
Complexity of the guarding game
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Introduction

Guarding game definition – the setting

Guarding game (G ,VC , c):

G = (V ,E ) is a directed (or undirected) graph

Protected cop-region VC ⊂ V

There are c cops on vertices of VC (possibly more cops sharing one
vertex)

There is 1 robber on vertices of VR = V \ VC (the robber-region)

Example

cop region

robber region

a

b c

x y

z
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Introduction

Guarding game definition – the gameflow

First turn: robber-player places the robber on some r ∈ VR .

Second turn: cop-player places all cops on vertices of VC .

Then they play in alternating turns.

In each turn the respective player moves each of his pawns to a
neighbouring vertex (or leaves it where it is).

Cops may move only inside VC , robber may move only to vertices
with no cops.

Nothing is hidden from both players.

Goal of the robber: to enter some v ∈ VC with no cop on it.

Goal of the cops: to prevent it forever.
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Introduction

Example

cop region

robber region

a

b c

x y

z

If two cops occupy b and c , they win the game.

However, only one cop is needed to win the game.

Let us consider oriented version of this example. Again, one cop is
enough for cop-player to win.
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Introduction

Motivation and related problems

member of a big class called the pursuit-evasion games

initiated in 70’s by the cave exploring community and Tory Parsons

Task: How to efficiently search for a lost person in a complex cave
system?

Usual setting: Given a graph G , there is player refugee/robber and
several searchers/cops. The task for cops is to find the robber (to
move to the same place as the robber).
Countless variants:

I discrete / continuous movement
I robber or cops visible/invisible/something in between
I various constraints on player’s speed or movement

Combinatorial question: What is the minimal number of cops such
that they have a strategy for capturing the robber? “cop-number of
G”

Computational question: Given a configuration in a certain
pursuit-evasion game, is the game won by the cop players?
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Introduction

Cops-and-Robber game

discrete version of pursuit-evasion games on graphs is called the
Cops-and-Robber game

I Given a graph G , first the cops are placed on vertices, and then the
robber.

I The robber and the cops (all of them) alternately move to
neighbouring vertices.

I Complete information game.
I The goal of cops is to capture the robber (move a cop to a vertex with

the robber).

Cops-and-Robber for one cop was studied by Winkler and
Nowakowski 1983, for several cops by Aigner and Fromme 1984

Meyniel’s conjecture: For a graph G on n vertices, O(
√
n) cops is

enough to capture the robber.
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Introduction

Cops-and-Robber game: some known results

Several attempts to attack Meyniel’s conjecture appeared:

[Chiniforsooshan ’08]: O(n/ log n) cops is enough

[Frieze et al., Lu at al., Scott et al., ’11]: O(n/2(1−o(1))
√

log2 n) cops
is enough

[Pralat ’10]:
√
n/2− n0.2625 cops are needed

What can we obtain for certain graph classes?

If G is a finite tree, one cop is able to capture the robber.

[Aigner, Fromme ’84]: If G is planar, then 3 cops win the
Cop-and-Robber game on G .

[Schroeder ’01]: If G is toroidal, then 4 cops win the Cop-and-Robber
game on G .

(However, example of a toroidal G where 4 cops are necessary is not
known.)
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Introduction

Cops-and-Robbers: treewidth and complexity

Omniscient cops-and-robber game: Same rules as Cops-and-robber, but
the players may move to an arbitrarily distant vertex and the moves occur
simultaneously.

Theorem (Seymour, Thomas ’93)

If a graph G has a treewidth at most k, then k + 1 omniscient cops can
catch a robber on G.

Theorem (Goldstein, Reingold ’95)

The decision problem for the Cops-and-Robber game is E-time complete.

The guarding game is a natural variant of the Cops-and-Robber game. Is
there a result analogous to the result of Goldstein and Reingold?
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Introduction

Guarding game – the history

So back to the Guarding game again.

Introduced in:
Fomin, F., Golovach, P., Hall, A., Mihalák, M., Vicari, E., Widmayer,
P.: How to Guard a Graph?, Algorithmica 61, 2011.

Combinatorial question: Given the graph G and protected region
VC , what is the minimum number c of cops such that the cop-player
wins the guarding game (G ,VC , c)?

Computational question: Given the guarding game (G ,VC , c), who
has the winning strategy?
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Tomáš Valla (CTU Prague) Complexity of the guarding game LSE 2013 9 / 1



Introduction

Guarding game – known results

Complexity depends heavily on chosen restrictions [Fomin et al.]:
I If the robber-region is a path, then the problem is polynomial.
I For a graph with bounded treewidth and degree, the decision problem

for he version of the guarding game where the robber is allowed to
move only once can be solved in polynomial time [Fomin, Golovach,
Loksthanov, ’11].

I If the robber-region is a cycle, then there is a 2-approximation
algorithm for computing the minimum number of cops needed to guard
the graph.

I Even if the robber-region is a tree (even a star), both directed or
undirected, the problem is NP-complete.

I If the robber-region is a DAG, the problem becomes PSPACE-complete.
I If the robber-region is an arbitrary undirected graph, the problem is

PSPACE-hard [Reddy, Krishna, Rangan ’09].
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Tomáš Valla (CTU Prague) Complexity of the guarding game LSE 2013 10 / 1



Introduction

Guarding game – known results

Complexity depends heavily on chosen restrictions [Fomin et al.]:
I If the robber-region is a path, then the problem is polynomial.
I For a graph with bounded treewidth and degree, the decision problem

for he version of the guarding game where the robber is allowed to
move only once can be solved in polynomial time [Fomin, Golovach,
Loksthanov, ’11].

I If the robber-region is a cycle, then there is a 2-approximation
algorithm for computing the minimum number of cops needed to guard
the graph.

I Even if the robber-region is a tree (even a star), both directed or
undirected, the problem is NP-complete.

I If the robber-region is a DAG, the problem becomes PSPACE-complete.
I If the robber-region is an arbitrary undirected graph, the problem is

PSPACE-hard [Reddy, Krishna, Rangan ’09].
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Introduction

Guarding game – our contribution, directed graphs

[Fomin et al.]: What is the complexity of the decision problem for
general graphs? Perhaps PSPACE-complete too?.

Previously, only PSPACE-hardness on undirected graphs was known
[Fomin, Golovach, Loksthanov, ’11].

Let E = DTIME (2O(n)).

Theorem (Šámal, V.)

The decision problem for the guarding game G = (
−→
G ,VC , c), where

−→
G is a

directed graph, is E-complete under log-space reductions.

We can prove the theorem even without prescribing the initial
positions of players.
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Introduction

Guarding game – our contribution, undirected graphs

Definition

We define the guarding game with prescribed starting positions
G = (G ,VC , c, S , r), where S {1, . . . , c} → VC is the initial placement of
cops and r ∈ VR is the initial placement of robber.

Theorem (Šámal, V.)

The decision problem for the guarding game with prescribed starting
positions G = (G ,VC , c ,S , r), where G is an undirected graph, is
E-complete under log-space reductions.
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Theorem (Šámal, V.)

The decision problem for the guarding game with prescribed starting
positions G = (G ,VC , c ,S , r), where G is an undirected graph, is
E-complete under log-space reductions.
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Introduction

The class E

Note the difference between E = DTIME (2O(n)) and
EXPTIME = DTIME (2poly(n)).

Basically nothing is known about the relation of E to PSPACE.

We known only that E 6= PSPACE [Book ’74].

It may still be the case that the guarding game is PSPACE-complete.

Corollary

If the guarding game is PSPACE-complete, then E ⊆ PSPACE.
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Introduction

Analogy with the original Cop-and-Robber game

Theorem (Goldstein, Reingold 1995)

The decision problem for the Cop-and-Robber game (G , c), where G is a
directed graph or initial positions are given, is E-complete under log-space
reductions.

Our result is thus analogous to the result of Goldstein and Reingold.
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The directed case

Simple facts

Observation: If the robber can win, he can also win in less than 2|V |c+1

turns.

Lemma

Let G = (G ,VC , c) be a guarding game. Then G ∈ E.

Idea of the proof: Backwards labelling of the graph of all game
configurations. The running time of backwards labelling is polynomial in
the size of the graph. And the number of configurations is bounded by

2|VR |
(
|VC |+ c − 1

c

)
≤ n2n+c = 2O(n).
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The directed case

The reduction

First consider the decision problem of the guarding game with prescribed
starting position. We reduce it from the following formula satisfying game
F .

position is a 4-tuple (τ,FR(C ,R),FC (C ,R), α), where:
I τ ∈ {1, 2}
I FR and FC are formulas in 12-DNF both defined on set of variables

C ∪ R (C ∩ R = ∅)
I alpha is an initial (C ∪ R)-assignment

Player I (II) moves by changing the value assigned to at most one
variable in R (C ).

Player I (II) wins if the formula FR (FC ) is true after some move of
player I (II).

Theorem (Stockmeyer, Chandra 1979)

The set of winning positions of player I in the game F is E-complete
language under log-space reduction.
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Tomáš Valla (CTU Prague) Complexity of the guarding game LSE 2013 16 / 1



The directed case

The reduction

First consider the decision problem of the guarding game with prescribed
starting position. We reduce it from the following formula satisfying game
F .

position is a 4-tuple (τ,FR(C ,R),FC (C ,R), α), where:
I τ ∈ {1, 2}
I FR and FC are formulas in 12-DNF both defined on set of variables

C ∪ R (C ∩ R = ∅)
I alpha is an initial (C ∪ R)-assignment

Player I (II) moves by changing the value assigned to at most one
variable in R (C ).

Player I (II) wins if the formula FR (FC ) is true after some move of
player I (II).

Theorem (Stockmeyer, Chandra 1979)

The set of winning positions of player I in the game F is E-complete
language under log-space reduction.
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Tomáš Valla (CTU Prague) Complexity of the guarding game LSE 2013 16 / 1



The directed case

The reduction

First consider the decision problem of the guarding game with prescribed
starting position. We reduce it from the following formula satisfying game
F .

position is a 4-tuple (τ,FR(C ,R),FC (C ,R), α), where:
I τ ∈ {1, 2}
I FR and FC are formulas in 12-DNF both defined on set of variables

C ∪ R (C ∩ R = ∅)
I alpha is an initial (C ∪ R)-assignment

Player I (II) moves by changing the value assigned to at most one
variable in R (C ).

Player I (II) wins if the formula FR (FC ) is true after some move of
player I (II).

Theorem (Stockmeyer, Chandra 1979)

The set of winning positions of player I in the game F is E-complete
language under log-space reduction.
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The directed case

Sketch of the reduction

Cyclically repeating phases of the game:
1 Robber Move – robber changes one variable from R
2 Robber Test – if the formula FR is satisfied, the robber may pass into

the protected region
3 Cop Move – cops change at most one variable from C
4 Cop Test – if the formula FC is satisfied, the cops may block the

entrance to protected region from the “Robber Test” phase

RM RT

CMCT

Manipulators

Commander

Variables

Cop gates

Robber gates
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The directed case The gadgets

Variable cell Vx

Tx

Fx

TFx FTx

We introduce variable cell Vx for every x ∈ C ∪ R.

Used to maintain the current setting of variables.

In Vx , there is one cop – the variable cop.

His prescribed starting position is Tx if α(x) is true and Fx otherwise.
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The directed case The gadgets

The Manipulator My

Ty

Fy

TFy FTy

Cop region Robber region

RM

RT

T ′′
y

F ′′
y

T ′
y

F ′
y

Every variable cell Vy , y ∈ R has assigned the Manipulator My .

Used by robber-player to set the variables from R.

To force the variable cop move towards Ty (Fy ), the robber at RM
moves to T ′y (F ′y ).

If the cop does not obey, the robber penetrates cop-region.

Note this does not ensure that variable cop really reaches Ty (Fy )
and that only one variable cop moves – we deal with this later.
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The directed case The gadgets

The Robber Gate Rφ

zφ

Cop region Robber region

RTz′φ

C ′

R′

The only “valid” way for the robber to get inside the cop-region.

For every clause φ of FR there is one Robber gate Rφ.

Let φ = (`1& . . .&`12) where each `i is a literal.

If `i = x then there is the edge (Fx , zφ), if `i = ¬x then there is the
edge (Tx , zφ).

The robber can reach zφ if and only if φ is satisfied under the current
setting of variables (given by the positions of variable cops).
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The directed case The gadgets

The Commander gadget

Cop region Robber region

CM

gx

HQ

hx fxTx Fx

Used during the “Cop Move” phase, ensures at most one variable
from C can be changed.
There is the “commander” cop at the vertex HQ. If the robber moves
to CM, the commander decides one variable x to be changed and
moves to hx .
Simultaneously, variable cop in Vx starts moving towards the opposite
vertex, while the commander temporarily guards the vertex fx .
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The directed case The gadgets

The Cop Gate Cψ

Cop region

Robber region

CT

C ′ R′

zψ1

zψ2

zψ3

a′′ψ

a′ψ

aψ

a′′′ψ
bψ,x

b′ψ,x

The way for cops to block all the entrances to the cop-region.

For every clause ψ of FC there is one Robber gate Rψ.

There is a cop on vertex aψ, we call him Arnold. If ψ is satisfied,
Arnold is able to move to a′′ψ (and forever block there all entrances zφ
to VC ).
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The directed case The gadgets

The reduction is done

Therefore, we may conclude:

Corollary

For every formula game F = (τ,FC (C ,R),FR(C ,R), α) there exists a

guarding game G = (
−→
G ,VC , c ,S , r) with prescribed starting positions such

that player I wins F if and only if the robber-player wins the game G.
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The directed case The gadgets

Forcing the initial positions of players

The problem is now, that our construction works only if it is
initialized with exact positions of player.

Maybe the game with no prescribed positions is easier, because the
players can choose any starting vertex and make their life easier?

Answer: no. We can force also the initial positions of all player – but
only for directed graphs.

We cannot do that for undirected graphs.

S
T

r

The main theorem is now proved.
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The undirected case

Guarding game on undirected graphs – the idea

We use the same construction as for the directed case.

Over each edge we put a gadget forcing the direction the edge can be
traversed.

We do it for both the cops and for the robber.

If the player does not obey to the “simulated” orientation, something
bad happens – this mean he loses the game.

For technical reason, we need to subdivide each edge:

u v

e

u v

e1 e2 e3

0 1 2 3 0
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The undirected case

Simulating the orientation

Ω

c0 c1

c2c3

c′1
c′0

c′2c′3

cop region

robber region

0 1 2 3 0 13

g3 e0 e1 e2 e3 f0 f1
u v

g′3 e′0 e′1 e′2 e′3 f ′0 f ′1

There is one cop (we call him Chuck), initially on the vertex c0.

If the robber does not exactly follow the former orientation of the
edge, Chuck is released to the vertex Ω, where he can block all
entrances to VC .

We omit the gadget for simulating the orientation of cop edges.
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The undirected case

Further work

Find a way to force the initial position of players in the undirected
case.

The question, whether the guarding game is PSPACE-complete, is
still open. (We believe the answer is no.)

For a guarding game G = (G ,VC , c), if we restrict the sizes of
strongly connected components of G by 1, we get DAG, for which the
problem is PSPACE-complete; for no restrictions this is E-complete.
Is there some threshold for G to become E-complete from being
PSPACE-complete?

Open to new directions, ideas, different approaches and collaboration.

Thank you for the attention!
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