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Auctions for digital goods

Digital good: an unlimited supply of identical items

Aim: design a sealed-bid auction for n bidders to maximize revenue

Bidder i has private valuation vi

The auction proposes a take-it-or-leave price pi



Truthfulness and optimality

An auction is truthful if and only if the price pi does not depend on vi

Objective: design an optimal (truthful) auction.

Optimal?

The optimal revenue is ∑
i

vi

(unattainable, because of truthfulness)
Bayesian setting:

the value vi is drawn from a publicly-known probability distribution Fi

optimal price pi maximizes

pi · (1− Fi (pi ))

(Myerson 1981)

In the prior-free setting?



Prior-free benchmarks

Prior-free auction Benchmark

does not know private values knows everything
arbitrary prices restricted prices

Obvious benchmark:
∑

i vi

hopeless

Optimal single-price F (1): maxk k · v(k)
too strict; for the same reason that

first-price auction is not truthful; v(k) is
the k-th maximum value

Optimal single-price F (2): maxp : v(2)≥p
∑

i

{
p if vi ≥ p

0 otherwise
it sells at least two items

Decreasing prices M(2): maxp : v(2)≥p1≥p2···≥pn

∑
i

{
pi if vi ≥ pi

0 otherwise



The F (2) benchmark

An auction is said to have competitive ratio c against F (2) if it has
revenue at least F (2)(v)/c, for every set of values v.

Lower bound: There is no auction with competitive ratio less than 2.42
[Goldberg, Hartline, Karlin, Saks, and Wright, 2006]

Upper bound: There is an auction with competitive ratio 3.25 [Hartline
and McGrew, 2005]



Selecting a good benchmark for i.i.d. values

Consider all optimal Bayesian auctions for (publicly-known) i.i.d.
values

These are exactly the auctions with a fixed-price (the reserve price
that maximizes p · (1− F(p)))

The value of the best such auction for every set of values v is F (1)(v)

A prior-free auction which is competitive against F (1), is
approximately optimal for all distributions.

No such auction exist, so we settle for F (2) and we get almost the same
guarantee.

Is there a similarly good benchmark for the asymmetric case (that
is, when the distributions of bidders may differ) ?



Selecting a good benchmark for non-i.i.d.’s

If we repeat the reasoning for non-identical distributions, we don’t get
a meaningful benchmark (because the set of optimal Bayesian
auctions contains all auctions)

But if we have (non-identical) distributions

with decreasing reserve price, or
each distribution stochastically dominates the next one,

then the corresponding benchmark is M(1)

Since M(1) is unattainable, we settle for M(2)

Therefore if an auction is competitive againstM(2), it is near
optimal against all of the above distributions.



M(2) vs F (2)

For every set v of n values:

F (2)(v) ≤M(2)(v) ≤ Θ(ln n) · F (2)(v)



Competitive auctions against M(2)

M(2) was proposed in [Leonardi and Roughgarden, STOC 2012]
They gave an auction with competitive ratio Θ(log∗ n).

This talk, [Bhattacharya, Koutsoupias, Kulkarni, Leonardi,
Rughgarden, and Xu, EC 2013]: we give an auction with constant
competitive ratio

(In the paper, we also extended the
result to limited supply auctions)



The Optimal Price Scaling auction

The main idea of the Optimal Price Scaling auction is:

1 Partition the bidders randomly into two parts A and B

2 Compute the optimal monotone prices for A and offer them to B
(and vice versa)

For technical reasons, the actual auction is more complicated:

1 Use prices that are only powers of 2

2 With probability 1/2, run the above scheme and with the remaining
probability run a competitive ratio against F (2)



Performance

Theorem

The Optimal Price Scaling auction has constant competitive ratio against
M(2).

Our analysis proves a very high competitive ratio. It is an open problem to
reduce it and find an almost matching lower bound.



Analysis

Let v be a set of values and let (vA, vB) be a random partition.
The analysis is based on

1 Pr
[
M(2)(vA) ≥ 1

3 · M
(2)(v)

]
≥ 1

16

2 The revenue extracted by the auction from B is Ω(M(2)(vA))



Price intervals

Let p be a sequence of optimal monotone prices for vA.

Let Jk denote the interval of values in v for which the optimal price is
2k . Call the values in Jk greater than 2k , winning bids.

It suffices to show that the winning bids of Jk are partitioned almost
evenly between A and B (say with a ratio in

[
1
3 ,

2
3

]
).

Intuitively, this seems true. But there are problems:

The winning bids of some Jk ’s may be few (no concentration)

A more subtle problem is that even when some Jk has many items,
we cannot directly argue that the two parts have almost the same
number of high values, because there is a bias towards A, by the
way the levels were created.



Primal intervals

To resolve both issues, we use an intermediary set of some intervals, which
we call primal intervals. They have the following properties:

They are defined with respect to all values v
(thus, no bias towards A or B)

With constant probability, the winning bids of all primal intervals
are almost evenly partitioned into A and B

(therefore, we must have few primal intervals,
and each one of them must be “long”)

There is a collection of primal intervals whose winning bids
approximate the revenue of A

(this can be achieved only if there are
primal intervals of various sizes)

Despite these tradeoffs such sets of primal intervals exist.



Definition of primal intervals

Start with some primal interval. For every primal interval I, apply the
following 5 rules to create new primal intervals.



Matching and charging



Open problems

Tighten the analysis (lower and upper bounds)

Find an (almost) optimal auction

Extend to other asymmetric cases of bidders

Extend to matroids



Thank you!


