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Abstract: A theory of decomposition "by substitution" for mUlti-linear (i.e. multi-affine) 
functions is presented. A representation theorem for such functions is shown to be given by 
a Moebius inversion formula. The concept of autonomous sets of variables (a "linear 
separability" of some kind, also known as "generalized utility independence") captures the 
decomposition possibilities of a multi-linear function. Their entirety can be hierarchically 
represented by a so-called composition tree. Distinguished, strong forms of decompositions 
are shown to be given by multiplicative or additive functions. Important applications to the 
theories of multi-attribute expected-utility functions, switching circuits and cooperative 
n-person games are outlined. 

1. Multi-Linear Functions 
The substitution of a Boolean function of several variables into a variable of another 

Boolean function yields a new Boolean function. Inverting this process is called substitution 

decomposition of a Boolean function, and is important for applications since it reduces the 

complexity of the switching circuit the function represents. We will show that multi-linear 

functions can be decomposed in a similar way. The presented scheme will comprise 

decomposition methods known for expected-utility functions, Boolean functions and 

cooperative games, as presented in the final sections. The results are of the kind that 

certain decomposition possibilities imply others, and that some of them lead to specific, e.g. 

additive representations of the decomposed function. To the author's knowledge, the results 

are original where not attributed to others, in particular the proof of (1.) and the obtained 

unification of the decomposition theory for utility functions and games. 

A linear (also called affine) function is here understood as a real function G:R~R 

such that G(t)=a-t+b for suitable real a,b. Obviously, if G is invertible, i.e. if a;tO, then G-1 is 

linear, and so is the functional composition of two linear functions G,H. A function of several 

variables is called mUlti-linear if it is linear in each variable (i.e. if the other variables are 

fixed), and n-linear if there are n variables. Without explicit notice, all variables of a function 
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are assumed to be essential. This can be done without loss of generality, since for a given 

function, a variable that is not essential can be dropped, and in the cases below where a 

function of several variables is defined in terms of others, all its variables must be essential, 

too. 

Further below, we will define and investigate possible decompositions of a function 

f:Rn~R. The argument of this function is a vector, and in order to identify its components, 

we let throughout 

M = {1 , ... ,n}, 

with the understanding that the elements of M refer to the coordinates of the space Rn. For 

Xe Rn, ie M and A~M, let xi be the i-th component of the vector x and xA be the projection of 

x onto R I A I, more precisely the subvector of x consisting of the components xk with ke A. 

x0 is the empty vector, which can be considered as the identity element of pairing, i.e. 

(y,x0) = y. We refer to the special vectors of Rn only consisting of O's and 1 's (the corners of 

the n-dimensional unit cube) by 1 A, where A is the set of coordinates that have the value 1 ; 

that is, (1 A)i = 1 if ieA and (1 A)i = 0 if ie M-A, for A~M. 

The following theorem asserts that a multilinear function is a polynomial in its 

variables (that is, a sum of products of non-negative powers of these variables), where each 

variable appears in at most its first power. The coefficients of this polynomial are unique, 

and can be computed from the function evaluated for arguments that are either 0 or 1. 

Applied to utility functions, this theorem asserts a so-called "quasi-additive" representation 

of a utility function, which is distinguished by the fact that it requires the estimation of 2n 

"scaling parameters" (ct. FISHBURN / KEENEY [4, p.938] and (10.a) below). 

(1.) Theorem. Let n;:::1. Then f:Rn~R is multi-linear iff 

(a) f(x) = LA~M cA ITieA xi, 

where the cA's are unique real numbers given by 

(b) CA=LB~A(-1)IA-Bl.f(1B)' forA~M. 
Proof: The proof will be given in three parts. First, it will be shown that with (b), (a) is true if 

x = 1 S, for any S~M. Second, that there is at most one choice for each cA' A~M, 

such that (a) holds. Third, that (a) holds for any xe R n given f is n-linear; the 

converse is obvious. 

Let (b) hold. Then for S~M, 

LA~M cA ITie A (1 S)i 

LA~ScA 

LA~S LB~ (_1)IA-BI. f(1B) 



LS~S LA: S~~S (_1)IA-sl. f(1S) 

LS~S f(1S)' LT~S-S (_1)ITI 

f(1S)' 
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since the second sum in the last but one line is 1 for S-S = 0, otherwise (1-1) 1 s-sl, 

i.e. 0 for S;toS, by the binomial theorem. (Remark: This was a special case of the 

usual proof of a so-called Moebius inversion formula, cf. ROTA [10].) 

To prove the second part, the uniqueness of the cA's, read (a) as proved as a 

system of 2n equations for 2n unknowns cs, S~M (after OWEN [9, p. P-79]): 

f(1 S) = LA~S cA (S~M). 

It is sufficient to show that the corresponding set of homogeneous equations 

o = LA~S cA (S~M) 

has only the trivial solution. Indeed, the assumption Cs;toO for some minimally 

chosen S would yield the contradiction 0 = LA~S cA = Cs ;to O. 

For the third part, let (b) hold, f be n-linear, and k be a natural number. <k shall 

denote the set of all the members of M less than k, similarly ~k = {k, ... ,n}, etc. Thus, 

~1 = M and <1 = 0. As before, x>k shall denote the vector x profected on its last n-k 

coordinates, e.g. for x=1 C, C~M. We prove for 1 5:k5:n+ 1 by induction on k: 

(*) f(y, (1 C)~k) = LA~<k (llie A Yi) . LS~C cAuS for all ye Rk-1, C~k. 
For k=1, this equation has been proved in the first part above. If k=n+1, (*) 

represents (a) as to be proved for all xe Rn. Assume (*) holds for some k, 15:k5:n. 

Proving it for k+ 1 amounts to showing 

f(y, z, (1cl>k) =LA~<k (llieA Yi)' LS~C cAuS 

+ LA~<k (llie A Yi) . z . LS~C cAu{k}uS 

for all ye Rk-1, ze R, C~>k. 

A similar equation is known from the fact that f is linear in its k-th variable z, viz. 

f(y, z, w) = a(y,w),z + b(y,w) for all yeRk-l, zeR, We Rn-k, 

for some suitable functions a,b:Rn-1 ~R. Letting z=o and z=1 in this equation, one 

can conclude 

b(y,w) = f(y,O,w), 

a(y,w) = f(Y,1 ,w) - f(y,O,w). 

Sut for w = (1C»k' for any C~>k, f(y,O,w) and f(Y,1,w) are known from the 

induction hypothesis. It is easy to verify that in this case (*) yields indeed 

b(y,w) = LA~<k (llieA Yi) . LS~C cAuS, 

a(y,w) = LA~<k (llieA Yi)' LS~C cAu{k}uS, 

which remained to be shown. (End of Proof.) 
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2. Autonomous Sets of Coordinates 
We introduce the concept of decomposing a function of several variables by "linearly 

separating" specific sets of variables, which will be called "autonomous". 

(2.) Definition. Let n;::1, f:Rn--7R. Then A is called autonomous (with respect to f) with 

corresponding divisor h (of f), if 0*A~M, B=M-A, h:R I A I--7R, and there is some 

function g:RxR I B I--7R that is linear in its first variable, such that 

f(x) = g(h(xA), xB) 

holds for all xe Rn. 

The preceding definition includes the decomposition of mUlti-linear functions "by 

substitution": it is easy to verify that if f is n-linear, then A is autonomous with respect to f iff 

there exists an I A I-linear function h and a 1 + I B I-linear function g (with B=M-A) such that 

f(x) = g(h(xA), xB)' The important restriction is indeed that g is linear in the variable for which 

the divisor h is substituted. M is always an autonomous subset of M with respect to f:Rn--7R, 

and if f is n-linear, any singleton {i}, ie M, is autonomous. A multi-linear function is called 

indecomposable if it has no other autonomous sets. For any n, there are indecomposable 

n-linear functions [8, p.271]. We will show that indecomposable multi-linear functions form 

one type of "building block" which occurs in a unique hierarchical decomposition of any 

given n-linear function. 

If e,f:Rn--7R, let e and f be called isomorphic if e(x)=G(f(x)) for some invertible linear 

G:R--7R. According to the introductory remarks on linear functions, "is isomorphic to" is an 

equivalence relation. The following lemma states that this equivalence "preserves" in some 

sense the decompositions regarded here. 

(3.) Lemma. Let A be autonomous with respect to f:Rn--7R with a corresponding divisor h, 

and B=M-A. Then 

(a) H is a divisor of f corresponding to A iff hand H are isomorphic. 

(b) If F and f are isomorphic, then A is autonomous with respect to F, and h is a 

divisor of F. 

(c) If f(x) = g(h(xA), xB), and g is linear in its first variable, then g is unique. 

Proof: If hand H are isomorphic, H is obviously a divisor of f. The converse follows from the 

observation that f itself with the variables corresponding to B fixed at suitable values 

(such that the resulting function is not constant) is isomorphic to any divisor that 

corresponds to A. (b) is obvious, and (c) holds since a linear function is determined if 

only two different values for its argument are given. (End of Proof.) 

The preceding lemma shows that the system of autonomous subsets of M with respect to a 

given function f:Rn--7R characterizes the decomposition possibilities of f, or of any function 
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isomorphic to f; the possible corresponding divisors or functional representations as in (3.c) 

are then determined. We will show in section 3 that this system can be represented by a 

so-called "composition tree", using the fact that specific relationships hold between different 

autonomous sets. The following lemma treats the case of two comparable autonomous sets, 

stating a certain "transitivity" of the divisor property. 

(4.) Lemma. Let 0~B~A~M, and A be autonomous with respect to f:Rn~R with 

corresponding divisor h. Then B is autonomous with respect to f iff B is autonomous 

with respect to h. 

Proof: The consideration is similar to that for (3.a) above. Note that by (3.b), the autonomy 

of B with respect to h does not depend on the choice of h. (End of Proof.) 

By (4.), it suffices to examine autonomous proper subsets of M that are maximal, since one 

can then recursively look at the corresponding divisors and their decompositions. Two 

maximal autonomous sets can either be disjoint or overlap. The latter is the more interesting 

case. It applies for instance to the following theorem, which states that the system of 

autonomous sets is closed under non-disjoint unions and intersections. 

(5.) Theorem. Let A and B be non-disjoint autonomous sets with respect to f:Rn~R. Then 

AuB and AnB are autonomous. 

Proof: Cf. FISHBURN / KEENEY [3, p.931 , La.1] or VON STENGEL [12, p.36]. 

In view of the observation in the proof of (3.a), the preceeding assertion for the 

intersection is very obvious, but not so for the union. If in (5.), AuB = M, the result is 

uninteresting, too. But (4.) and (5.) allow us to confine ourselves to just this case for further 

investigations on overlapping autonomous sets A,B, since otherwise AuB is an 

autonomous proper subset of M and then A and B are not maximal. In what follows, a 

function .:RxR~R, denoted "infix", is associative iff u.(v.w) = (u.v).w for all real u,v,w; the 

parentheses can then consequently be omitted. 

(6.) Theorem. Let M be the disjoint union of the non-empty sets A, B, C, and let AuB and 

BuC be autonomous with respect to f:Rn~R. Then 

f(x) = a(xA) • b(xB) • c(xc) 
for suitable functions a, b, c, and a bilinear (i.e. 2-linear) associative function. 

Proof: Cf. (8.) below. 

The possible bilinear associative functions in (6.) are characterized as follows: 

(7.) Theorem .• is a bilinear associative function iff either 

(a) G(x • y) = G(x) . G(y), 
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where G is a unique invertible linear function. or 

(b) G(x • y) = G(x) + G(y). 

where G is linear and invertible. and unique up to a nonzero multiplicative 

constant. [Remark: in (b). it can be assumed w.l.o.g. that G(t) = t + r. for some 

unique real r; then x • y = x + y + r.] 

Proof: A function. defined by x. Y = G-1 (G(x) . G(y)). or with + instead of .. is associative 

and bilinear because· and + are. The converse follows in a straightforward way 

from the associativity equation for a bilinear function •. using that by (1.). 

x • Y = pxy + qx + ry + s holds for some real numbers p.q.r.s. (End of Proof.) 

We remark that the equation in (6.) implies that A and C are autonomous with 

corresponding divisors a and c. respectively. With (4.) and (5.). this shows that union. 

intersection and differences of overlapping autonomous sets are autonomous (in fact. this 

also holds for the symmetrical difference. since (7.) implies that all bilinear associative 

functions are symmetric). We will however use a generalization of (6.). given next. A 

partition of a set S is thereby understood as a set of non-empty. pairwise disjoint sets whose 

union is S. 

(8.) Theorem. Let {Aj 11 ::;j::;k} be a partition of M. k~3. and M-Aj be autonomous with 

respect to f:Rn~R for 1 ::;j<k (note these are k-1 conditions). Then 

(a) there exist: an invertible linear function G. and suitable functions aj. 1 ::;j::;k. 

such that G(f(x)) = a1 (xA1) • ... • ak(xAk)' 
where. is either multiplication or addition. 

(b) Given (a). UjE L Aj is autonomous with respect to f. for any non-empty subset 

L of {1 .... k}. 

Proof: For (a). cf. FISHBURN / KEENEY [4. La. 2]. (b) holds by (3.b) and because both 

multiplication and addition are bilinear. symmetric and associative. (End of Proof.) 

Under the assumptions of (8.). Aj is autonomous for 1 ::;j::;k according to (8.b). with 

corresponding divisor aj as in (8.a). If hj is a given divisor that corresponds to Aj. aj is 

isomorphic to hj by (3.a). The linear transformations to obtain aj from hj for 1 ::;j::;k. and the 

transformation of the given function f to represent it as a product or sum (i.e. G in (8.a)) can 

be determined by evaluating f for a number of suitably chosen arguments. somewhat 

similarly to (1.b). Under additional monotonicity assumptions. O(k) many (e.g. k+2) 

arguments suffice. These assumptions of so-called "utility independence". explained in 

section 4 below. usually hold for the particular application to utility functions. The 

well-known "multiplicative / additive representation" of a utility function. which is asserted by 

theorem (8.). is therefore distinguished by the fact that it requires the estimation of only 

proportionally many (and not exponentially many as in (1.)) "scaling parameters" as 

compared to the number of variables (cf. KEENEY / RAIFFA [6. p.289]). 
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3. The Unique Hierarchical Decomposition 
The system of autonomous sets with respect to a given function f is ordered by 

inclusion. The following theorem, if applied iteratively in a "top-down" manner, gives a 

complete description of this system for n-linear f. 

(9.\ Theorem. Let f be n-linear, n:e:2. Then there exists a unique partition P(f) of M, 

P(f) = {Aj 11 :s;j:S;k} , such that either 

(a) k:e:2, and Aj is autonomous (with respect to f) for 1 :S;j:S;k, or 

(b) k:e:3, and Uje L Aj is autonomous with respect to f, for any non-empty subset 

L of {1 , .. ,k}, 

and in either case, 

(c) any other set that is autonomous with respect to f, except M, is a proper subset 

of an element of P(f). 

Proof: Cf. GORMAN [5, p.375, Th.2] or [12, p.39]. 

If an n-linear function f is given, P(f) as described in (9.) is a partition of Minto 

autonomous sets. It then suffices to consider the corresponding divisors in order to obtain 

the autonomous sets with respect to f other than the elements of P(f) or their unions (in case 

(9.b) holds), because of (9.c) and (4.). f can be functionally expressed in terms of these 

divisors and an additional multi-linear function (which may be called "quotient" [S, p.269]) 

that corresponds to P(f), as follows. 

(10.\ Theorem. Let f be n-linear, n:e:1. If n=1 , f is itself an invertible linear function. 

If n:e:2, let P(f) = {Aj 11 :S;j:S;k} as in (9.). For the cases (a) and (b) as in (9.), the following 

assertions hold: 

(a) If hj is any divisor corresponding to Aj' for 1~j:S;k, then 

f(x) = g(h1 (xA1)' ... , hk(xAk)) 
for a suitable k-linear function g, which is indecomposable. 

(b) There are divisors hj corresponding to Aj' for 1 :S;j:S;k, and an invertible linear 

function G, such that 

G(f(x)) = h1 (xA1) .... • hk(xAk)' 
where. is either multiplication or addition. 

Proof: Because of (S.), only (a) needs to be shown. From the k conditions that Aj is 

autonomous with corresponding divisor hj' for 1 :S;j:S;k, it follows (in steps) that the 

equation in (a) is an admissible definition of g:Rk~R, and that g is linear in each 

variable. (End of Proof.) 

We will refer to the cases (a) and (b) in (9.) and (10.) by saying that the top quotient 

of f is ~ or degenerate, respectively (after [S, p.32S]). Applying the previous two 

theorems iteratively, a given n-linear function f can be represented as a closed term T of 
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mUlti-linear functions of fewer variables (if f is not indecomposable) using all the 

decomposition possibilities of f. There are some simplifications possible because of the 

freedom to choose the divisors of f corresponding to the elements of P(f) in case of (10.a), 

which is useful if some of these divisors in turn have degenerate top quotients and need to 

be linearly transformed to be representable as products or sums, or are trivial 1-linear 

functions. The syntactical structure of the substitutions in T can be represented by a tree in 

an obvious way. This tree, properly labeled, carries all the information about the complete 

decomposition of f. It is called the composition tree of f, in detail described in MOHRING / 

RADERMACHER [8, p.328]. It is worth noting that in particular the system of autonomous 

sets, which is possibly exponential in size, can be described by this data structure of linear 

complexity. (Of course, the representation of an involved k-linear function g requires 

exponential space (O(2k)) according to (1.), if g is indecomposable.) 

The material about the substitution decomposition of multi-linear functions 

presented here focused on existence- and uniqueness properties of certain decompositions 

and their representations. There are of course other, in particular algorithmic aspects of the 

theory; for some considerations concerning the special case of Boolean functions, cf. [1], [8, 

pp.332ft]. We will conclude this paper by sketching briefly some applications of the above 

results to utility functions, Boolean functions, and cooperative n-person games. 

4. Application to Expected-Utility Functions 
Most of the results above originated with the decomposition theory for 

expected-utility functions (also called von Neumann-Morgenstern utility functions, here 

utitlity functions for short). A utility function is real-valued and defined on the set of possible 

outcomes of a decision and represents the decision maker's preferences and risk behavior. 

Each considered action (decision alternative) is represented by a probability distribution on 

outcomes, and the most preferred one is that with the highest expected value of the utility 

function. The outcomes can usually be represented by vectors of real-valued attribute 

levels. In a particular decision analysis, a utility function f:Rn~R needs to be constructed in 

order to identify the decision maker'S behavior, a task that is substantially alleviated using 

decomposition methods (cf. KEENEY / RAIFFA [6], FARQUHAR [2]), in particular the one 

presented above. The concept of autonomy as in definition (2.) is thereby strengthened to 

that of so-called "utility independence". 

A set of coordinates (i.e., attributes) is called utility independent if it is autonomous 

with respect to the utility function f, where the corresponding divisor is substituted into a 

function that is linear and increasing in the respective variable. This concept can be 

behaviorally interpreted, using the fact that a utility function is unique only up to increasing 

linear transformations. A utility independent set of attributes is one for which it makes sense 
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to speak of a "sub-utility" function (given by the corresponding divisor), that is, of a unique 

preference and risk behavior for these attributes independent of the levels of the other 
attributes. This condition can be tested and is frequently observed (cf. [6]). In the theorems 

above, the condition of autonomy of a set can of course in assumptions be strengthened to 

that of utility independence, but not generally in conclusions, e.g. not in (B.b) (cf. VON 

STENGEL [12, p.60]). However, "utility independent" can be uniformly substituted for 

"autonomous" in (3.) (if only increasing "isomorphisms" are admitted), (4.) and (5.) [12, 

pp.34,36]. 

The multiplicative or additive representation of a given utility function as in (B.) is 

particularly useful, if it applies, because it allows the decision analyst to establish a utility 

function with a minimal amount of information obtained from the decision maker for each 

attribute [6, p.292]. For the multiplicative representation, the linear transformation G in (B.a) 

can be interpreted as asserting a "substitutivity" of the attributes if it is negative, and a 

"complementarity" if it is positive [6, pp.240f]. The hierarchical decomposition of a utility 
function is of practical relevance since it usually corresponds to a natural hierarchy of 

attributes, and thus enhances an overview of the preference structure. In most applications, 
a utility function can n.Q! be assumed to be n-Iinear. This can however frequently be 

achieved by replacing each attribute by a suitable real-valued function of the attribute 
values, i.e. by postulating that each singleton {i}, ie M, is autonomous. Where this cannot be 

done, for example if an attribute does not belong to any autonomous set except M, the 

respective variable can be trivially added to express an additional dependency, e.g. as a 

further argument to g in (10.a) (in the polynomial representation, the coefficients cA as in 

(1.b) then become functions of this variable). The utility function may still be expressed as 

described as an arithmetic expression in several functions of the variables, each of which is 

of considerably smaller dimension than n. The concept of the composition tree, slightly 
generalized, is thereby still applicable (cf. GORMAN [5, pp.375f]). 

5. Application to Switching Circuit Decomposition 
The results presented in sections 2 and 3 can be directly applied to the theory of the 

decomposition of switching circuits (cf. e.g. CURTIS [1], or [8]), because of the following 
observation. Theorem (1.) implies that an n-linear function corresponds uniquely to, and 

can thus be identified with, a function f:{O, 1 }n~R. If the range of f can be restricted to be 

{0,1}, f can be considered as a Boolean function of n variables. In this case, a set A is 
autonomous with respect to f iff (with B=M-A) 

(*) f(x) = g(h(xA)' xB) 
holds for all Xe {a, 1}n with Boolean functions g,h. Namely, a Boolean function G(t) of one 

variable is either given by 0, 1, t or 1-t, that is, linear. Conversely, a divisor h of f 

corresponding to the autonomous set A can be assumed to be given as f with some 
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variables properly fixed, as observed in the proof of (3.a); thus without loss of generality, g 

and h in (*) are Boolean if f is. Equation (*) states a so-called "simple disjoint 

decomposition" of the Boolean function f [8, p.27a]. With this concept replaced for that of 

"autonomy" of definition (2.), the results above can be found in the relevant literature (e.g. 

[1]). It is worth noting the counterparts to (6.), (8.) and (1 a.b): degenerate top quotients of a 

Boolean function are given (up to complementation of Boolean values) by products or sums 

modulo 2 [8, p.244]. This can be derived from theorem (7.), as follows. 

(11.) Theorem .• is a Boolean function of two variables that is associative iff either 

(a) G(x • y) = G(x) . G(y) or 

(b) G(x • y) = G(x) EEl G(y), 

for all X,yE {a,1}, where G is a unique invertible function {a,1}-7{a,1}, and· and EEl 

are multiplication and addition modulo 2, respectively. 

Proof: Application of (7.), where • is considered as bilinear and associative, yields 
x • y = G-1 (G(x) . G(y)), for all X,yE {a,1} 

for some invertible linear G; the case (7.b) can be excluded since otherwise. would 

be three- and not two-valued. G maps {a,1}, in two possible ways, on a two-element 

set S of reals, which must be closed under multiplication in order that in the above 

equation, G-1 yields values in {a,1}. It is quickly seen that there are only two choices 

for S, (a) S={a,1} or (b) S={-1,1}, where the latter can be represented by {a,1} if 

multiplication is replaced by EEl. (End of Proof.) 

6. Application to Game Theory 

Finally, the results of sections 1 to 3 can also be directly applied to so-called 

cooperative n-person games, for the particular instances treated in SHAPLEY [11], 

MEGIDDO [7] and OWEN [9]. A cooperative n-person game is thereby understood as a 

function f:{a,1 }n-7R whose values f(x) denote a "payment" to the "coalition" B if x=1 B, for a 

subset B of the set M of "players". Usually f is assumed to be monotonic in each variable. f 

corresponds uniquely to an n-linear function (which in turn can also be interpreted as a 

game, cf. [9]), as mentioned above. A so-called simple game [11] is a monotonic Boolean 

function, with only "winning" or "losing" as possible payments, e.g. for modelling systems of 

voting. An autonomous set A defines a so-called committee, that is, a set of players that 

behaves as if "playing" a game (with unique rules) by itself whenever it contributes to a 

coalition. Many of the concepts introduced in Sections 2 and 3 have suitable interpretations 

(e.g. (4.) corresponds to [11, Th.4], [7, La.3.3]); in comparison to [7], our proofs could be 

simplified because of the observed invariance of autonomy under invertible linear 

transformations (cf. (3.)). 
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