
Motivations
The algebraic part - sketch

The complexity of Combinatorial Nullstellensatz

Algebraic Combinatorics and the Parity Argument

PPA membership of Combinatorial Nullstellensatz and related problems

László Varga

ESRC Workshop on Algorithmic Game Theory, London
17-18 October 2013

Institute of Mathematics, Eötvös Loránd University, Budapest
LVarga@cs.elte.hu

mailto:LVarga@cs.elte.hu
LVarga@cs.elte.hu


Motivations
The algebraic part - sketch

The complexity of Combinatorial Nullstellensatz

Contents

1 Motivations

Alon's Combinatorial Nullstellensatz

pd -divisible subgraphs

Our main results

2 The algebraic part - sketch

Conditions modulo pd and conditions modulo p

Key observation through an example

3 The complexity of Combinatorial Nullstellensatz

The class PPA and Chévalley's MOD 2

PPA membership of Combinatorial Nullstellensatz

2d -divisible subgraphs

László Varga: Algebraic Combinatorics and the Parity Argument 2



Motivations
The algebraic part - sketch

The complexity of Combinatorial Nullstellensatz

Alon's Combinatorial Nullstellensatz
pd -divisible subgraphs
Our main results

Alon's Combinatorial Nullstellensatz

In 1999, Alon presented a general algebraic technique and its numerous
applications in Combinatorial Number Theory, in Graph Theory and in
Combinatorics.

Theorem (Combinatorial Nullstellensatz, Alon)

Let F be an arbitrary �eld, and let f ∈ F[x1, . . . xm] be an m-variable
polynomial. Suppose that the degree of f is

∑n
j=1 tj , where each tj is a

nonnegative integer, and that the coe�cient of
∏m

j=1 x
tj
j is nonzero. Then, if

S1, S2, . . . , Sm are subsets of F with |Sj | > tj for all j = 1, . . . ,m, then there
exists an (s1, s2, . . . , sm) ∈ S1 × S2 × · · · × Sm such that f (s1, s2, . . . , sm) 6= 0.

The proofs of its applications are algebraic, and hence non-constructive in the
sense that they supply no e�cient algorithm for solving the corresponding
algorithmic problems.

László Varga: Algebraic Combinatorics and the Parity Argument 3
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Combinatorial Nullstellensatz MOD 2

Theorem (Combinatorial Nullstellensatz MOD 2)

Let f ∈ F2[x1, . . . xm] be an m-variable polynomial. Suppose that the degree of
f is m and that the coe�cient of x1x2 . . . xm is nonzero. Then, there exists an
(s1, s2, . . . , sm) ∈ {0, 1}m such that f (s1, s2, . . . , sm) 6= 0.

For example, if f (x1, x2, x3) = x1x2x3 + x1x2 + x2x3, f (1, 1, 1) = 1.

László Varga: Algebraic Combinatorics and the Parity Argument 4
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p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number
of edges incident to every vertex is divisible by p.

What does it mean in the case p = 2?

a cycle, an Eulerian subgraph.

Theorem (Alon)

For any prime p and any graph G on n vertices and m edges, if m > n · (p− 1),
there exists a p-divisible subgraph.

If m > n, of course, there exists a 2-divisible subgraph, e.g. a cycle.

László Varga: Algebraic Combinatorics and the Parity Argument 5
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p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number
of edges incident to every vertex is divisible by p.

Theorem (Alon)

For any prime p and any graph G on n vertices and m edges, if m > n · (p− 1),
there exists a p-divisible subgraph.

n = 5 vertices, 11 > 5 · (3− 1) edges =⇒ there exists a 3-divisible subgraph.
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Useful corollary of Combinatorial Nullstellensatz

Let p be an arbitrary prime. Let us be given some m-variable polynomials
f1, f2, . . . , fn over Fp with no constant terms. If

m > (p − 1) ·
n∑

i=1

deg(fi ),

then there exists a vector 0 6= x ∈ {0, 1}m such that fi (x) = 0 for all i .

fA(x) = x1 + x2 + x3 + x4

fB(x) = x4 + x5 + x6 + x7

fC (x) = x7 + x3 + x8 + x9

fD(x) = x1 + x5 + x10 + x11

fE (x) = x11 + x10 + x2 + x6 + x8 + x9

11 = m > 5 · (3− 1)⇒
exists a vector 0 6= x : fi (x) = 0 .

László Varga: Algebraic Combinatorics and the Parity Argument 8
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pd -divisble subgraphs

In a previous paper, Alon, Friedland and Kalai answered the analogous question
modulo prime powers with no use of Combinatorial Nullstellensatz.

Theorem (Alon, Friedland and Kalai)

For any prime p and any graph G on n vertices and m edges, if
m > n · (pd − 1), there exist a pd -divisible subgraph.

The analogous theorem about k-divisible subgraphs is not known, if k is not a
prime power, but one can prove that if the graph has su�ciently large number
of edges, there exists a k-divisible subgraph.

László Varga: Algebraic Combinatorics and the Parity Argument 10
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Our main results

New proofs via Combinatorial Nullstellensatz

We give a reduction of pd -divisible subgraphs to Combinatorial Nullstellensatz.

Theorem

Suppose that f1, f2, . . . , fn are m-variable polynomials over Z without constant
terms. Then, if

m > (pd − 1) ·
n∑

i=1

deg(fi )

there exists a 0 6= x ∈ {0, 1}m such that pd |fi (x) for all i .

Theorem

Finding a 2d -divisible subgraph and Combinatorial Nullstellensatz MOD 2
belong to PPA.

László Varga: Algebraic Combinatorics and the Parity Argument 11
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Conditions modulo pd and conditions modulo p

pd -divisible subgraphs � conditions modulo pd .

Combinatorial Nullstellensatz � conditions over a �eld, e.g. modulo p.

How could you reduce conditions modulo pd to conditions modulo p?

∑
xj ≡ q (mod pd) ⇐⇒ ??? (mod p)

f (x) ≡ q (mod pd) ⇐⇒ ??? (mod p)

László Varga: Algebraic Combinatorics and the Parity Argument 12
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Key observation through an example

In our paper, a new algebraic technique is presented to describe conditions
modulo pd as conditions modulo p.

Example

If (x1, x2, x3) ∈ {0, 1}3, then

x1 + x2 + x3 ≡ 1 (mod 4)

is equivalent to the system

x1 + x2 + x3 ≡ 1 (mod 2)

x1x2 + x1x3 + x2x3 ≡ 0 (mod 2)

This example can be extended to any polynomial f and prime power pd .

László Varga: Algebraic Combinatorics and the Parity Argument 13
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Combinatorial Nullstellensatz MOD 2

In the rest of this presentation, we focus on PPA and the complexity of
Combinatorial Nullstellensatz MOD 2.

Theorem (Combinatorial Nullstellensatz MOD 2)

Let f ∈ F2[x1, . . . xm] be an m-variable polynomial. Suppose that the degree of
f is m and that the coe�cient of x1x2 . . . xm is nonzero. Then, there exists an
(s1, s2, . . . , sm) ∈ {0, 1}m such that f (s1, s2, . . . , sm) 6= 0.
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The complexity of �nding such a vector whose existence is guaranteed by the
Combinatorial Nullstellensatz depends on the input form of the given
polynomial.

If the polynomial is given explicitly, as the sum of monomials, e.g.
f (x1, x2, x3) = x1x2x3 + x1x2 + x2x3

one can trivially construct a polynomial time algorithm

If the polynomial is given as the sum of products of polynomials, e.g.
f (x1, x2, x3) = (x1 + x2 + x3)

3 + x1x2x3

such as in the most of the applications

not known to be solvable in polynomial time

an open question by Douglas West conjectures that the problem is in PPA

we verify this conjecture

László Varga: Algebraic Combinatorics and the Parity Argument 15
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Reminder about Polynomial Parity Argument

In '94, Papadimitriou de�ned the complexity class Polynomial Parity Argument.

A problem is in PPA if and only if it is reducible to the End Of The Line.
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The pairing function

Papadimitriou shows that this problem is equivalent to the problem in which
the nodes may have more (e.g. exponentially many) neighbours and a
polynomial time pairing function is given.

Pairing function φ for an input node v pairs up its neighbours.

For an even-degree node:

For an odd-degree node:
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PPA membership of Chévalley's theorem

Theorem (Chévalley)

Let p1, p2, . . . , pn be polynomials in m variables over {0, 1}. Suppose that∑n
i=1 deg(pi ) < m. Then, the number of common solutions of the polynomial

equation system pi (x1, . . . , xm) = 0 (i = 1 . . . n) is even. In particular, if there
is a solution, there exists another.

Chévalley MOD 2

Input: polynomials p1, p2, . . . , pn over {0, 1} such that
∑n

i=1 deg(pi ) < m.
Also, we are given a root (c1, c2, . . . , cm) ∈ {0, 1}m of the equation
system pi (x) = 0 (i = 1, . . . , n)

Find: another root of the equation system pi (x) = 0 (i = 1, . . . , n).

Papadimitriou showed that Chévalley MOD 2 belongs to PPA. Our following
proof about Combinatorial Nullstellensatz is based on his proof but it requires
trickier pairing function.
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The construction of End Of The Line graph

The input polynomial: f =
∑k

i=1

(∏mi
j=1 pij

)
.

It has k blocks:
∏m1

j=1 p1j ,
∏m2

j=1 p2j , . . . ,
∏mk

j=1 pkj .

A monomial (term) in the ith block can be represented by an (mi + 1)-tuple of
integers: (i , ai,1, . . . , ai,mi ). ai,j shows that the term is the product of ai,j th
monomials of pij .

E.g. in (1+ x1)(1+ x2) (i , 1, 1) ∼ 1, (i , 1, 2) ∼ x2, (i , 2, 1) ∼ x1, (i , 2, 2) ∼ x1x2.
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The construction of End Of The Line graph

Edges:

A vector x is connected to a term t if and only if the value of t is 1 at x .
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The construction of End Of The Line graph

For a vector (s1, s2, . . . , sm), f (s1, s2, . . . , sm) 6= 0 holds if and only if in the
constructed graph its degree is odd.

The degree of a term t(x) 6= x1 . . . xm is even because there exists a variable xi
not appearing in t. The degree of term term x1 . . . xm is odd because it is
connected only to the vector (1, 1, . . . , 1).

The standard leaf is the term x1 . . . xm. Another leaf is a solution.
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Pairing for a term t

However, the nodes of this graph have exponentially large degrees, and
therefore we must exhibit a pairing function between the edges out of a node.

For a node corresponding to the term t(x) 6= x1x2 . . . xm, we pair up the vector
x via the variable xl is such that does not appear in t.

László Varga: Algebraic Combinatorics and the Parity Argument 29
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Pairing at a vector x

Suppose that f (x) = 0. The case f (x) = 1 can be checked similarly.
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Pairing at a vector x

For a block g =
∏mi

j=1 pij such that g(x) = 0, then there is an index j such that
pij(x) = 0. Pick the smallest such j . There is an even number of monomials of
pij such that pij(x) = 1. We pair these monomials by a pairing function φi .
Then the mate of term (i , ai1, . . . , aij , . . . , ai,mi ) is (i , ai1, . . . , φi (aij), . . . , ai,mi ).
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Pairing at a vector x

For a block g =
∏mi

j=1 pij such that g(x) = 1, then for all index j , that
pij(x) = 1 holds. We can pair all but one monomials of pij with pij(x) = 1 by a
pairing function φij . One of them does not have a mate, denote its index by ωij .

If there exists an index j such that aij 6= ωij , pick the smallest such j . Then the
mate of (i , ai1, . . . , ai,mi ) is (i , ai1, . . . , φij(aij), . . . , ai,mi ).
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Pairing at a vector x

What about the term t if it is represented by (i , ωi1, . . . , ωi,mi )?

Since f (x) = 0, there is an even number of blocks that are 1 at x. We pair
these blocks by a pairing function φ.

Then, the mate of (i , ωi1, . . . , ωi,mi ) is (φ(i), ωφ(i),1, . . . , ωφ(i),mφ(i)
).
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Pairing at a vector x

The key idea is this upper-level pairing function which pair up such blocks.

So, we presented a polynomial algorithm that computes the mate of an edge
out of a node, and therefore we reduced Combinatorial Nullstellensatz MOD 2
to the End Of The Line, so the proof is complete.
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2d -divisible subgraph.

Input: a positive integer d and a graph G = (V ,E), where |V | = n,
|E | = m and m > n · (2d − 1)− 2d−1.

Find: a 2d -divisible subgraph, that is, an ∅ 6= F ⊆ E such that for every
v ∈ V , the number of incident edges of F is divisible by 2d .

Theorem

Finding a 2d -divisible subgraph is polynomially reducible to Combinatorial
Nullstellensatz, hence it belongs to PPA.
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Thank you for your attention!

László Varga
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LVarga@cs.elte.hu
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