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Starting-point

It is PSPACE-complete to find any Nash equilibria of a game, that
are computed by the Lemke-Howson algorithm. 1

So, we have taken a specific (exponential-time) algorithm A for a
specific problem (NASH), and found out the complexity of
computing A’s solutions... NASH is a funny choice of problem, it’s
believed to be hard but not known to be as hard as NP... should
we care about generalizations of the above result? (to other
problems/exp-time algorithms)

1(Papadimitriou, G, and Savani ’11); “no short cuts”
not every solution is a L-H solution; result also applies to some related
game-solving algorithms
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A more general class of questions

Given problem X and (exp-time) algorithm A for X , what is the
complexity of computing A’s solutions?

Example: X=SAT, A=lexicographic search

LEXMINSAT (find the lexicographically min satisfying assignment)
is complete for OptP (Krentel ’88).

Definition

An OptP function fM has associated poly-time non-det TM M; M
outputs a binary number at each branch of computation; fM(x) is
largest number for all accepting branches.

“easier” than PSPACE
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Conjecture (attempt to generalize Slide 1)

Given any PPAD-complete problem X , and “path-following”
algorithm A for X , it’s PSPACE-complete to compute A’s output
on instances of X .

PPAD?

“path-following”?
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PPAD

parity argument on a directed graph (Papadimitriou ’91):

END OF LINE

Given directed graph G of indegree/outdegree at most 1, and a
“source” vertex of indegree 0, find another vertex of degree 1. G
has vertices {0, 1}n and edges represented by boolean circuits S , P.

END OF LINE characterizes PPAD; poly-time reductions between
NASH and END OF LINE establish PPAD-completeness of
NASH2.

2Daskalakis, G, and Papadimitriou ’05,’06; Chen, Deng, and Teng ’06
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END 0F LINE graph

You are given a node with degree 1 (colored red here)
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END 0F LINE graph

The highlighted nodes are PPAD-complete to find.
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How hard is PPAD?

“between P and NP”

NOT NP-complete unless NP=co-NP (Megiddo’86) since it’s
an NP total search problem (like FACTORING)
(could there be some other way to prove PPAD is as hard as
NP?)

anyway, it’s assumed not solvable in poly-time, based on effort
to find a poly-time algorithm, and usage of general boolean
circuits in problem instances
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Two “natural” exponential-time algorithms

lexicographic search

follow the line

Search for lexicographically-least solution is OptP-complete. The
search for line-following solution is PSPACE-complete!

OTHER END OF THIS LINE (OEOTL) denotes the
PSPACE-complete search problem.
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END 0F LINE graph

"the line"

The node attached to the red node is PSPACE-complete to find!
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The PSPACE-hardness of OEOTL

The circuits S and P that comprise an instance of
END-OF-LINE are like a space-bounded time-reversible TM.
(nodes of big graph ↔ configurations)

It’s PSPACE-complete to find the config of a space-n TM
after 2n transitions

TMs can be made time-reversible3 (by remembering some of
the previous configs, during a computation)

Slide 1: Lemke-Howson serves as a proxy for generic
polynomial-space bounded computation.

3Bennett ’73,’89; Crescenzi and Papadimitriou ’95 (NTMs: depth-bounded
tree-like circuit for NTM → (S , P)-graph G ; TRUE gates are reachable in G)
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Path-following algorithms

definition

A path-following algorithm for a PPAD-complete problem X uses a
reduction to convert X to END OF LINE, follows the line, and uses
the same reduction to convert that end-of-line to a solution of X .

Lemke-Howson is path-following, so the result of slide 1 is a special
case of the path-following algorithms conjecture.

Challenge instances for the path-following algorithms conjecture

X =NASH, A =Scarf’s algorithm

X =2D-discrete Brouwer, A =“the natural algorithm”
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“Paradox”

PPAD is no harder than NP (maybe easier); Lemke-Howson is
efficient in practice; but it’s “harder” to compute the output of
Lemke-Howson than the “obviously inefficient” lexicographic search

PPAD easier than NP?

General intuition for the hardness of PPAD is that unrestricted
boolean circuits are hard to work with...
But note PPAD instances have polynomial “query complexity”:
consider a computationally unbounded algorithm that wants a
solution given the circuits S and P and is able to query their
input/output behaviour...
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2D-DISCRETE BROUWER

Search for a panchromatic point of a discrete Brouwer function —
in 2D, a function f : N × N ′ −→ {0, 1, 2} where

the bottom row has color 1 (e.g. red)

the left-hard side has color 2 (e.g. green)

the top and RHS have color 0 (e.g. blue)

internal points colored by a poly-size boolean circuit C

Assume N and N ′ are
exponentially large
C maps coordinates to colors
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2D-DISCRETE BROUWER example

Search for trichromatic point
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2D-DISCRETE BROUWER example

Search for trichromatic point... they are PPAD-complete to find
(Chen and Deng (’06, ’09))
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The “natural” path-following algorithm

"the line"

Follow the line! How hard is it to find this solution?
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2D DISCRETE BROUWER

END OF LINE ≤p 2D-BROUWER (Chen & Deng ’06, ’09)

theorem

2D-discrete Brouwer is PSPACE-complete, if you want the
“natural line-following” solution.

The 3D version is easier; 2D needed more work...
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challenge instance (refined) for path-following conjecture

instances of 2D-discrete Brouwer
generated by specific reductions from END
OF LINE y(v ,v )

y(v ,v )

y(v ,v )

N

N

v v v v0 1 2 3

0 1

1 3

3 2
2

crossover gadget

“theorem”

For 2D-discrete Brouwer instances generated by Chen-Deng
reduction, it is #P hard to compute the “natural line-following
algorithm” solution.

but the above is just for one specific PPAD-complete class of
instances — we have a long way to go...
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