A characterization of single-peaked single-crossing domain

Edith Elkind
University of Oxford

based on joint work with Piotr Faliszewski and Piotr Skowron
Voters and Their Preferences

- n voters, m candidates
- Each voter has a complete ranking of the candidates (his preference order)
- Problem: with no assumption on preference structure
 - counterintuitive behavior may occur
 - computational problems are often hard
Single-Peaked Preferences

• **Definition**: a preference profile is single-peaked (SP) wrt an ordering $<$ of candidates (axis) if for each voter v there exists a candidate C such that:
 – v ranks C first
 – if $C < D < E$, v prefers D to E
 – if $A < B < C$, v prefers B to A

• **Example**:
 – voter 1: $C > B > D > E > F > A$
 – voter 2: $A > B > C > D > E > F$
 – voter 3: $E > F > D > C > B > A$
Single-Crossing Preferences

Definition: a profile is single-crossing (SC) wrt an ordering of voters \((v_1, ..., v_n)\) if for each pair of candidates \(A, B\) there exists an \(i \in \{0, ..., n\}\) such that voters \(v_1, ..., v_i\) prefer \(A\) to \(B\), and voters \(v_{i+1}, ..., v_n\) prefer \(B\) to \(A\).
Single-Peaked vs. Single-Crossing Preferences

• Similarities:
 – both are motivated by the idea that the society is aligned along a single axis
 – both can be checked in poly-time
 – both ensure existence of a Condorcet winner
 – both enable efficient algorithms for many social choice problems
 – both admit forbidden minor characterization

• Differences:
 – order on candidates vs. order on voters
Single-Peaked Profile That Is Not Single-Crossing

- \(v_1 \) and \(v_2 \) have to be adjacent (because of B, C)
- \(v_3 \) and \(v_4 \) have to be adjacent (because of B, C)
- \(v_1 \) and \(v_3 \) have to be adjacent (because of A, D)
- \(v_2 \) and \(v_4 \) have to be adjacent (because of A, D)

a contradiction
Single-Crossing Profile That Is Not Single-Peaked

Each candidate is ranked last exactly once
Can we characterize preference profiles that are simultaneously single-peaked and single-crossing?
1D-Euclidean Preferences

• Both voters and candidates are points in \mathbb{R}
• v prefers A to B if $|v - A| < |v - B|$
• Observation: 1D-Euclidean preferences are
 – single-peaked (wrt ordering of candidates on the line)
 – single-crossing (wrt ordering of voters on the line)
1-Euclidean Preferences: Bad News

- Proposition: There exists a preference profile that is SP and SC, but not 1-Euclidean

\[v_1: 1 \ A_1 A_2 A_3 \ 2 \ B_1 B_2 B_3 \ 3 \ C_1 C_2 C_3 \ D_1 D_2 D_3 \ 4 \ 5 \]
\[v_2: A_2 A_1 A_3 \ 2 \ B_1 B_2 B_3 \ 3 \ 1 \ C_1 C_2 C_3 \ D_1 D_2 D_3 \ 4 \ 5 \]
\[v_3: B_2 B_1 B_3 \ 3 \ C_1 C_2 C_3 \ D_1 D_2 D_3 \ 4 \ 2 \ A_3 A_2 A_1 \ 1 \ 5 \]
\[v_4: C_2 C_1 C_3 \ D_1 D_2 D_3 \ 4 \ 3 \ B_3 B_2 B_1 \ 2 \ A_3 A_2 A_1 \ 1 \ 5 \]
\[v_5: D_2 D_1 D_3 \ C_3 C_2 C_1 \ 4 \ 5 \ 3 \ B_3 B_2 B_1 \ 2 \ A_3 A_2 A_1 \ 1 \]
\[v_6: 5 \ 4 \ D_3 D_2 D_1 \ C_3 C_2 C_1 \ 3 \ B_3 B_2 B_1 \ 2 \ A_3 A_2 A_1 \ 1 \]
A Different Angle

• A preference profile is called narcissistic is every candidate is ranked 1st at least once
• Proposition: Every narcissistic SC profile is SP (axis = 1st vote)
• Proof:
 – suffices to show that if v_1 prefers A to B to C, then no voter ranks B last out of A, B, and C
Pre-NSC Preferences

• Are all SP-SC profiles narcissistic?
 – obviously no: being SP and SC is robust to deletions, and being narcissistic is not

• Definition: a profile is called pre-NSC if it can be extended to a narcissistic SC profile by adding voters
 – every pre-NSC profile is SP and SC

• Main Theorem: the converse is also true
Characterization

• **Theorem**: every SP-SC profile is pre-NSC

• Proof idea:
 – constructive argument: extend a SP-SC profile to a narcissistic one
 – crucial lemma: given a SP-SC profile $V = (v_1, ..., v_n)$, there is a vote v_0 such that $(v_0, v_1, ..., v_n)$ is SP and SC, and v_0 is an axis witnessing that V is SP
 – by the lemma, can assume that the profile is SP wrt 1st vote
 – use 1st vote as a guiding order to insert votes
Lemma: Proof Idea

- Lemma: given a SP-SC profile \(V = (v_1, \ldots, v_n) \), there is a vote \(v_0 \) such that \((v_0, v_1, \ldots, v_n) \) is SP and SC and \(v_0 \) is an axis witnessing that \(V \) is SP

- Proof idea:
 - try to add an arbitrary axis witnessing that \(V \) is SP
 - if this fails, pick a "minimal" pair of candidates that is at fault
 - modify the axis by swapping tails
 - argue that tail swap can be performed \(\leq m \) times
Algorithmic Perspective

• Our proof implies a **polynomial-time** algorithm for
 (1) checking whether a given profile V is **pre-NSC**
 (2) finding a **narcissistic** profile extending it

• A simpler algorithm for (2) given (1):
 – for each missing candidate A, find possible
 positions in V to insert a vote v_A that ranks A first
 – turns out that there is ≤ 1 position for each candidate
 – if v_A is the only vote to be inserted between v_i and v_{i+1},
 construct v_A by moving A to the top of v_i
 – if both v_A and v_B need to be inserted between v_i and v_{i+1},
 v_A precedes v_B iff A precedes B in v_i
Applications to Fully Proportional Representation: Monroe’s Rule

- n voters, m candidates
- **Task**: elect a k-member parliament
- **Constraints**:
 - candidates are *explicitly assigned* to voters
 - each elected candidate represents $\approx n/k$ voters
 - voter’s *dissatisfaction* is determined by the *rank* of his representative in his vote (via a *scoring rule*)
- **Objective**: minimize
 - sum of voters’ dissatisfaction (Monroe$^+$), or
 - maximum dissatisfaction (Monroe$^{\text{max}}$)
- Both Monroe$^+$ and Monroe$^{\text{max}}$ are NP-hard for general preferences
Monroe’s Rule: Example

- $k = 2$, scoring rule = Borda
- A can be assigned to at most 5 voters
- For Monroe^+, we can assign B to $v_1 - v_4$ or C to $v_2 - v_5$
- For $\text{Monroe}^{\text{max}}$, the only solution is to assign C to 4 arbitrary voters

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
Single-Peaked Trajectories

• above \((A, i)\): \# of candidates \(v_i\) ranks above \(A\)

• **Definition**: a profile is said to have **single-peaked trajectories property (SPTP)** if for every candidate \(A\) there exists a voter \(v_i\) such that
 – above \((A, j)\) \(\geq\) above\((A, k)\) whenever \(j < k \leq i\)
 – above \((A, j)\) \(\geq\) above\((A, k)\) whenever \(j > k \geq i\)

\[
\begin{array}{ccccccccc}
 \ldots & \ldots & \ldots & \ldots & A & \ldots & \ldots & \ldots & \ldots \\
 \ldots & \ldots & \ldots & A & \ldots & \ldots & \ldots & \ldots & \ldots \\
 \ldots & A & \ldots & A & \ldots & \ldots & \ldots & \ldots & \ldots \\
 \ldots & \ldots & \ldots & \ldots & A & \ldots & \ldots & \ldots & \ldots \\
 \ldots & A & \ldots \\
 \ldots & \ldots \\
 \ldots & A & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots & \ldots & \ldots & \ldots & A & \ldots & \ldots & \ldots \\
 \ldots & A & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & A & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
\end{array}
\]

• **Claim**: pre-NSC profiles have **SPTP**
Monroe^{\text{max}} and SPTP

• **Claim**: if a profile has SPTP, then the set of voters matched to an elected candidate under Monroe^{\text{max}} is a contiguous segment of V

• **Corollary**: for pre-NSC preferences Monroe^{\text{max}} admits a very efficient DP algorithm

• [Betzler, Slinko, Uhlmann’13]: for single-peaked preferences Monroe^{\text{max}} admits a DP algorithm (but a much slower one)
Comment: Single-Peaked and Single-Crossing Profiles and SPTP

• **Observation:**
 a single-crossing profile may fail to have **SPTP**

• **Observation:**
 a single-peaked profile may fail to have **SPTP** (wrt natural order of the voters)
Future Work: Other Applications

• Are there algorithmic problems that are
 – hard for single-peaked preferences
 – hard for single-crossing preferences
 – easy for pre-NSC preferences?

• I.e., the problem admits an algorithm that relies on SPTP

• Candidate problems:
 – manipulation of STV
 – certain questions about control and bribery
Future Work: Extensions

• **Generalization**: profiles that are single-peaked/single-crossing on a tree

• **Definition**: a profile \(V \) is single-peaked on a tree \(T \) if candidates can be matched to vertices of \(T \) so that the restriction of \(V \) to every path in \(T \) is single-peaked

• **Definition**: a profile \(V \) is single-crossing on a tree \(T \) if voters can be matched to vertices of \(T \) so that the restriction of \(V \) to every path in \(T \) is single-crossing

• **Question**: given \(T_1 \) and \(T_2 \), can we characterize elections that are single-peaked on \(T_1 \) and single-crossing on \(T_2 \)?