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Abstract. We present a polynomial-time algorithm for finding one extensive
form correlated equilibrium (EFCE) for multiplayer extensive games with per-
fect recall. This the first such algorithm for an equilibrium notion for games of
this generality. The EFCE concept has been defined by von Stengel and Forges
[1]. Our algorithm extends the constructive existence proof and polynomial-time
algorithm for finding a correlated equilibrium in succinctly representable games
by Papadimitriou and Roughgarden [2,3]. We describe the set of EFCE with a
polynomial number of consistency and incentive constraints, and exponentially
many variables. The algorithm employs linear programming duality, the ellipsoid
algorithm, and Markov chain steady state computations. We also sketch a possible
interpretation of the variables in the dual system.

1 Introduction

Extensive games with perfect recall are a fundamental model of noncooperative game
theory. They are game trees where players may have imperfect information about the
game state, modeled by information sets [4]. The standard rationality assumption of
perfect recall is a condition on the information sets that asserts that a player never
forgets what he knew or did earlier.

The game tree, with its information sets, moves, chance probabilities, and payoffs,
is a succinct representation of a game. The strategic form of the game is in general
exponentially larger because because a pure strategy of a player is a tuple of moves, one
for each information set, so there are exponentially many strategies per player; in the
terminology of [2,3], this means the game is not of “polynomial type”. Already for zero-
sum two-player games, finding an equilibrium is therefore an interesting computational
problem. It is solved by the sequence form [5], which is a strategic description of the
same size as the game tree, and allows to solve huge two-person zero-sum games, for
example of poker (see [6], also for earlier references related to the sequence form).

Finding a Nash equilibrium of an extensive game with any number of players is
as difficult as for a game in strategic form. For the latter, a (more general) correlated
equilibrium (CE) [7] can be found in polynomial time. Papadimitriou and Roughgarden
[2,3] give a polynomial-time algorithm for succinctly representable games. Applying
the ellipsoid method [8] to a linear program derived from the existence proof for CE
due to [9] and [10], the method generates a polynomial-sized LP. The solution to that
LP gives a distribution on product distributions that describes the desired CE for the
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succintly represented game. However, this method cannot be applied to extensive games
because they are not of polynomial type.

We present the first polynomial-time algorithm for finding an equilibrium for general
extensive games that have any number of players and perfect recall. We have to adapt
the concept of correlated equilibrium, but preserve the spirit of the extensive game in
the sense that any “uncorrelated” such equilibrium is a Nash equilibrium (this is not the
case for the agent form, where [2,3] can be applied, as discussed in [1]). We consider
the new concept of extensive form correlated equilibrium (EFCE) [1]. A strategic-form
CE can be considered as a device that selects a profile of pure strategies from a joint
probability distribution and sends each player privately his pure strategy in that profile
as a recommendation of what to play. In an EFCE, such a profile is also selected by
the device before the game starts. However, the recommendations in an EFCE are “de-
layed”: rather than telling the entire strategy in advance, each recommended move is
given only when the player reaches the information set where she can make that move.

For two-player perfect recall extensive game without chance moves, [1] give a poly-
nomial-size system that describes the set of all EFCE. Hence, any solution to that system
can be found in polynomial time. However, already in two-player games with chance
moves, it is not possible to give a polynomial-sized description of the set of all EFCE,
unless P = NP [11,12,1].

In this paper, we use a description of the set of EFCE for general extensive games
with any number of players with perfect recall, and possible chance moves. We describe
the set of EFCE by a polynomial number of constraints, but with exponentially many
variables, which allows us to extend the method of [2,3].

In an EFCE, unlike in a CE, a player has only to decide whether a recommended
move is optimal, which involves a small number of comparisons with the other moves
at the respective information set. In addition, a player who considers deviating from a
recommended move has to look at additional future moves at previously unreached own
information sets. We represent these by suitable incentive constraints with variables
and constraints that, essentially, mimick “dynamic programming” in a single-player
decision tree. The resulting system is small but somewhat involved, because one has to
study carefully the propagation of payoffs for possible deviations through the game tree
via dual variables.

Our blueprint, the proof by [2,3], uses the constructive existence proof of CE of [9,10],
and employs linear programming duality, the ellipsoid algorithm, Markov chain steady
state computations, as well as application specific methods for computing expectations
over product distributions. We run the ellipsoid algorithm on the, more complicated, dual
system. In contrast to the computation of a CE for a succinct strategic-form game [2,3],
the dual system contains additional “consistency” information in the form of certain
equalities for the dual variables. At each step, the ellipsoid algorithm finds a violated
convex combination of the constraints of the dual system. These correspond, dually, to
product distributions on moves at information sets. These do not represent steady states
of a Markov chain, unlike in [2,3]. However, by assuming that the required distribution
exists for preceding information sets, it can be considered as a steady state. For this
reason, our algorithm uses Markov chain computation at each information set from the
root of the game tree down to the information sets closest to the leaves of the game tree.
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We give our construction first for for perfect-recall extensive games without chance
moves, and then consider chance as an extra player who gets no payoff and never de-
viates. For reasons of space, we have to omit all proofs, and, unfortunately, examples,
which are available in a long version of this paper.

2 Incentive Constraints

We use the notation of [1], except that a player is typically denoted by p and N is the
set of all players, often omitted. The set of all information sets of player p is Hp. For
h ∈ Hp, the set of moves or choices at h is Ch. A pure strategy sp of player p is an
element of ∏h∈Hp Ch, and a strategy profile s is an element of ∏p ∏h∈Hp Ch.

In an EFCE, a player receives a move recommendation when reaching an information
set, unlike in a CE where a player gets a recommended strategy at the beginning of the
game. The player then compares the expected payoffs of moves at that information set
and chooses the move with maximum expected payoff.

We first consider games without chance moves. Given an extensive game with perfect
recall, is there a “sequence form” to compute one EFCE? For two-player games without
chance moves, the answer is yes, as described in detail in [1]. The system of consistency
and incentive constraints of sequences defines the set of EFCE. This holds because
the condition of perfect recall imposes strong restrictions on the players’ information
sets, so that the recommended move at each information set can be generated uniquely.
However, for games of more than two players, or with chance moves, the consistency
constraints of the sequences on the marginal probabilities of moves that are correlated
across information sets are only necessary conditions. For this reason, our system does
not use the sequence form.

Therefore, instead of introducing an auxiliary variable u(σ) to denote the expected
payoff contribution of a sequence σ as in [1], we use u(c) to denote the expected payoff
contribution of the move c when the player follows his recommendations at all informa-
tion sets he reaches. Before giving the expression of u(c), the relations between moves
and strategies need to be clarified.

Definition 1. An information set h ∈ Hp precedes another information set k ∈ Hq if and
only if p = q and there are nodes u ∈ h and v ∈ k such that u is on the path from the root
to v. Furthermore, h ∈ Hp immediately precedes k ∈ Hp when h precedes k and there is
no information set l ∈ Hp that succeeds h and precedes k.

Unlike in [1], the relation “precedes” is only between two information sets of the same
player.

Definition 2. A move c ∈ Ch agrees with a strategy profile s if and only if the infor-
mation set h is reached and the move c is chosen when players play according to s.
A move c ∈ Ch of player p terminates a strategy profile s−p if and only if h is reached
and no further information set of player p is reached if p plays the moves leading to h
at all preceding information sets and plays c at h, and the other players play s−p . An
information set h ∈ Hp is reachable by a strategy profile s ∈ S if and only if the player p
reaches h at a certain stage if all players choose the strategies in s.
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Let ap(s) be the payoff to player p if all players choose the strategies in s, and let z(s)
be the probability according to which the correlation device selects the strategy profile
s. For any c ∈ Cp, the variable u(c) is given by

u(c) = ∑
s ∈ S : c agrees with s

ap(s)z(s). (1)

Thus for any move c so that no further information set of player p is reached afterwards,
u(c) is the expected payoff to player p if he plays the recommended move c. The fol-
lowing lemma shows that u(c) is the expected payoff contribution also for a move c that
leads to further information sets of player p.

Lemma 3. Given a move c ∈ Ch and the set {k ∈ Hp : h precedes k} is not empty, we
have

u(c) = ∑
s ∈ S : c agrees with s,

c terminates s−p

ap(s)z(s)+ ∑
l ∈ Hp : h immediately

precedes l via c

∑
c′∈Cl

u(c′).

The expected payoff u(c) when the player chooses the recommended move c is com-
pared with the possible payoff when the player deviates from his recommendation.
Given a move c ∈ h and an information set k such that k = h or k succeeds h, we
use v(k,c) to denote the optimal expected payoff at k given the player is recommended
move c at h. It is the maximum of the payoffs for the possible moves d ∈ Ck, which may
either directly give a payoff ap(sk

d) when d terminates s−p (where sk
d is the strategy pro-

file that specifies moves leading to k at information sets preceding k, and d at k, and the
same moves as s at all other information sets), or are obtained from subsequent optimal
payoffs at later information sets. This is expressed by the following inequalities:

v(k,c) ≥ ∑
s ∈ S : c agrees with s,

d terminates s−p

ap(sk
d)z(s)+ ∑

l ∈ Hp : k immediately

precedes l via d

v(l,c), d ∈ Ck. (2)

These incentive constraints constraints are completed by

u(c) = v(h,c), (3)

for any move c ∈ Ch. That is, given a recommended move c, the player does not gain by
deviating from move c.

Theorem 4. In a perfect-recall extensive game, a probability distribution z that fulfills
for all players the incentive constraints (1),(2) and (3) defines an EFCE. The number
of constraints that describe the set of EFCE is polynomial in the size of the game tree.

3 Existence Proof

In the system describing the set of EFCE, (3) states that the expected payoff contribu-
tion of the recommended move must be optimal, as expressed by (1) and (2). One can
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obviously substitute v(h,c) with u(c) when c ∈ Ch in (2). We rewrite these simplified
constraints as matrix inequalities and consider the linear program

maximize ∑
s∈S

z(s), subject to Az+ Bv ≥ 0, z ≥ 0. (4)

So the entries of A are either 0 or linear terms of a(s) for certain s and the entries of
B, for (2) and (3), are either 0, 1 or −1. The LP (4) is either trivial with the objective
function being 0 or unbounded. When it is unbounded the normalized solution is an
EFCE. Therefore by duality, to prove the existence of EFCE, it suffices to show that the
dual of (4)

A�y ≤ −1, B�y = 0, y ≥ 0 (5)

is always infeasible. We need the following lemma, analogous to [9,10,2].

Lemma 5. If y ≥ 0, B�y = 0, then there is a product distribution z so that z�A�y = 0.

Here, z�A�y is a convex combination of left sides of the constraints A�y ≤ −1 in (5),
and hence for every feasible y ≥ 0, B�y = 0, it should evaluate to something negative.
Thus this lemma shows that (5) is infeasible.

The proof of Lemma 5 uses the following lemma which has a long but straightfor-
ward proof. There is one dual variable yk

c,d for each information set k and move d ∈ k

and c ∈ h where h = k or h precedes k. To prove that given y ≥ 0 and B�y = 0, there is a
convex combination of components of A�y equal to 0, we first show how a component
of A�y can be expressed in terms of the payoff ap and the dual variable y.

Lemma 6. Given a strategy profile s ∈ S and y ≥ 0 such that B�y = 0,

(A�y)s = ∑
p

∑
k∈Hp

∑
h ∈ Hp : h = k or

h precedes k and h

is reachable by s

∑
d∈Ck

yk
ch

s ,d [a
p(sk)− ap(sk

d)] (6)

where sk is the strategy profile in S that specifies moves leading to k at information sets
preceding k and the same moves as s at all other information sets (k may not be reached
according to the moves s specifies at information sets of other players), and ch

s is the
move that s specifies at h.

The following lemma provides the main step to prove Lemma 5.

Lemma 7. For any y such that y ≥ 0 and B�y = 0, there is a product distribution
z = ∏p∈N ∏k∈Hp zk such that for any information set k, the probability distribution zk

on the moves d at k satisfies

zk(d)[αk(d)+ αk( /0)] = ∑
c∈Ck

zk(c)β k
1 (c,d)+ β k

2 (d) (7)
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where for any c ∈ Ck,

αk(c) = [ ∏
l∈Hk

zl(cl
k)] ∑

d∈Ck

yk
c,d , αk( /0) = ∑

h ∈ Hp : h

precedes k

∏
l∈Hh

zl(cl
h) ∑

c∈Ch

zh(c) ∑
d∈Ck

yk
c,d ,

β k
1 (c,d) = [ ∏

l∈Hk

zl(cl
k)]y

k
c,d , β k

2 (d) = ∑
h ∈ Hp : h

precedes k

∏
l∈Hh

zl(cl
k) ∑

c∈Ch

zh(c)yk
c,d .

Here Hk is the set of information sets l (of the same player as k) that precede k, and cl
k

is the unique move at l that leads to k.

Nau and McCardle [10] discussed “joint coherence” in noncooperative games, and thus
gave a possible interpretation of the variables involved in both the primal and the dual
system. Myerson [13] used this interpretation to obtain further properties of CE. For
EFCE, we consider a certain move transition matrix T k in order to prove Lemma 7,
for each information set k. Any such move transition matrix for information set k can
be interpreted as a random deviation plan for the player who will make a move at that
information set. Each number yk

c,d in (6), where d ∈ Ck, represents the trend that player
would deviate to the move d when c is recommended at this information set or some
earlier stage of the game (and the player ignores any recommendation after getting c).
More precisely, the trend that the player ignores a recommendation at some earlier
stage and chooses move d at information set k is β k

2 (d), and the trend that the player
chooses d at information set k is ∑c∈Ck

zk(c)β k
1 (c,d)+ β k

2 (d). On the other hand, the
trend that the player would be getting recommended move d (he or she may ignore it) is
zk(d)αk(ck

s)+ zk(d)αk( /0). One can then show that the deviation plan does not change
the distribution on the player’s actions at the information set k.

The preceding lemmas require several pages of proofs in full detail. Lemma 5 then
implies the existence of EFCE.

Theorem 8. Every game of extensive form without chance moves has an EFCE.

4 Algorithm for Games without and with Chance Moves

To find an EFCE in polynomial time, we follow [2,3] and apply the ellipsoid algorithm
to the dual (5) of the system (4) that characterizes the set of EFCE. The LP (4) has
polynomially many constraints and exponentially many variables. Thus for the dual (5)
the opposite holds, which makes it suitable for the ellipsoid algorithm.

In each iteration of the ellipsoid algorithm, an extra step is needed to maintain the
candidate solution yi to satisfy the consistency constraints B�yi = 0. At the initial iter-
ation, for the system B�y = 0, y = 0, let ȳ be the free variables in y, and y = B̄ȳ. Thus
the system (5) is equivalent to

A�B̄ȳ ≤ −1, ȳ ≥ 0. (8)

We apply the ellipsoid algorithm to the system (8).
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Let ȳ0 = 0 be the candidate for the initial iteration. Thus every constraint A�B̄ȳ ≤
−1 is violated. Any product distribution z satisfies z�A�y = 0. Choose any product
distribution z0, and a violated inequality z�

0 A�y ≤ −1. At each iteration, the candidate
ȳi−1 is replaced by ȳi. Let yi = B̄ȳi. By Lemma 5, a product distribution zi such that
z�

i A�y = 0 can be found. Thus the inequality (z�
i A�)B̄ȳ ≤ −1 is violated. We proceed

to the next step.
Since we know that (5) is infeasible, the algorithm will end up with recognizing the

system as infeasible after polynomially many iterations. Thus when the algorithm halts,
we have polynomially many candidate solutions yi and for each yi a corresponding
product distribution zi.

We now claim that a convex combination, denoted Z�ξ , of these product distribu-
tions can be found in polynomial time, such that the system AZ�ξ + Bv ≥ 0, ξ ≥ 0
is unbounded. When the ellipsoid algorithm is applied to (8), in each iteration the in-
equality (z�

i A�B̄)ȳ ≤ −1 is violated by ȳi. Let Z be the matrix where each row i is
the product distribution zi found by the ellipsoid algorithm. We consider the system of
linear inequalities

[ZA�B̄]ȳ ≤ −1, ȳ ≥ 0 . (9)

Clearly, the number of variables of (9) is equal to that of (8), and is polynomial in
the size of the game tree. Thus the ellipsoid algorithm is appropriate to (9) too. Apply it
to (9). Let the initial candidate solution be ȳ0 = 0. In each iteration i, the ith constraint
of (9) (z�

i A�B̄)ȳ ≤ −1 is violated by the ith candidate solution yi. Thus the algorithm
will determine that (9) is infeasible too. That is,

[ZA�]y ≤ −1, y = B̄ȳ, ȳ ≥ 0

or equivalently

[ZA�]y ≤ −1, B�y = 0, y ≥ 0

is infeasible. The dual problem

maximize∑
i
(ξA)i subject to [AZ�]ξA + BξB ≥ 0, ξA ≥ 0 (10)

is unbounded. Here (ξA,ξB) is a partition of the variable vector ξ .
For any feasible solution ξ of (10), ξA after normalization is a probability distribution

on the set of strategy profiles. The product Z�ξA is a convex combination of the rows
of Z�, which are the product distributions that are computed at all the iterations of the
ellipsoid algorithm. Thus the nonnegative constraints ξA ≥ 0 are satisfied if and only if
Z�ξA ≥ 0. Let z = Z�ξA, and v = ξB. The system (10) becomes

maximize∑
s

z(s) subject to Az+ Bv ≥ 0, z ≥ 0

which is the system that characterizes an EFCE. Therefore, (z,v) = (Z�ξA,ξB) is a
nontrivial solution to (5) when ξ is a nontrivial solution to (10). Furthermore, z = Z�ξA

is the desired EFCE.
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So far, all the arguments and inductions are based on the assumption that there are no
chance moves in the game. With chance moves, the system (4) is no longer appropriate,
because a move may “agree” with more than one strategy profile. However, the impact
of the chance moves on the reachability of an information set can be expressed by
considering chance as an extra player 0, without any incentive constraints. The chance
moves become part of a strategy profile, but their probabilities in the construction of
product distributions will be constants rather than variables, with minor modifications
of the algorithm for games without chance moves. We obtain the following result.

Theorem 9. Every multi-player, perfect-recall extensive game, which may have chance
moves, has an EFCE, which can be computed in polynomial time.

The EFCE concept is crucial to limit the number of incentive constraints. It is an open
question if one can find one (strategic-form) CE for extensive games, even with only
two players, in polynomial time as well. Because of the exponential number of strategies
for each player, it is not even clear if such a CE has a polynomial-sized description and
certification of the equilibrium property (analogous to the NP property for a decision
problem).

References

1. von Stengel, B., Forges, F.: Extensive form correlated equilibrium: Definition and computa-
tional complexity. Math. Oper. Res. (in press, 2008)

2. Papadimitriou, C.H.: Computing correlated equilibria in multi-player games. In: Proc. 37rd
Annual ACM Symposium on Theory of Computing (STOC), pp. 49–56 (2005)

3. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player
games. J. ACM 55, 14 (2008)

4. Kuhn, H.W.: Extensive games and the problem of information. In: Contributions to the theory
of games. Annals of Mathematics Studies 28, vol. 2, pp. 193–216. Princeton Univ. Press,
Princeton (1953)

5. von Stengel, B.: Efficient computation of behavior strategies. Games Econom. Behav. 14,
220–246 (1996)

6. Gilpin, A., Sandholm, T.: Lossless abstraction of imperfect information games. J. ACM 54,
25 (2007)

7. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econom. 1,
67–96 (1974)

8. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics 20,
191–194 (1979); (transl. of Dokl. Akad. Nauk SSSR 244, 1093–1096)

9. Hart, S., Schmeidler, D.: Existence of correlated equilibria. Math. Oper. Res. 14, 18–25
(1989)

10. Nau, R.F., McCardle, K.F.: Coherent behavior in noncooperative games. J. Econom. The-
ory 50, 424–444 (1990)

11. Chu, F., Halpern, J.: On the NP-completeness of finding an optimal strategy in games with
common payoffs. Internat. J. Game Theory 30, 99–106 (2001)

12. von Stengel, B.: Computational complexity of correlated equilibria for extensive games. Re-
search Report LSE-CDAM-2001-03, London School of Economics (2001)

13. Myerson, R.B.: Dual reduction and elementary games. Games Econom. Behav. 21, 183–202
(1997)


	Introduction
	Incentive Constraints
	Existence Proof
	Algorithm for Games without and with Chance Moves


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


