether (73) is feasible or not. In the third case, Ax � b is replaced by an equivalent system 
where the variables xS in the support S (written J+ in Adler [1]) of x̃ are eliminated. In a solution to that equiva
lent system, the variables xS can be substituted back and irrespective of their sign can be replaced by xS + x̃Sα for 
sufficiently large α to find a solution to (73). (The latter step is implicit in the claim (10b) of Adler [1, p. 173] and 
attributed to Dantzig [8] but without a page number; I could not find it and found these computations the hard
est to follow.) Repeating this at most n times, with corresponding calls to solving a zero-sum game, then answers 
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the feasibility problem. This is known as a “Cook-type” reduction. It also leads to a proof of Tucker’s theorem 
from Gordan’s theorem in Adler [1, section 4], which we have given in a more direct way in Theorem 6.

A different “Karp-type” reduction uses only a single step from the feasibility problem (73) to solving a zero- 
sum game, by adding a constraint 1⊤x ≤M where M is large enough to not affect feasibility. If the entries of A 
and b are algebraic numbers (in particular, integers), they determine an explicit bound on M of polynomial 
encoding size (Adler [1], p. 172).

We have done the same in Theorem 7. However, our game BM is directly derived from the original LPs (1) and 
(2) defined by inequalities (also first considered by Adler) with a single extra row added to Dantzig’s original 
game B in (35) rather than converting them to equalities as in (73) (with a new, larger matrix A) and then back to 
inequalities to construct an even larger symmetric game. As an additional, new property, Theorem 7(b) shows 
that a max-min strategy of BM provides a certificate that the LPs are infeasible if that is the case.

Brooks and Reny [3] prove the following theorem. For any matrix D, let ‖D‖ be the maximum absolute value 
of its entries.

Theorem 9 (Brooks and Reny [3]). Consider the LPs (1) and (2). Let r be the rank of the matrix

Â �
0 �A⊤
A 0
�c⊤ b⊤

2

4

3

5, (74) 

and let

α � 2r2max{‖b‖, ‖c‖}max
W
‖W�1‖ + 1, (75) 

where the second maximum is taken over all invertible submatrices W of Â. Then for the game P with n+m+ 1 rows and 
columns,

P �
0 �αA⊤ 0
αA 0 0
�αc⊤ αb⊤ 0

2

4

3

5+

c
�b
0

2

4

3

51⊤, (76) 

either 
(a) The value of P is zero, and then for a min-max strategy (x∗, y∗, t∗) of P, a pair of optimal solutions to the LPs (1) and (2) 

is (x∗α, y∗α), or
(b) The value of P is positive, and then any max-min strategy (x, y, t) of P fulfills Ax ≤ 0, x ≥ 0, A⊤y ≥ 0, y ≥ 0, and 

c⊤x > b⊤y, which shows that at least one LP is infeasible.

The main effect of the definition of P is that for any min-max strategy (x∗, y∗, t∗)with min-max value v, we have

�αA⊤y∗ ≤�c+ 1v
αAx∗ ≤ b+ 1v

�αc⊤x∗ + αb⊤y∗ ≤ v (77) 

with constant right-hand sides –c and b rather than these being scaled by t∗. The number α is similar to the bound 
M in Theorem 8 and (59), because if the LPs (1) and (2) have feasible solutions, then with x∗ and y∗ as in Theorem 
9(a), they have feasible solutions x∗α, y∗α with 1⊤x∗α+ 1⊤y∗α ≤ α, as noted by Brooks and Reny [3, remark 7]. If 
the value of P in (76) is positive, then any max-min strategy (x, y, t) in Theorem 9(b) proves the infeasibility of at 
least one of the LPs just as in (52) in Theorem 7.

Given Constraints (77), the definition of P can be seen as “canonical” as claimed by Brooks and Reny, although 
one could also call it “proof-induced.” From the viewpoint of using this game, it has the disadvantage that all 
entries of A are multiplied by the large number α, and P is a full matrix and no longer half-empty, with zero 
entries replaced by the rows of –c and b. In contrast, in our matrix BM in Theorem 7 the large number M appears 
in a single place, and the zero entries remain. The game BM also naturally extends Dantzig’s original game.

In summary, it seems that proving LP duality from the minimax theorem requires quite a bit of linear algebra, 
most concisely in our relatively short proof of Theorem 6. We show an elegant use of linear algebra in the next, 
final section.

10. Minimally Infeasible Sets of Inequalities
We conclude this article with a short elementary proof of the lemma of Farkas in its inequality-only version (15) 
from Conforti et al. [6]. The main trick is to state the minimal infeasibility of these inequalities in terms of 
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infeasibility of the corresponding equalities, which is canonically proved by induction. The second step is to 
apply the linear algebra Lemma 1 to the infeasible equalities to obtain the required vector y in (15).

A set of linear equations and inequalities is called infeasible if it has no solution and minimally infeasible if 
omitting any one equation or inequality makes it feasible. The following proofs of theorem 2.1 and lemma 2.1 of 
Conforti et al. [6], in simplified notation, show (15) based on minimally infeasible sets of inequalities.

Theorem 10 (Conforti et al. [6]). Let A ∈ Rm×n and b ∈ Rn and let a1, : : : , am be the rows of A. Suppose the system Ax ≤ b 
is minimally infeasible. 

(i) Then the system Ax � b is minimally infeasible.
(ii) Reversing any inequality aix ≤ bi in Ax ≤ b creates a feasible system:

∀ i ∈ [m] ∃x(i) ∈ Rn : aix(i) > bi, ∀k ∈ [m]� {i} : akx(i) � bk: (78) 

Proof. We prove that for any R ⊆ [m], the constraints

aix � bi (i ∈ R), aix ≤ bi (i ∈ [m]�R) (79) 

are minimally infeasible. The proof is by induction on |R | . For |R | � 0, Condition (79) holds by assumption. Sup
pose it holds for all R up to a certain size |R | . If R � [m], then the proof of (i) is complete, so let h ∉ R, where we 
want to show that

aix � bi (i ∈ R), ahx � bh, aix ≤ bi (i ∈ [m]�R� {h}) (80) 

is minimally infeasible. The system (80) is infeasible (because Ax ≤ b is infeasible), so we have to prove that omit
ting any constraint ajx � bj or ajx ≤ bj for j ∈ [m] produces a feasible system. This is clearly the case if j � h, or if j ∈
R by applying the inductive hypothesis to R ∪ {h}� {j}, so let j ∉ R. Constraints (79) for i ≠ h and i ≠ j have solu
tions x(h) and x(j), respectively, with

aix(h) � bi (i ∈ R), aix(h) ≤ bi (i ∈ [m]�R� {h}), ahx(h) > bh
aix(j) � bi (i ∈ R), aix(j) ≤ bi (i ∈ [m]�R� {j}): (81) 

If ahx(j) � bh, then x(j) is a feasible solution to (80) with row ajx ≤ bj omitted. Otherwise ahx(j) < bh, and a suitable 
convex combination of x(j) and x(h) is such a solution because ahx(h) > bh. This completes the induction.

Condition (ii) is an immediate consequence of (i): Let i ∈ [m]. Because Ax � b is minimally infeasible, there is 
some x(i) ∈ Rn such that akx(i) � bk for all k ≠ i and aix(i) ≠ bi , where aix(i) < bi would imply that Ax ≤ b is feasible, 
hence aix(i) > bi . w

Proof of (15) using Theorem 10. The direction “⇐” in (15) is immediate (and will be used later). To prove “⇒,” 
assume that Ax ≤ b is infeasible and (by dropping sufficiently many rows from these inequalities, whose compo
nents of y will be set to zero) that Ax ≤ b is minimally infeasible. Denote the number of rows of this minimally 
infeasible system again by m. By Theorem 10, Ax � b is minimally infeasible. By Lemma 1, there is some y ∈ Rm 

so that y⊤A � 0⊤ and y⊤b ��1. It remains to show that y ≥ 0. If not, suppose that I � {i ∈ [m] |yi < 0}≠ ∅. Define 
the system A′x ≤ b′ as Ax ≤ b with the rows in I reversed, that is, each of its rows a′i x ≤ b′i means �aix ≤�bi if i ∈ I 
and aix ≤ bi otherwise. Take some i ∈ I, and x(i) as in (78) in Theorem 10(ii). Then A′x(i) ≤ b′. Conversely, define 
w ∈ Rm by wk � |yk | for k ∈ [m]. Then w ≥ 0 and w⊤A′ � y⊤A � 0⊤ and w⊤b′ � y⊤b ��1. However, this contradicts 
0 � w⊤A′x(i) ≤ w⊤b′. Hence, I � ∅, and therefore y ≥ 0 as required. w

The proof of Theorem 10 is canonical and easy to reconstruct. As for proving the lemma of Farkas, in the same 
version (15), perhaps the most natural and elementary proof is “projection” or Fourier-Motzkin elimination (see 
Schrijver [22, p. 155f] and references). It expresses the constraints in Ax ≤ b in terms of x1 by dividing each row 
by the coefficient of x1 when it is nonzero, which reverses the inequality when the coefficient is negative. This 
induces mutual bounds among the other linear terms in x2, : : : , xn and eliminates x1. This elimination is then iter
ated (and may lead to an exponential increase in the number of constraints). See Kuhn [15] and Tao [24, p. 180] 
for deriving (15) in this way.
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