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Introduction

Since Shapley (1974) introduced the index for equilibria, its importance in
the context of game theory has been increasingly appreciated. For example,
index theory can be a useful tool with regards to strategic characterisations
of equilibria and equilibrium components. Demichelis and Ritzberger (2003)
show that an equilibrium component can only be evolutionary stable if its
index equals its Euler characteristic. At the same time, most of the existing
literature on the index is technically demanding, and the amount of algebraic
topology required is substantial. As a consequence, this literature is difficult
to access for most economists and other applied game theorists.

The contribution of this thesis can be divided into two parts. The first
part concerns methods and techniques. By introducing a new geometric-
combinatorial construction for bimatrix games, this thesis gives a new, in-
tuitive re-interpretation of the index. This re-interpretation is to a large extent
self-contained and does not require a background in algebraic topology. The
second part of this thesis concerns the relationship between the index and
strategic properties. In this context, the thesis provides two new results, both
of which are obtained by means of the new construction and are explained
in further detail below. The first result shows that, in non-degenerate bima-
trix games, the index can fully be described by a simple strategic property.
It is shown that the index of an equilibrium is +1 if and only if one can add
strategies with new payoffs to the game such that the equilibrium remains the
unique equilibrium of the extended game. The second result shows that the
index can be used to describe a stability property of equilibrium components.



2 Introduction

For outside option components in bimatrix games, it is shown that such a
component is hyperessential if and only if it has non-zero index.

The new geometric-combinatorial construction, which is referred to as
the dual construction, can be described as follows. For an m X n bimatrix
game, the construction translates the combinatorial structure of the best reply
regions for both players into an (m — 1)-simplex that is divided into simplices
and labelled regions (see, for example, Figure 2.6 below). The simplices in
the division account for the best reply structure of player II. The simplices
themselves are divided into best reply regions for player I, accounting for the
best reply structure of player L.

In this representation of bimatrix games, the Nash equilibria are rep-
resented by points that are completely labelled with all pure strategies of
player 1. Earlier constructions required the use of all pure strategies of both
players as labels. The index is simply the local orientation of the labels around
a completely labelled point (Figure 2.11). The Lemke-Howson algorithm,
which builds the foundation for Shapley’s original index definition, can be
re-interpreted as a path-following algorithm in the new construction (Fig-
ure 2.8). Since the new construction is of dimension m — 1, both the index
and the Lemke-Howson algorithm can be visualised in dimension at most 3
for every m x n bimatrix game with m < 4.

But the construction does not merely yield an intuitive re-interpretation of
the index and the Lemke-Howson algorithm. More significantly, it can dis-
close relationships between the index and strategic properties. In this context,
this thesis provides, as mentioned, two new results.

As for the first result, it is shown that the index of an equilibrium is +1 if
and only if it is the unique equilibrium of an extended game. The result proves
a conjecture by Hofbauer (2000) in the context of equilibrium refinement. The
proof is based on the idea that one can divide an (m — 1)-simplex such that
there exists only one completely labelled point which represents the index +1
equilibrium (Figure 4.7). Then such a division can be achieved as the dual
construction of an extended game where strategies for player II are added
(Figure 4.8).

The second result solves, for a special case, a problem that was open for
some time. This problem addresses the question whether and how topologi-
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cal essentiality and game theoretic essentiality (Wu and Jiang (1962); Jiang
(1963)) are related. Govindan and Wilson (1997b) argue that the resolution
of this problem is highly relevant with respect to axiomatic studies: Imposing
topological essentiality as an axiom in a decision-theoretic agenda is ques-
tionable if there is a gap between topological and strategic essentiality. Hauk
and Hurkens (2002) construct a game with an outside option equilibrium
component that has index zero but is essential. This demonstrates that topo-
logical essentiality is not equivalent to strategic essentiality. However, their
example fails the requirement of hyperessentiality, i.e. the component is not
essential in all equivalent games (Kohlberg and Mertens (1986)). The follow-
up question is whether hyperessentiality is the game theoretic counterpart
of topological essentiality. In this thesis, it is shown that this is the case for
outside option equilibrium components in bimatrix games. That is, an out-
side option equilibrium component in a bimatrix game is hyperessential if
and only if it has non-zero index. The proof is based on creating equivalent
games by duplicating the outside option. An example presented in this thesis
shows that one can create an outside option equilibrium component that has
index zero and is essential in all equivalent games that do not contain du-
plicates of the outside option. However, it can be shown that the component
fails the requirement of hyperessentiality if allowing duplicates of the outside
option. v

The proof of this result employs the combinatorial nature of the index for
components of equilibria. In the framework of the dual construction, the in-
dex for components of equilibria is defined by a combinatorial division of a
boundary into labelled best reply regions. This re-interpretation of the index
for components is very similar to the index in the framework of the Index
Lemma, a generalisation of Sperner’s Lemma. For labellings as in the Index
Lemma it is shown that, if the index of a boundary triangulation is zero, then
there exists a labelled triangulation such that the triangulation does not con-
tain a completely labelled simplex. The proof extends an index-zero boundary
division of a polytope into labelled regions such that no point in the interior
of the polytope is completely labelled. This extension is then translated into
a triangulation (Figure 6.2). The proof for outside option components works
similarly. Given an index-zero component, the dual of the component can be
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divided into labelled regions such that no point is completely labelled. It is
then shown that such a division can be achieved as the dual construction of
an equivalent game in which the outside option is duplicated and perturbed
(Figure 6.10).

The concept of essentiality is strongly influenced by the theory of fixed
points and essential fixed point components (Fort, 1950). In a parallel and
independent work, Govindan and Wilson (2004) show that, for general N-
player games and general equilibrium components, a component has non-
zero index if and only if it is hyperessential. Their proof is based on a well-
known result from fixed point theory that shows that a fixed point component
is essential if and only if it has non-zero index (O’Neill, 1953). Their proof
is technically very demanding. In contrast, the proof presented here for the
special case provides a geometric intuition and does not require a knowledge
of fixed point theory.

There is, however, a link between the combinatorial approach of this thesis
and fixed point theory. This link is established via Sperner’s Lemma (Sperner,
1928). The representation of bimatrix games in form of the dual construction
reveals strong analogies with Sperner’s Lemma. Sperner’s Lemma is a clas-
sical result from combinatorial topology and is equivalent to Brouwer’s fixed
point theorem. Using the parallels of the dual construction with Sperner’s
Lemma it is shown that the existence of Nash equilibria in a non-degenerate
bimatrix game is equivalent to Brouwer’s fixed point theorem. On a similar
topic, McLennan and Tourky (2004) derive Kakutani’s fixed point theorem
using the Lemke-Howson algorithm.

An additional result of this thesis, which does not involve the dual con-
struction, is the construction of equilibrium components with arbitrary in-
dex. It is shown that for every integer g there exists a bimatrix game with an
outside option equilibrium component that has index g. The construction is
purely based on the properties of the index, and does not require knowledge
of algebraic topology. This result originates from Govindan, von Schemde
and von Stengel (2003).

The structure of this thesis is as follows. Chapter 1 introduces notations
and conventions used throughout this work (Section 1.1). Sections 1.2 and 1.3
contain reviews of the Lemke-Howson algorithm and index theory. Sec-
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tion 1.4 shows how equilibrium components of arbitrary index can be con-
structed. Chapter 2 introduces the dual construction (Sections 2.1 and 2.2)
and gives a re-interpretation of the index and the Lemke-Howson algorithm
(Sections 2.3 and 2.4). Chapter 3 describes the parallels between the dual con-
struction, Sperner’s Lemma, and Brouwer’s fixed point theorem. In Chapter 4,
it is shown that the index for non-degenerate bimatrix games can be fully de-
scribed by a strategic property. In Chapter 5, the dual construction is extended
to outside option equilibrium components (Section 5.2). It also contains a re-
view of the Index Lemma (Section 5.1). Finally, Chapter 6 investigates the
relationship between the index and hyperessentiality. Section 6.1 considers
index-zero labellings in the context of the Index Lemma. In Section 6.2, it is
shown that an outside option equilibrium component is hyperessential if and
only if it has non-zero index. A list of symbols is given at the end. Proofs and
constructions are illustrated by figures throughout this work.



1

Equilibrium Components with Arbitrary Index

This chapter describes a method of constructing equilibrium components of
arbitrary index by using outside options in bimatrix games. It is shown that
for every integer g there exists a bimatrix game with an outside option equi-
librium component that has index g. The construction is similar to the one
used in Govindan, von Schemde and von Stengel (2003). That paper also
shows that g-stable sets violate a symmetry property which the authors refer
to as the weak symmetry axiom. The construction of equilibrium components
of arbitrary index is the main result of this chapter.

The structure of this chapter is as follows. Section 1.1 introduces nota-
tional conventions and definitions that are used throughout this work. Sec-
tion 1.2 gives a brief review of the classical Lemke-Howson algorithm that
finds at least one equilibrium in a non-degenerate bimatrix game. Although
the Lemke-Howson algorithm does not play a role in the construction of equi-
librium components of arbitrary index, it can be used in the index theory for
non-degenerate bimatrix games. Shapley (1974) shows that equilibria at the
ends of a Lemke-Howson path have opposite indices. The Lemke-Howson
algorithm also plays an important role in subsequent chapters when it is inter-
preted in a new geometric-combinatorial construction (see Chapters 2 and 3).
Section 1.3 reviews the concept of index for Nash equilibria in both non-
degenerate bimatrix games and general N-player games. Using basic proper-
ties of the index for components of Nash equilibria, Section 1.4 shows how
equilibrium components of arbitrary index can be constructed as outside op-
tions in bimatrix games. It is shown that for every integer g there exists a
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bimatrix game with an equilibrium component that has index g (Proposi-
tion 1.6).

1.1 Preliminaries

The following notations and conventions are used throughout this work. The
k-dimensional real space is denoted as R¥, with vectors as column vectors.
An m x n bimatrix game is represented by two m x n payoff matrices A and
B, where the entries A;; and B;; denote the payoffs for player I and player II in
the i-th row and j-th column of A and B. The set of pure strategies of player I
is denoted by I = {1,...,m}, and the set of pure strategies of player II is
represented by N = {1,...,n}. The rows of A and B are denoted a; and b; for
i € I, and the columns of A and B are denoted A; and B; for j € N. The sets
of mixed strategies for player I and player 1I are given by

X:{xeR'"|1;x:1,x,~zovl'el},
v={ver |1ly=1,y,>0v%jen},

where 1; € R* denotes the vector with entry 1 in every row. For easier dis-
tinction of the pure strategies, let J = {m+1,...,m+n}, following Shapley
(1974). Any j € N can be identified with m+ j € J and vice versa. A label is
any element in /UJ. For notational convenience, the label j is sometimes used
to refer to the pure strategy j — m of player II if there is no risk of confusion.

X is a standard (m — 1)-simplex that is given by the convex hull of the unit
vectors e; € R", i € [, and Y is a standard (n— 1)-simplex given by the convex
hull of the unit vectors e;_,, € R", j € J. The terms “(m — 1)” and “(n—1)”
refer to the dimension of the simplex. In general, an (m — 1)-simplex is the
convex hull of m affinely independent points in some Euclidian space. These
points are the vertices of the simplex, and the simplex is said to be spanned
by its vertices.

An affine combination of points z1,...,2z, in an Euclidian space can be
written as Y7L Az with X7 A, = land M, €R, i = 1,...,m. A convex com-
bination is an affine combination with the restriction A; >0,/ =1,...,m. A
set of m points zy,...,z, is affinely independent if none of these points is an
affine combination of the others. This is equivalent to saying that 3" | A;z; =0
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and Y7 | A; = 0 imply that A; = ... = A,, = 0. A convex set has dimension
d if it has d + 1, but no more, affincly independent points. A k-face of an
(m— 1)-simplex is the k-simplex spanned by any subset of k- 1 vertices. The
standard (m — 1)-simplex spanned by the unit vectors in R” is denoted by
A" SoX=A"Tland Y = A",

For a mixed strategy x € X, the support of x are the labels of those pure
strategies that are played with positive probability in x. The support fory € Y
is defined similarly. So

supp(x) ={i€l|x; >0}, supp(y)={j€J|yj-m >0}

The strategy sets X and Y can be divided into best reply regions X (j) and
Y (i). These are the regions in X where j € J is a best reply and the regions in
Y where i € ] is a best reply, so

X(j):{xexw}sz,jx\fkeJ}, Y(iy={yeY |ay>ayVkel}.

The regions X (j) and Y (i) are (possibly empty) closed and convex regions
that cover X and Y. For a point x in X the set J(x) consists of the labels of
those strategies of player II that are a best reply with respect to x. The set /(y)
is defined accordingly, so

Jx)y={jeJ|xeX(j)}, Iy)={iel|yecY(i)}. (1.1)

For i € I, the set X (i) denotes the (m —2)-face of X where the i-th coordinate
equals zero. For j € J, the set Y () is defined as the (n — 2)-face of Y where
the (j — m)-th coordinate equals zero.

X ={(@, )" €X15=0},¥())= {01, .m)" €Y |y;-m =0}
Similar to (1.1), the sets I{x) and J(y) are defined as
Ix)={iellxeX(®}, Jy)={jellyeY()}. (1.2)

The labels L(x) of a point x € X and the labels L(y) of a point y € Y are
defined as

Lixy={kelUJ|keX((k)}, Ly)={kelUJ|keY(k)}. (1.3)



10 1 Equilibrium Components with Arbitrary Index

From (1.1) and (1.2) it follows that L(x) = I(x) UJ(x) and L{y) = I(y) UJ(y).
So the labels of a point x € X are those pure strategies of player I that are
played with zero probability in x and those strategies of player II that are best
replies to x. Similarly, the labels of y € Y are those pure strategies of player 11
that are played with zero probability in y and those strategies of player I that
are best replies to y.

Definition 1.1. An m X n bimatrix game is called non-degenerate if for all
x € X and y € Y the number of best reply strategies against x is at most the
size of the support of x, and the number of best reply strategies against y is at
most the size of the support of y, i.e. |J(x)| < |supp(x)| and |I(y)| < |supp(y)|
forallxe X andye€Y.

It follows directly that in a non-degenerate game a point x € X can have at
most m labels L(x) and that a point y in ¥ can have at most » labels L(y). Non-
degeneracy implies that X (j) and Y (i) are either full-dimensional or empty
(in which case a strategy is strictly dominated). For non-degenerate games the
set of vertices V C X is defined as those points in X that lie on some (k — 1)-
face of X and that have k pure best reply strategies in player II's strategy
space. The set of vertices W in Y is defined accordingly, i.e.

V= {veX|supp(v) =k, [J(v)| =k},
W ={weY |supp(w) =k, |[[(w)| =k}.

Non-degeneracy implies that V is the set of those points in X that have exactly
m labels, and W is the set of those points in Y that have exactly n labels. Notice
that the unit vectors in R” and R", i.e. those representing the pure strategies
inX and Y, are in V and W. An edge in X is defined by m — 1 labels, and an
edge in Y is defined by n — 1 labels. For subsets K,K' C IUJ let

X(K)={reX|KcLx)}, YK)={yeY|K CLy)} (14

That is, in case |[K| =m— 1 and |K'| =n— 1, an edge in X is defined by X (K),
and an edge in Y is defined by Y (K’). If the game is non-degenerate, every
edge in X and every edge in Y is a line segment.

The notion of vertices and edges comes from the study of polyhedra and
polytopes (see e.g. Ziegler (1995)). In general, a polyhedron H is a subset of
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R‘ that is defined by a finite number of linear inequalities. If the dimension
of H is d, then it is called full-dimensional. A polyhedron that is bounded
is called a polytope. A face of a polytope P is the intersection of P with a
hyperplane for which the polytope is contained in one of the two halfspaces
determined by the hyperplane. If these faces are single points, they are called
vertices, if they are 1-dimensional line segments, they are called edges. If the
dimension of a face is one less than the dimension of the polytope, it is called
facet.

For a bimatrix game with payoff matrix B for player II, one can define a
polyhedron over player I's mixed strategy space X as follows.

H={(xv)eXxR|1 x=1,B"x< 1w, x,>0Vicl} (1.5)

m

The polyhedron H is referred to as the best reply polyhedron. In a similar
fashion, one can define the best reply polyhedron over Y using the payoff ma-
trix A. Note that one can assume that all entries of A and B are strictly greater
than zero, since adding a positive constant to the payoffs does not affect the
Nash equilibria of a game. The polyhedron H is described by the upper en-
velope, that is, the maximum, of the expected payoffs for pure strategies of
player II as functions of the mixed strategy played by player L.
Figure 1.1 depicts the polyhedron H for the payoff matrix

B_ 641 '
135

For example, the line that describes the facet with label 3 is given by the
line between v = 6 for pure strategy 1, and payoff v = 1 for pure strategy
2. The labels of a point on the boundary of H are the “labels” of the linear
inequalities that are binding in that point. A vertex of H is described by m
binding linear inequalities, edges of H are described by m — | binding linear
inequalities. Each (m — 1)-facet of the polyhedron H is defined by a single
binding inequality and corresponds either to a best reply strategy of player II
or to an unplayed strategy of player I. If H is projected onto X, it yields the
division of X into best reply regions X ().

The above definitions can be illustrated using the 3 x 3 bimatrix game that
is given by the following payoff matrices, taken from von Stengel (1999a).
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v
H
1 2
} X5 ]I X(4) I X(3) I X
Fig. 1.1. The best reply polyhedron
030 01-2
A=1101 B=120 3 ]. (1.6)
-345 210

The mixed strategy space X of player I is a 2-simplex, and so is the mixed
strategy space Y of player Il. Figure 1.2 shows the divisions of X and Y into
best reply regions. For notational convenience, the subsets X (k) and Y (k), for
k € 1UJ, are just denoted by their label in Figure 1.2. The vertices v € V are
emphasised by dots and are exactly those points in X that have three labels. A
boundary 1-face of X carries the label of the pure strategy that is played with
zero probability on that face. So, for example, the pure strategy (0,0,1)T € X
has labels {1,2,4}, since strategies 1,2 are played with zero probability, and
strategy 4 of player II is the pure best reply strategy.

A perturbation of a bimatrix game is defined by two m x n matrices, €4
and eg. The perturbed game is given by the game with payoff matrices A+ €4
and B+ €p. A perturbation is said to be small if |[g4 |}, ||eg|| < € for some small
€ > 0, where || - || denotes the Euclidian (or the maximum) norm on R™. A
perturbation is generic if the resulting perturbed game is non-degenerate.

The subsequent chapters use the concept of orientation as a definition of
the index for Nash equilibria. For an m-tuple of vectors ¥ = (vq,...,vy) in
R™, an orientation can be defined using the following term:
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3

Fig. 1.2. The division of X and Y for the game in (1.6)

sign det 7 = sign det [vl vm] . (1.7)

This term is +1 or —1 if and only if the vectors in % span an (m — 1)-
simplex that is contained in a hyperplane not containing 0 € R™. The two
signs yield two equivalence classes of ordered vectors in general position.
Choosing a standard orientation (which is usually that induced by the unit
vectors ey, ..., ey), the orientation of 9/ is +1 if it belongs to the same orien-
tation class as the chosen standard orientation, and it is — 1 otherwise.

The orientation can also be described as the sign of a permutation matrix.
Suppose one has a set of m vectors that are in general position, and each vector
has a distinct label i € {1,...,m}. Then the vectors can be ordered according
to their labelling, and (1.7) can be applied to determine the orientation of the
labelled set of vectors. Let the so-ordered set of vectors be denoted as 7. At
the same time, one can re-order the vectors in such a way that (1.7) yields
the same sign as that of the chosen standard orientation. Let this re-ordered
basis be denoted as %'. Both 7/ and 9/ are a basis of R”, where one ba-
sis is a permutation of the other basis. The basis transformation is described
by a permutation matrix D such that ' = D- v/, so det ¥/ = det D -det .
Hence det D = +1 if det 7/ =det 7, and det D = —1 if det V' = —det 7.
So the determinant of the permutation matrix D, which is either +1 or —1,
can also be used to describe the orientation. An illustration of the orientation
concept is depicted in Figure 1.3. For the vectors vy, v2,v3 as in Figure 1.3 the
determinant has sign —1. The associated permutation of the labels, written
as a product of cycles, is given by (1)(23), and has also sign —1. This cor-
responds to an anti-clockwise orientation on A? if looked at from the origin
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0 € R3, whereas the standard orientation induced by the unit vectors yields a
clockwise orientation.

Fig. 1.3. The orientation of a basis

One can also define an orientation relative to a point v, € R™. Let

(vi-..,vm) be an ordered m-tuple of vectors in R”. Then the orientation is
defined by the term
sign det 7 = sign det {vl —Vp oo Vp— v,,] . (1.8)

Expression (1.7) is the same as (1.8) for v, = 0 € R™. The term (1.8) is +1
or —1 if and only if the vectors in vy,...,vy,v, span an m-simplex. That is,

Vi,...,Vy span an (m — 1)-simplex such that v, is not an affine combination
of the vectors vq,...,v,. The hyperplane defined by the affine combinations
of the vectors vy,...,v,, divides R" into two halfspaces. If two points v, and

v;, lie in the same halfspace, the orientation relative to v, and v;) is the same.
If the two points lie in different halfspaces, (1.8) yields opposite signs.

Let f be a function between two topological spaces S and 7. If f is con-
tinuous then f is called a mapping. For two mappings f, g from a topological
space S to a topological space T, i.e. f,g: S — T, a homotopy h between f
and g is a continuous deformation of f into g. A homotopy & can be described
as a mapping h: S x [0,1] — T such that A(x,0) = f(x) and A(x, 1) = g(x)
for all x € S. This is denoted as f ~, g.
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1.2 The Lemke-Howson Algorithm

In their seminal work, Lemke and Howson (1964) describe an algorithm for
finding at least one equilibrium in a non-degenerate bimatrix game. This al-
gorithm is referred to as the Lemke-Howson (L-H) algorithm, and it is the
classical algorithm for finding Nash equilibria in non-degenerate bimatrix
games. This section gives a brief review of the L-H algorithm, since it can
be used in the theory of index for non-degenerate bimatrix games. Detailed
reviews of the L-H algorithm can be found in Shapley (1974) and von Stengel
(2002). Shapley (1974), motivated by the L-H algorithm, introduces the no-
tion of index for non-degenerate bimatrix games. He shows that the equilibria
at the two ends of an L-H path have opposite indices. The L-H algorithm also
plays an important role in the subsequent chapters where it is translated into
a new geometric-combinatorial construction (see Chapters 2 and 3).

Proposition 1.2. Let G be an m x n bimatrix game (not necessarily non-
degenerate). Then (x,y) € X XY is a Nash equilibrium of G if and only if
L(x)UL(y)=1UJ.

Proof. This follows from the fact that in an equilibrium a pure strategy is a
best reply strategy or is played with zero probability. If the game is degen-
erate, both might be the case. In any case, the condition L(x) UL(y) =1UJ
ensures that only the best reply strategies are played with non-zero probabil-
ity. ]

If a game is non-degenerate, an equilibrium strategy x plays a pure strategy
with positive probability if and only if it is a best reply strategy against y, and
vice versa. So in equilibrium L(x) UL(y) =1UJ and L(x) N L(y) = 0. A pair
(x,¥) such that L(x) U L(y) =1UJ is called completely labelled.

The fact that an equilibrium strategy x plays a pure strategy with positive
probability if and only if it is a best reply strategy against y (and vice versa)
builds the basis for the L-H algorithm. The L-H algorithm describes a path
in the product space X x Y along which the points are almost completely
labelled with a fixed missing label. A pair (x,y) is said to be almost completely
labelled if L(x) UL(y) = IUJ — {k} for some k € I UJ. The endpoints of a
path are fully labelled and hence equilibria of the game. In order to obtain
a starting point for the L-H algorithm one extends X and Y with the points



16 1 Equilibrium Components with Arbitrary Index

0 € R™ and 0 € R*. These zero vectors can be seen as artificial strategies
where the probability on each pure strategy is zero, i.e. no strategy is played.
The pair (0,0) is then completely labelled.

The following description of the L-H algorithm follows that given by
Shapley (1974). Let Xy denote the boundary of the m-simplex spanned by
0 € R" and ¢; € R", i € I. So Xy consists of a union of (m — 1)-faces, where
one (m — 1)-face of Xy is given by X. The other (m — 1)-faces of Xy are
spanned by vertices 0 € R” and ¢; € R™, i € I — {k}. Accordingly, the set ¥} is
defined as the boundary of the n-simplex spanned by 0 € R" and e;_,, € R",
J €J. The (n— 1)-face of ¥y that is spanned by e¢;_,, € R", j € J, represents Y.
The other (n — 1)-faces of ¥; are spanned by vertices 0 € R” and ¢;_,, € R",
J € J—{1}. For x € Xy, the labels L(x) are defined as I{x) UJ(x) forx € X
and as {i € I | x; = 0} otherwise. For y € Yy, the labels L(y) are defined as
I(y)UJ(y) forye Y and as {j € J | yj_n = O} otherwise. The vertices in X
are the points with m labels, and the vertices in ¥y are the points with s labels.
So 0 € R™ is a vertex in Xy with labels 7 and 0 € R? is a vertex in ¥ with
labels J. The vertex pair (0,0) € R” x R" is completely labelled, and it is
referred to as the artificial equilibrium. For subsets K,K' C I1UJ, let

Xo(K)={xeXo|KCL(x)}, Yo(K')={ye Yo | K' CL(y)}.

Xp is a graph whose vertices are points with m labels, and whose edges are
described by m — 1 labels. Similarly, the set Y is a graph whose vertices are
points with n labels, and whose edges are described by n — 1 labels. Depic-
tions of Xy and Yy for the game in (1.6) are given in Figure 1.4.

Now fix a label k € IUJ and consider the subset of labels /UJ — {k}. The
idea of the L-H algorithm is to follow a unique path of almost completely
labelled points with labels /U J — {k} in the product graph X, x ¥5. As a
starting point, one chooses a completely labelled pair of vertices (x,y) in
Xop % Yy, so one can either start at an equilibrium or the artificial equilibrium.
Each path with labels /UJ — {k} lies in the set

M(k) = {(x,y) € Xo x Yo [ 1UJ — {k} C L(x) UL(y)}. (1.9)

At the end of each path one finds another completely labelled pair of ver-
tices, i.e. an equilibrium. The paths of almost completely labelled points are
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Fig. 1.4, The L-H algorithm for the game in (1.6)

referred to as L-H paths. The following theorem and proof can also be found
in von Stengel (2002).

Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974). Let G be a non-
degenerate bimatrix game and k be a label in [ UJ. Then M(k) as in (1.9)
consists of disjoint paths and cycles in the product graph Xo x Yy. The end-

points of the paths are the equilibria of the game and the artificial equilibrium
(0,0). The number of equilibria is odd.

Proof. Let (x,y) € M (k). Then x and y have together either m+n or m-+n —
1 labels. In the former case, the tuple (x,y) is either an equilibrium or the
artificial equilibrium. In the latter case, one has L(x) UL(y) =1UJ — {k}, and
there are the following three possibilities:

a) |L(x)| =m and y has n — 1 labels. Then x is a vertex in Xp, and y lies on
some edge e(y) in Yp. So {x} x e(y) is an edge in X x Yp.

b) x has m — 1 labels and is part of an edge e(x) in Xy, while y has n labels
and is a vertex in Yp. Then e(x) x {y} is an edge in Xy x Y.

¢) x has m labels and y has n labels. So (x,y) is a vertex in the product graph
Xo x Y.

Therefore, the set M (k) defines a subgraph of Xy x Yy. If (x,y) is completely
labelled, then the vertex (x,y) is incident to a unique edge in the subgraph
M(k), namely {x} x Yo(L(y) — {k}) if k € L(y) or Xo(L(x) — {k}) x {y} if
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k € L(x). In case c), one has L(x) UL(y) =1UJ — {k}, so there must be
a duplicate label in L(x) N L(y). But this means that (x,y) is incident to both
edges {x} x Yo(L(y) — {k}) and Xo(L(x) — {k}) x {y}. Therefore, the set M (k)
is a subgraph where all vertices are incident to one or two edges. Hence, the
subgraph M (k) consists of paths and cycles. The endpoints of the paths are the
equilibria and the artificial equilibrium. Since the number of the endpoints is
even, the number of equilibria is odd (not counting the artificial equilibrium).

O

The L-H algorithm can be illustrated by the game in (1.6). This is de-
picted in Figure 1.4. One starts in the completely labelled artificial equilib-
rium (0,0). Now choose a label to drop, say label 1 of player I. This deter-
mines an edge in Xg along which the points have labels 2,3. At the other end
of this edge one finds a vertex v € Xy with labels 2,3, 5. The vertex pair (v,0)
has labels 2,3,5 and 4,5, 6, so 5 is a duplicate label. This determines an edge
in Yy with labels 4,6 leading to the vertex w with labels 3,4,6. So the vertex
pair (v,w) has the duplicate label 3, and one follows the edge in X, that is
given by labels 2,5, leading to v/ with labels 2,4, 5. Now (v/,w) has duplicate
label 4. This yields an edge in Y defined by labels 6,3, leading to w’ with la-
bels 6, 1,3. The pair (V/,w') is completely labelled and hence an equilibrium
of the game in (1.6).

1.3 Index Theory

For non-degenerate bimatrix games, the index for equilibria was first intro-
duced by Shapley (1974). Shapley’s index theory is motivated by the L-H
algorithm, and Shapley shows that equilibria which are connected via an L-H
path have opposite indices.

Formally, let (x,y) be an equilibrium of a non-degenerate bimatrix game
with payoff matrices A and B. Let A’ and B’ denote the square sub-matrices
obtained from A and B by deleting those rows and columns that correspond
to pure strategies played with zero probability in x and y. So

A= [Aijliesupp(x)njesupp()> B' = [Bijlicsupp(x)n jesupp(y) (1.10)

are the payoff matrices restricted to the support of x and y. Without loss of
generality it can be assumed that all entries of A and B are (strictly) greater
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than zero. This is possible since adding a positive constant to the entries of A
or B does not affect the equilibria of the game.

Definition 1.4 (Shapley, 1974). The index of an equilibrium (x,y) of a non-
degenerate bimatrix game with payoff matrices A and B is given as the nega-

tive of the sign of the determinant of the following index matrix obtained from
A and B:

) 0 B
I(x,y) = —sign det [(A’)T 0} .

Using basic laws for the calculation of the determinant, this expression sim-

plifies to I(x,y) = sign(—1)**1det(A’) " det B’, where k is the size of the sup-
port of x and y.

Remark 1.5. Shapley (1974) defines the index as

sign det

BI
ANt o’
i.e. Definition 1.4 is the negative of the original definition, for the follow-
ing reasons. Definition 1.4 is consistent with the generalisation of the index
for components of equilibria. Furthermore, according to Definition 1.4, pure

strategy equilibria and equilibria that are the unique equilibrium of a game
have index +1.

Shapley shows that equilibria that are connected via an L-H path have
opposite indices and that the sum of indices of equilibria of a game equals +1
(using the index as in Definition 1.4). In Shapley’s original work, the proof
of this claim is not very intuitive. A more intuitive approach can be found
in Savani and von Stengel (2004). Basically, it employs the fact that along a
path with m 4 n — 1 labels that connects two completely labelled vertices the
“relative position” of the labels stays constant. This is illustrated in Figure 1.5.
The two fully labelled points are connected via a path with labels 2,3, where
2 is always on the left of the path and 3 on the right (and the non-missing
labels have a similar fixed orientation in higher dimension). The fully labelled
vertex on the left reads 1,2,3 in clockwise orientation, and the fully labelled
vertex on the right reads 1,2,3 in anti-clockwise orientation. In this sense the
index is an orientation of the labels around a fully labelled vertex.
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Fig. L.5. Equilibria at the ends of L-H paths have opposite indices

To apply this concept of orientation to bimatrix games, Savani and von
Stengel first consider symmetric games. In symmetric games, the L-H paths
can be followed in the strategy space of just one player, say player I, by
replacing the labels of player II in X by the corresponding best reply labels
of player I in the division of Y. Then the Nash equilibria of a symmetric
game correspond to vertices in X that have labels 1,---,m. For the 3 x 3
coordination game, this is depicted in Figure 1.6. But every non-symmetric
game with payoff matrices A and B can be symmetrised by constructing the

0 A - [os
BT 0|’ C =140l

again assuming that all payoffs of A and B are strictly greater than 0. Then the

game with payoff matrices

C =

equilibria of the game with matrices C and C" correspond to the equilibria of
the original game by restricting the solutions of the symmetrised game to X
and Y, and re-normalising the probabilities.

In non-degenerate games, the Nash equilibria are singletons in the product
space X x Y. For degenerate games one has to consider sets of equilibria
in X x Y. Kohlberg and Mertens (1986, Proposition 1) show that the set of
Nash equilibria of any finite game has finitely many connected components.
A maximally connected set of Nash equilibria is referred to as a component
of equilibria. The index of a component of equilibria of a game is an integer
that is computed as the local degree of a map for which the Nash equilibria
of the game are the zeros. Loosely speaking, the local degree of a map counts
the number of cycles (in higher dimension spheres) around zero obtained by
the image of a cycle (in higher dimension sphere) around the component (see
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3

Fig. 1.6. The index in the coordination game

e.g. Dold (1972, 1V, 4)). The Nash equilibria of a game can be described as
the fixed points of a mapping f: X XY — X xY (see e.g. Nash (1951) or
Giil, Pearce and Stacchetti (1993) for such mappings). Such maps are called
Nash maps. Defining F = f — Id yields a Nash field whose zeros are the
Nash equilibria of a game. The index is independent of the particular map
used (see Govindan and Wilson (1997b), for bimatrix games, and, for games
with any number of players, Demichelis and Germano (2000)). For generic
bimatrix games it is the same as the index in Definition 1.4 (Govindan and
Wilson (1997b)). An introduction to the concept of index for components of
equilibria can be found in Ritzberger (2002, 6.5).

Using the Kohlberg-Mertens (K-M) structure theorem (Kohlberg and
Mertens (1986, Theorem 1)), the index can also be expressed as the local de-
gree of the projection map from the equilibrium correspondence to the space
of games (see Govindan and Wilson (1997a), for bimatrix games, and, for
games with any number of players, Demichelis and Germano (2000)). This
can be illustrated using the following parameterised game.

1—t,l—t0,0:1 Wiy

G(t):{ 0,0 t,t

In this example, the games G(¢) are parameterised by ¢ € R. Figure 1.7 shows
that the equilibrium correspondence E(G(-)) C G(:) x (X x ¥) over G() is
homeomorphic to G(-) itself. In Figure 1.7, p denotes the probability for the
first strategy of player I in equilibrium. If player I plays (p,1 —p) € X in an
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equilibrium, then player II’s strategy in that equilibrium is also (p, 1 — p) €Y,
where p =t gives the mixed equilibrium of the game when 0 <t < 1.

E(G(')) ......... " 0 p=1

0 a1 I p=i

G() 1 l f
t=0 t=0.5 t=1

Fig. 1.7. The K-M structure theorem

In general, let I" denote the space of games for a fixed number of players
with a fixed number of strategies. Then I can be parameterised by R, where
k equals the number of players multiplied by the product of the numbers of
pure strategies per player. Let £ denote the product space of mixed strategy
spaces. Then the equilibrium correspondence over I' is defined as

E(T') ={(G,0) € I' x | & is an equilibrium of G} .

The K-M structure theorem states that the space of games I' is homeomorphic
to E(T) (after a one-point compactification). In general, the K-M structure
theorem does not apply to restrictions of the space of games I" as in (1.11).
If, for example, one restricts I' to a single point that represents a game with
more than one component of equilibria, the space of games, i.e. the single
point, is not homeomorphic to the graph of the equilibrium correspondence,
which consists of several disjoint sets of equilibria. Nevertheless, (1.11) gives
a good illustration of the K-M structure theorem.

For the illustration in Figure 1.7, the local degree of the projection map
from E(I') on I measures, loosely speaking, the local orientation of the equi-
librium correspondence relative to the orientation of I'. In the example, all
completely mixed equilibria have index —1. The pure equilibria in the non-
degenerate games (i.e. t € {0, 1}) have index +1. The corners of the Z-shaped
correspondence are those pure strategy equilibria in the degenerate games



1.3 Index Theory 23

(r € {0,1}) which disappear or split into two equilibria with opposite indices
for small perturbations. These have index 0.

The index for components and for singletons in the non-degenerate case
has useful properties that are employed in the next section to construct com-
ponents of arbitrary index.

1) For the non-degenerate case, the index defined as the local degree is
the same as the index defined in Definition 1.4 (Govindan and Wilson
(1997b)).

2) The sum of indices of components of equilibria for a fixed game equals +1
(see e.g. Govindan and Wilson (1997a)).

3) For sufficiently small generic perturbations of a degenerate game, the
index of a component equals the sum of indices of equilibria in the
perturbed game close to the component (see e.g. Govindan and Wilson
(1997a;b) for a discussion). This fact is illustrated in Figure 1.7. Take the
pure strategy equilibrium in the degenerate case ¢ = 1 that has index 0. If
the game is perturbed “to the right” (r + €) the equilibrium vanishes, if it
is perturbed “to the left” (r — €) it splits into two equilibria close to it, one
with index —1 and one with index +1.

4) The index of a component is the same in all equivalent games (Govindan
and Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. it is invariant
under adding convex combinations of existing strategies with the respec-
tive payoffs as new pure strategies.

An equilibrium component is said to be essential if every small perturba-
tion of the game yields a perturbed game that has equilibria close to the
component. It follows that an equilibrium component with non-zero index
is essential. An equilibrium component is said to be hyperessential if it is
essential in all equivalent games. Therefore an equilibrium component with
non-zero index is also hyperessential. Chapter 6 reviews the concept of (hy-
per)essentiality in more detail. It addresses the question whether and under
what circumstances the converse is also true, i.e. whether (hyper)essentiality
implies non-zero index.
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1.4 Construction of Equilibrium Components with Arbitrary
Index

In this section it is shown how games with equilibrium components of ar-
bitrary index can be constructed. This new result is based on a construction
that uses outside options in bimatrix games. The construction is similar to
the one used in Govindan, von Schemde and von Stengel (2003), where the
authors construct symmetric components of arbitrary index in order to show
that g-stability violates a notion of symmetry. A great part of the following
description is borrowed from this paper.
First, consider a 2 x 2 coordination game, say

42— 10,10 0,0
1 0,0 10,10

(in agreement with the notation in (1.16) below). This game has two pure
strategy equilibria, and one mixed equilibrium, where both players play the
mixed strategy (%, %). The index of any of these equilibria is easily deter-
mined by the following two properties, which hold for any game: A pure
strategy equilibrium which is strict (that is, all unplayed pure strategies have
a payoff that is strictly lower than the equilibrium payoff) has index +1; The
sum over all equilibria of their indices is + 1. Therefore, the mixed equilib-
rium in H? has index — 1. This can also be verified using Definition 1.4.
Next, an outside option called Out is added to the set of pure strategies of

player II, say, giving the game

(1.12)

~_|10,10 0,0 0,9
10,0 10,100,9]|°

An outside option can be thought of as an initial move that a player can make
which terminates further play, and gives a constant payoff to both players. If
the player has not chosen his outside option, the original game is played. The
outside option payoff above is 9 for player II. This has the effect that an equi-
librium of the original game with payoff less than 9 for player II disappears,
in this case the mixed strategy equilibrium. Geometrically, one can consider
the upper envelope, i.e. the maximum of the expected payoffs for the pure
strategies of player II, as functions of the mixed strategy played by player I as
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described in Section 1.1. Any equilibrium strategy of player I, together with
its payoff to player II, is on that upper envelope. The outside option gives an
additional constant function that “cuts off” any former equilibrium payoffs
below it. This is depicted in Figure 1.8. It shows the upper envelope of the
expected payoffs for pure strategies of player II and the resulting division of
player I's strategy space X before and after adding Out to player II’s strategy
space.

. .
1t f 3:2 1:4:0””43:2

Fig. 1.8. Division of X before and after adding an outside option

In game G~, the original pure strategy equilibria of H? are unaffected,
and continue to have index +1. Any such equilibrium, as long as it remains
(quasi-)strict after introducing the outside option, keeps its index, as the index
of a strict equilibrium can be defined in terms of the payoff sub-matrices cor-
responding to the pure best replies (see Definition 1.4). The mixed strategy
equilibrium of H? is absorbed into an equilibrium component where player I
plays his last strategy Ouz. The original mixed equilibrium strategy (%,% of
player 1 is part of the outside option component, which is given by the set of
mixed strategies of player I so that Our is a best response. In G~ above, it
is easy to see that these are all mixed strategies of player I where each pure
strategy has probability at most 9/10. In general, the outside option compo-
nent is defined by a set of linear inequalities, one for each pure strategy of the
player who plays Out.

Let G be some game with an outside option. Then the outside option equi-
librium component of the game G by is denoted by C(G). In (1.12), the index
of C(G™) is —1, which is simply the sum of the indices of all equilibria of
the original game H? that have been absorbed into the outside option compo-
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nent, because the sum of all indices is +1. As described in Section 1.3, the
index of an equilibrium component also equals the sum of indices of equilib-
ria near the component when payoffs are perturbed generically; this sum does
not depend on the perturbation.

It is well-known that the best response structure of a bimatrix game re-
mains unchanged when adding a constant to any column of the payoffs to the
row player, or a constant to a row of the column player’s payoffs. This will
allow to cut off pure strategy equilibria rather than mixed equilibria by using
an outside option. Start with a 2 x 2 coordination game with payofts 1,1 on
and 0,0 off the main diagonal, and add the constant 12 to the first column of
player I and row of player II, and 7 to the second column respectively row.
The resulting game H and a corresponding outside option game G are given

by
13,13 7,12
H = ’ ’ , G =
12,7 8,8

13,137,120,9
12,7 8,8 0,9

The game H has two pure equilibria with payoffs 13, 13 and 8, 8, respectively,
and one mixed equilibrium where both play (%, %) with payoffs 10, 10. The
outside option with payoff 9 for player II cuts off the pure strategy equilib-
rium with payoffs 8, 8 but leaves the other equilibria intact. Consequently, the
component C(G) has index +1.

Next, one can “destroy” the pure strategy equilibrium in G by adding an-
other row to the game. Consider the games

13,13 7,12 13,13 7,12 0,9
H'=112,7 88|, G =127 88 0,9
14,1 1,2 14,1 1,2 0,9

Compared to H, the pure strategy equilibrium with payoffs 13,13 is no longer
present in H'. It is replaced by another, mixed equilibrium where player II
plays (%, %) and player I plays (%,O, %), with payoffs 7 to player Il and 85/7
to player 1. This new mixed equilibrium has index +1. Since the payoff to
player II in that equilibrium is less than the outside option payoff 9, that
equilibrium disappears in G'. Consequently, the component C(G') has index
+2, because the only equilibrium that is not cut off has index —1.

Finally, consider the following game H~, which is a symmetrised version

of H':



1.4 Construction of Equilibrium Components with Arbitrary Index 27

13,137,12 1,14
H =|12,7 88 2,1|. (1.13)
14,1 1,2 1,1

In this game, the mixed strategy equilibrium where both players play (%, %,O)
is the equilibrium with the highest payoff, yielding 10 for both players. This
equilibrium has index —1. The other equilibria are as follows: The mixed
strategy (%, 0, %) of player I, which together with (g, %) of player I forms an
equilibrium of H', is no longer part of an equilibrium as the third strategy of
player II in H~ gives a higher payoff. By playing that strategy as well, one

11 5
20120 ﬁ)’
with resulting payoff 15/2 to both players. This equilibrium has index +1,

obtains a completely mixed equilibrium where both players play {

as has the pure strategy equilibrium with payoffs 8,8. There are no other
equilibria of H™.

H~ is used for constructing components with arbitrarily high positive in-
dex. For k > 1, let H~* be the game consisting of k copies of the game H~
on the diagonal and zeros everywhere else, that is,

H=0,0---0,0
v 0,0H= 0,0
H =1 . A I (1.14)
0,00,0--- H~
kC(;E)iCS

Each player has 3k strategies in H ¥, For any nonempty set of the k copies
of H™, and any equilibrium in such a copy, one obtains an additional equilib-
rium of H* by suitable probability weights assigned to the copies. All such
mixtures involving more than one copy, however, give payoffs less than 8.
There are no other equilibria of H* as the payoffs in a copy of H~ are all
positive, and the other payoffs are zero.

The superscript in H~* indicates the sum of indices of those equilibria
that are not cut off by adding a suitable outside option. The outside option is,
as before, added to player II’s strategy space, and is also referred to as Our as
an additional pure strategy. This gives the game
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0,9
GHl= g+ :|. (1.15)
0,9

The game G**! has k + 1 equilibrium components: the k mixed strategy equi-
libria where both players play strategies 1 and 2 in one copy of H~ with
probability % (yielding a payoff of 10 for both), and the equilibrium compo-
nent in which player II chooses the last strategy, the outside option Qur. That
component C(G**1) is given by those strategy pairs where player II plays
Out, and player I playing such that Our is a best response. All isolated equi-
libria have index — 1. Since the indices of all equilibrium components have to
add up to one, the outside option equilibrium component C(G**!) has index
k + 1, which is chosen as a superscript for G in (1.15). Therefore, for each
positive integer g, the game G? in (1.15) has a component with index g; this
includes the trivial case g =1 and ¥ = 0, which isa 1 x | game.

The division of player I's mixed strategy space X for the game G2
is depicted in Figure 1.9. It shows that, except for the equilibrium vertex
(%, %,0) € X, all other vertices that are part of an equilibrium in H~ are cut
off by the outside option.

Fig. 1.9. The division of X for the game G? with outside option

A similar, simpler construction gives equilibrium components with arbi-
trary negative index. For k > 2, let H* be the following k x k game:
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10,10 0,0 --- 0,0

. | 00 10,10 0,0
H =" o (1.16)

0,0 0,0 --- 10,10

k columns

Just as (1.15) is obtained from (1.14), one can add an outside option for
player II, and obtain

0,9
G *D= |yt : (k>2). (1.17)
0,9

The equilibria of game G~ *~1)

are the k pure strategy equilibria of the coor-
dination game, yielding a payoff of 10 for both players, and the outside option
equilibrium component C(G~*~1)) (see Figure 1.8 for the case k = 2). Since
pure strategy equilibria have index +1, it follows that C (G*(k’l)) has index
—(k—1).

Hence, for each negative integer g, there exists a game that has an equi-
librium component with index g. The case k£ = | gives an empty equilibrium
component (which can be thought of as having index 0), since in this case the
first strategy by player Il strictly dominates Out. Therefore it is required that
k>2in(1.17).

From the above, one can now casily construct a game with a non-trivial
equilibrium component that has index 0. This is done by combining the games
H* and H~*~1) in a new game by placing them on the diagonal, and adding
an outside option for player II as before. The case k = 2 is sufficient, so let
G? be the following 5 x 6 game:

H? 0 0,9
0 H™ 0,9

G’ = ) (1.18)

As argued after (1.14), the only equilibria in G° that are not cut off are those
with payoffs 10, 10 in H% or H~. Thus, by a counting argument, the outside
option equilibrium component C(G®) has index 0. The constructions prove
the following proposition.



30 1 Equilibrium Components with Arbitrary Index

Proposition 1.6. For each integer q, there exists a (bimatrix) game that has a

component of equilibria with index q.

In general, index O components are easy to construct (see also k = 1 in
(1.17) for the trivial case). Consider for example the game

1,10,0

0,00,0| "
This game is the same as G(0) in (1.11) and has two pure strategy equilibria,
one with payoff 1 and the other one with payoff 0. It is easy to verify that
the equilibrium with payoff 1 has index +1. It “survives” every small payoff
perturbation. The pure strategy equilibrium with payoff O has index zero. The
payoffs can be perturbed such that this equilibrium either vanishes or splits
into two equilibria with opposite indices (see also Figure 1.7). The reason for
providing G° as in (1.18) is that a similar construction is used in Govindan
et al. (2003) in order to show that O-stable sets violate a notion of symmetry.
Furthermore, in Chapter 6 it is shown that the outside option equilibrium
component of the game G° is essential in all equivalent games that do not

contain a duplicate of Our. However, it is not hyperessential when allowing
copies of Out.



2

A Reformulation of the Index for Equilibria in

Bimatrix Games

This chapter introduces a new geometric-combinatorial construction for non-
degenerate bimatrix games that allows one to give a new characterisation of
Nash equilibria and index in bimatrix games. Given an m X n non-degenerate
bimatrix game (assuming m < n without loss of generality), the construction
yields a division of an (m — 1)-simplex in which the Nash equilibria and the
index can be characterised by the labels of player I only. So, for example,
any 3 x n bimatrix game can be represented by a division of a 2-dimensional
simplex using only labels 1,2,3.

The new construction, which is referred to as the dual construction, allows
an intuitive definition of an orientation (or index) for equilibria in bimatrix
games. It is shown that the notion of orientation introduced here is the same
as the notion of index introduced by Shapley (1974) (modulo the sign in the
definition as explained in Remark 1.5). It is also shown that the L-H algorithm
by Lemke and Howson (1964) that finds an equilibrium in a non-degenerate
bimatrix game can be interpreted as a path-following algorithm in the dual
construction. This allows one to visualise, in dimension 3 or lower, both the
index and the L-H paths for all m x n non-degenerate bimatrix games with
min{m,n} <4, whereas the interpretation of L-H paths and the definition of
index by Shapley, or the interpretation by Savani and von Stengel (2004) by
symmetrising games (see Section 1.3), uses geometric objects in dimension
m + n — 2. Furthermore, it illustrates how non-degenerate bimatrix games fit
into the study of solutions of piecewise linear equations as in Eaves and Scarf
(1976).
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This chapter is basic for the results in the subsequent chapters. Later,
Chapter 3 shows how the results of this chapter are related to Sperner’s
Lemma in dimension (m — 1). In Chapter 4, the construction is used to give
a strategic characterisation of the index in non-degenerate bimatrix games.
Chapter 5 shows how the dual construction can be extended to outside op-
tion equilibrium components, which is applied in Chapter 6 to show that an
outside option equilibrium component is hyperessential if and only if it has
non-zero index.

The structure of this chapter is as follows. In Section 2.1 the dual construc-
tion is introduced and described in detail. Section 2.2 gives a characterisation
of the Nash equilibria in the dual construction. Using only labels of player I,
it is shown that the Nash equilibria are given by the fully labelled points in
the dual construction (Proposition 2.6). Section 2.3 re-interprets the Lemke-
Howson (L-H) algorithm and shows that it yields a connected path in the dual
construction (Proposition 2.7 and Lemma 2.8). Finally, in Section 2.4, a no-
tion of orientation for Nash equilibria is given. It is shown that it is equivalent
to the notion of index defined by Shapley (Proposition 2.10).

2.1 The Dual Construction

This section describes a new geometric-combinatorial construction for non-
degenerate bimatrix games. Put briefly, the subdivided strategy simplex X is
dualised to obtain a dual space |[X%|. Vertices in X become simplices in |X 2|,
and best reply regions in X become vertices in |X%|. There are two equiva-
lent ways of constructing |X A[. One uses polar polytopes, the other one is a
combinatorial dualisation method. Into |X“| one then inscribes those faces of
Y that are of strategic relevance for the game, yielding a division X2 of the
dual space into labelled best reply regions for player I. The final construction
has the same dimension as X and uses only labels of player I. The division
into simplices reflects the best reply structure for player II, the division of
the simplices into labelled best reply regions reflects the best reply structure
for player 1. Combining these two, the Nash equilibria are represented by
completely labelled points in the dual construction.

The dual construction |[X%| can be obtained by using a polarisation
method for polytopes (see e.g. Ziegler (1995, Section 2.3)). A combinato-
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rial dualisation method is described further below. In brief, when polarising
a polytope, vertices become simplices and facets become vertices. The poly-
tope itself is obtained from the best reply polyhedron H in (1.5) that is given
by the upper envelope of player II’s expected payoffs over X. The polyhedron
H is neither bounded nor full-dimensional. Since full-dimensional polytopes,
i.e. bounded and full-dimensional polyhedra, are more convenient to study,
the polyhedron H can be projected in order to obtain a polytope P that con-
tains the same information as H and that is full-dimensional and bounded.
This description is similar to von Stengel (2002), which also gives references
to related earlier works.
The polyhedron H as in (1.5) is defined as

H={(x,v)eR"xR|1\x=1,B x<1,v, x; >0Viel}.

Without loss of generality it can be assumed that v > 0 for all (x,v) € H, since
adding a positive constant to the entries of B does not affect the equilibria or
the best reply structure of a game. Now consider the set

P={xeR"|B'x<1,x>0Viel}. 2.1)

The mapping H — P' — {0} is given by (x,v) — % -x, and the inverse P' —
{0} — H is given by x — (ﬁ, |x|), where |x| = 1] x. The vertex 0 of P’
corresponds with “infinity” over H. The set P’ is described by a finite number
of inequalities and is both bounded and full-dimensional. Hence, the set P’ is
an m-dimensional polytope. Geometrically, the polytope P’ is the projection
of the polyhedron H on the hyperplane described by v = 1. This is depicted
in Figure 2.1.

In order to obtain the polar (or dual) of a polytope of dimension m, it is
convenient if 0 € R” lies in the interior of the polytope. This is not the case
for the polytope P’, but can easily be obtained by translating the polytope
P’ to obtain the desired polytope P. Consider the point (nl1 ey 9) cH

Yty m

with ¥ = max; ;b;; + ¢, where ¢ is some arbitrarily large positive constant.
The projection of this point is given by £ = (&,..., -5} € P’ and lies in the

interior of P’. So one can translate P’ by —£ to obtain

P={xcR"|B (x+2)<1,; x;+%>0Vi€el}.
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P’

v=1

Fig. 2.1. The projection of the polyhedron H and the polytope P

Note that every other point in the interior of P’ could be used for the transla-
tion. Then 0 € R™ lies in the interior of P. The polytope P is referred to as the
best reply polytope. A depiction of P is given by the dotted lines on the right
in Figure 2.1. The inequalities that describe P can be rewritten to obtain

%
5—B,

P:{xeR'"\ B{x< 1V jeEN; —mﬁxigl\fiel}, (2.2)

where B, = I'T’;f" is the average payoff for player II in column j.

In general, let P be a polytope given by
PZ{ZER’" lefz <1, 1§k§n}.

Geometrically, the polytope P is defined by halfspaces, which are given by
hyperplanes. The vectors ¢; € R™ are the normal vectors of these hyperplanes.
The polar polytope P2 of the polytope P is defined as the convex hull of the
normal vectors ¢y of the hyperplanes that describe P, i.e.

P2 = conv {c1,-..,¢n}- 2.3)

One can show that the polar of the polar polytope is the original polytope,
ie. P22 = P (see e.g. Ziegler (1995, Theorem 2.11)). Note that 0 € R™ lies
in the interior of P, and hence in the interior of P2. A depiction of the polar
polytope for a given polytope is given in Figure 2.2,
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Fig. 2.2. The dual of a polytope

For a non-degenerate bimatrix game, the polytope P as in (2.2) is simple,
i.e. each vertex of the m-dimensional polytope P is described by exactly m
binding linear inequalities, so each vertex is contained in exactly m facets
of P. Consequently, the polar P® is simplicial (see e.g. Ziegler; Proposi-
tion 2.16). Each vertex of P2 corresponds to a facet of P, and each facet
of P2, representing a vertex in P, is an (m — 1)-simplex.

The study of polytopes is a very useful tool in the analysis of games. Von
Stengel (1999b), for example, uses cyclic polytopes to construct games in
order to obtain a new lower bound on the maximal number of Nash equilib-
ria in a d X d non-degenerate bimatrix game. Savani and von Stengel (2004)
employ a related method to construct games in which L-H paths are exponen-
tially long.

The simplicial surface of the polar polytope P> can be projected on the
facet of P2 that is given by the (m — 1)-simplex spanned by the vertices
—mbve;, i € I, where ¢; denotes the unit vector in R" with entry 1 in row i.
The projection is defined by the intersection of the line between a point x
and (—m?)1,, with the facet spanned by —me;, i € I (see Figure 2.3). This
yields a triangulation of the facet spanned by the vertices —mbe;, i € 1. A
triangulation (or simplicial subdivision) of a simplex is a finite collection of
smaller simplices whose union is the simplex, and that is such that any two
of the simplices intersect in a face common to both, or the intersection is
empty. The vertices of a triangulation are the vertices of the simplices in the
triangulation.
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Fig. 2.3. The simplicial division of X2

Definition 2.1. The simplex spanned by —mbe;, i € 1, is denoted as X*. The
triangulation induced by the projection P> —X* — X* is denoted as |X*|,
and referred to as the dual construction. The facets of P other than X*,
which are (m — 1)-simplices, are denoted as v*. For notational parsimony,
their projections on X, which are also (m — 1)-simplices, are also denoted

as VA.

An illustration of |X%| is depicted in Figure 2.3. The vertices —mbe; corre-
spond to the facets of P that represent unplayed strategies. All other vertices
of P2 correspond to facets of P that represent best reply facets of H. Each
vertex v # —X of P represents a vertex of H, and hence a vertex in the divi-
sion of X into best reply regions. So each vertex v in X or H corresponds to a
unique (m — 1)-simplex v* in |X 2| or on the surface of P2. The simplex X
represents the vertex —£ € P, and is spanned by —mfbe;, i € I.

The induced triangulation |X ©| is regular. A triangulation is called regular
if it arises as the projection of a polytope Q whose facets are simplices (see
e.g. Ziegler (1995, Definition 5.3)). The simplices in |X A] are the projections
of the facets of P*. Essentially, the projection |X%| is a so-called Schlegel-
diagram of P? that is combinatorially equivalent to the complex oP2 — X2
(see e.g. Ziegler (1995, Proposition 5.6.)), where dP2 denotes the boundary
of P2,
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Now suppose one has a regular triangulation |X 2| of X©. Assume that the
only vertices of the triangulation that lie on the boundary of X are those that
span X2, i.e. —mbe;, i € I. Then one can obtain a payoff matrix B that induces
this subdivision. For this, consider the polytope Q that induces this triangula-
tion. Without loss of generality it can be assumed that 0 € Q. Otherwise the
vectors other than —mfbe;, i € I, can be moved in the same manner along the
projection line. Then Q is the polar polytope P® of a polytope P. The poly-
tope P2 is given by conv{cy,...,cq} (see (2.3)), where the first m vectors are
given by —mbe;, i € I (these are the vertices of X2). Given a polytope P2,
the following lemma shows how one can construct the corresponding payoff
matrix B that yields P* as the polar of the polytope P given in (2.2).

Lemma 2.2. Consider P2 as in (2.3) with 0 € P2, and let the first m vectors
be given by c; = —mve;, i € 1. For all other cj, j > m, let (c;); > mv \7’ i€l

where (c;); denotes the i-th row of cj, and let¢; > —9, where T; =
P2 is the polar of the polytope in (2.2) with

Proof By definition, one has 7— —=B; = c; for all j > m. This implies that
5 B =Tj, s0 B; = A+_ *_C;. Substituting this into B; ( VB )cj yields

BJ' = v-l-?

inequahtles —mbx; < 1in (2.2).
Translatmg Pasin (2.2) by (%

with (L

s2=¢;. Note that the first m vectors are ¢; = —mbe;, i € I, and give the

gives the polytope P’ as in (2.1)

mp?rtt mv)
., mv) lying in the interior of P'. From P’ — {0} one obtains H via

mp?”

X (W’ |x|) So the upper envelope H satisfies v > O for all (x,v) € H, and
(L,...,.L,9) lies in the relative interior of H with # > B,V j € N. O

m’

The above construction shows that each strategy simplex X can be du-
alised in a way such that one obtains a regular triangulation |X*| of an
(m — 1)-simplex. This construction is such that the vertices of X correspond
to the simplices in [X?|, and the best reply regions and unplayed strategies
in X correspond to vertices in |X*|. Furthermore, an edge in X that connects
vertices v; and v, in X corresponds to the common (m — 2)-face of the two
adjacent (m — 1)-simplices le and va in |X2|.
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The important aspects of |X| are the combinatorial properties of the sim-
plices and vertices in |[X2|. A combinatorial equivalent of |X2|, which, for
notational parsimony, is also referred to as |X A |, can be obtained without us-
ing the polarisation method from above. Instead, it can be derived directly
from the division of X into best reply regions. To illustrate the procedure, it
is applied to the following example.

Example 2.3.

0,0 10,10 0,0 10,—10

10,0 0,0 0,10 0,8 2.5)

8,10 0,0 10,0 &,8
Take player I's standard (m — 1)-simplex representing the mixed strategy
space X. Then X can be divided into best reply regions X (j). Non-degeneracy
implies that the number of best replies in a vertex v € X equals the number
of strategies played with positive probability in v. Figure 2.4 gives the divi-
sion of X into best reply regions for player II for the game in Example 2.3.
It shows that every vertex v € X has exactly m labels, where the labels of a
vertex v € X are the pure best reply strategies of player Il with respect to v
and the pure strategies of player I not played in v. The labels of a point x € X
are given by L(x) as defined in (1.3).

Fig. 2.4. The best-reply division of X for the game in Example 2.3

A combinatorial dualisation of X is now obtained as follows. For each best
reply region and each unplayed strategy, one chooses a representative point in
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R"! that serves as a vertex in |X2|. For best reply regions, these representa-
tives are denoted as X (j)2. For an unplayed strategy i € I the representatives
are denoted as X (i)2.

The points X (k)2, for k € U J, that are corresponding to best reply re-
gions or unplayed strategies, now become the vertices in the dual of X, so
each such vertex has label k. For every vertex v € X with labels L(v), the
combinatorial dual simplex v* is the simplex spanned by the dual vertices
X (k)2, with k € L(v). For two vertices vy and v, that are joined by an edge
with labels L(v1) N L(vz) in X, the two combinatorial simplices le and vzA
are adjacent and share the (m — 2)-face that is spanned by the dual vertices
representing the labels L(v;) N L(v,) in X2.

For the game in Example 2.3, the triangulation |X%| is illustrated in Fig-
ure 2.5. The dotted lines in Figure 2.5 show the division of X into best reply
regions. The solid lines illustrate |X 2 |. The best reply regions in X and those
labels that represent unplayed strategies become dual vertices in [X#|. Each
vertex in X is represented by a unique (m — 1)-simplex in |[X2|. The edges in
X become (m — 2)-faces of two adjacent simplices in |X 2|,

3

Fig. 2.5. The triangulation of X2 for Example 2.3
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If a vertex of a simplex v> is of the form X ()%, for some i € I, it is
called an outer vertex of v, Outer vertices of v* represent those strategies of
player I that are played with zero probability in v. The (m — 1)-simplex X2 is
spanned by all outer vertices X (i), i € I. Accordingly, the inner vertices of
a simplex v2 are of the form X ()2, for some j € J. The inner vertices of a
simplex v2 represent best reply strategies of player I All simplices v2 have
at least one inner vertex, simplices representing a pure strategy of player I
have exactly one inner vertex.

2.2 Labelling and Characterisation of Nash Equilibria

The aim is now to divide the simplex X% into regions with labels i € I such
that the Nash equilibria are represented by fully labelled points. As above,
it can be assumed that all entries of the payoff matrix A are strictly greater
than zero. Now consider a simplex v € |X%|. An inner vertex that represents
the pure strategy of j € N of player II has the corresponding payotf column
A;. The outer vertices do not represent payoff columns of A and are dealt
with by introducing slack variables. Each outer vertex that represents a pure
strategy i € I of player I played with zero probability is assigned an artificial
payoff vector ¢;, i.e. the unit vector in R” with entry 1 in row i. So suppose
I(v) = {i1,...,ix}, sov® is spanned by outer vertices X (i1)>,..., X (ix)* and
some inner vertices X (jit1)2,...,X (jm)2. The payoffs for player I with re-
Jerrree s Ajy of
the payoff matrix A. The artificial payoffs for player I with respect to the un-

spect to pure strategies jit1,..., jn are given by the columns A

played strategies iy,...,i are defined as ¢;,,...,e; . Let A(v) be the following
artificial payoff matrix,

AW) = e -+ e Ajy, A, (2.6)

This artificial payoff matrix now allows one to divide each simplex v*
into labelled *“best reply” regions with labels i € 1.

Definition 2.4. A point in v® is denoted as w,, described by its convex coor-
dinates with respect to the vertices of v2 (the subscript “s” indicates that wy

contains slack variables).
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Then every simplex v can be divided into labelled regions according to
VA = {ws € v2 | (AW)wy)i > (A(Wws )k Yk €T} Q.7

This is the same division as the division of player II's mixed strategy space in
the case A(v) is the payoff matrix of player I in some bimatrix game.

Fig. 2.6. The labelled dual construction X,ﬁA for Example 2.3

Dividing each simplex v* in |X2|, this gives, by non-degeneracy, a divi-

sion of X into full-dimensional regions X (i) with labels 1,...,m, where
X230 = |Jv2 ).
vev

This division is well-defined, since, if two simplices vfl and vzA share some
common face, the induced division on that face is the same in both simplices
le and va . For the game in Example 2.3 the resulting division of X is
depicted in Figure 2.6.

Definition 2.5. The division of X2 into labelled regions X (i) is referred to
as the labelled dual construction, and is denoted as X*A . A point wg € X*A is
assigned the labels I(wy) of those regions that contain wy, i.e.

Iwy) ={iel|w,eX>(i)}. (2.8)
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For each simplex v2, the inner k + 1 (for some k > 0) vertices of v span
some k-face of v2. This k-face is referred to as the best reply face of v* and
is denoted as VW2, So the best reply face v?*2 is spanned by exactly those
vertices of v2 that represent a best reply strategy of player II with respect

to strategy v. The best reply face v>r&

corresponds to the face of ¥ that is
spanned by those pure strategies of player II that are represented as vertices
of V"2, So each w € V"' can be identified with a unique strategy y € Y of
player II. The division of v into labelled regions also yields a division of v**®
into labelled regions. These labelled regions are affine linear transformations
of the division of the face of Y into best reply regions that corresponds to v*™.
It should be noted that if a point w lies on the best reply face of a simplex v2,
then the set of labels 7(w) as in (2.8) is the same as /(w) in (1.1).

The space x2 together with the labelling function in (2.8) now allows a
complete characterisation of the Nash equilibria of a non-degenerate bima-
trix game. Before proving the main result of this section, it should be noted

that all points w; that lie in the interior of X 2 and in some v2

can be pro-
jected on some w € W2 by dropping those coordinates that are the slack
variables associated with artificial payoff vectors and normalising the result-
ing vector such that its entries sum to 1. So let ws € v2. Let the set of outer
vertices of v® be X (i1)2,...,X (ix)?, and let the set of inner vertices of v
be X (ji+1)2,-..,X (jm)?. Note that for all simplices v*, the set of inner ver-
tices is non-empty. So let wy = (wyq,..., Wy, ), where the first k entries are the
coordinates with respect to the outer vertices, and the last m — k entries are

the coordinates with respect to the inner vertices. Then define the projection

p(wy) as
) wi=0 : 1<i<k 29
w=p(wg) = . i )
PiWs w,-:zfn::f;%i;kﬂgzgm

The projection point w = p(wy) € v"** can be identified with a unique strategy
vector in Y. For w, on the boundary of X*A , one defines p(w,) = 0 € R". This
allows the following characterisation.

Proposition 2.6. A point ws € X2 with ws € V2 is completely labelled if and
only if (v, p(ws)) is a Nash equilibrium of the game.

Proof. Let w, be completely labelled with w, € v®. Then consider the ar-
tificial payoff matrix A(v). A point is, by definition, completely labelled if
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A(v)wg = cl,,, where c is some positive constant. It is easy to verify that the
payoffs of A(v) are non-degenerate, since the payoffs of A are non-degenerate.
Hence w lies in the interior of v2. By construction one has w = p(w) € W2,
It implies that /(w) = I —I(v), where I(v) is as defined in (1.2). Since w lies
on the best reply face of v2, it means that player II mixes only those strategies
with positive probability in w that are a best reply to v. So, using (1.1) and
(1.2), one has

w e W = J(»)UJ(w) = J. (2.10)

This is to say that player II is always in equilibrium when considering points
in the labelled dual construction. But then I(w) =1 —1I(v), so I(v)UI(w) =1.
This means that (v,w) is completely labelled, and hence an equilibrium.
Now let (v,w) be a Nash equilibrium. Then J(v) UJ(w) = J, so w € v"'2,
Since it is a Nash equilibrium, one has I(v) =1 —I(w). So A(v)w is a vector
with maximum entries in those rows that are strategies played with positive
probability in v. Let ¢ be this maximum entry. Now assign weights to the
columns representing unplayed strategies to obtain a strictly positive vectors
wy such that A(v)w, = cl,,. Normalising the vector w, such that the entries
add up to one yields the desired vector w; with I(w;) =1. L]

For the game in Example 2.3, the labelled dual construction is depicted
in Figure 2.6. For the following description, the coordinates of wy carry a
subscript, marking the payoff vector they apply to. So, for example, the sub-
scripts 1,2, 3 refer to artificial payoff vectors, and the subscripts 4, 5,6,7 refer
to payoff columns of A. The construction contains three completely labelled
points, namely w; = (($)1, (%)4, (%)7) lying in the simplex v* representing
v = (0, %, ‘5—‘), the point wy' = ((%)4,(%)5,(%)6) lying in the simplex rep-
resenting v = (1,1,1), and w," = (1), (19)3, (5 )s) lying in the simplex
representing v/ = (1,0,0). Projecting these vectors gives w = (‘5—‘,0,0, %), the
point w' = (&, 3, 5,0) and w” = (0,1,0,0). So (v,w), (',w') and ("', w")
are the Nash equilibria of the game.

Instead of labelling the dual construction [X%|, which consists of the pro-
jected simplicial facets of the polar polytope P, one can also label the sim-
plicial facets of P2 directly via the artificial payoff matrix. The division of
each simplicial facet of P2 is obtained in the same way as the division of the

projected simplices. The result of this construction is depicted in Figure 2.7
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for the game given by the payoff matrices

A= 100 . B= 641 .
011 135

The resulting labelled surface of the polar polytope is denoted as P Its
simplicial surface is denoted as |P2|. In this construction, the equilibria are,
as before, represented by exactly those points on the surface of the polar
polytope that are completely labelled. The artificial equilibrium (0,0) can
be identified with the completely labelled point on the facet X2 of P2 Note
that X2 corresponds to the vertex of P' that has all labels of player I, i.e.
no strategy of player I is played with positive probability. So the artificial
payoff matrix that corresponds to this facet is the identity matrix that only
consists of artificial payoff vectors. Its centre is a completely labelled point.
So, instead of considering the projection of the labelled facets, one might as
well characterise the equilibria using the “labelled sphere” PE.

Fig. 2.7. The labelled polar polytope P

The labelled dual construction allows one to completely characterise the
Nash equilibria of a non-degenerate bimatrix game in a geometric object of
dimension m — 1 by using only the set / of labels of player I. Assuming with-
out loss of generality m < n, it is possible to visualise X2 forallm <4.1Italso
demonstrates how non-degenerate bimatrix games fit into the study of solu-
tions of piecewise linear equations as in Eaves and Scarf (1976), and allows
one to illustrate how one can find a Nash equilibrium of a non-degenerate
bimatrix game.
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2.3 The Lemke-Howson Algorithm in the Labelled Dual
Construction

The L-H algorithm described in Section 1.2 is the standard algorithm for
finding a Nash equilibrium in a non-degenerate bimatrix game. The L-H algo-
rithm describes a path in the product space X x Y (or Xy x ¥y when including
the artificial equilibrium points) that is given by a set of points (x,y) € X x Y
that is described by labels L(x) UL(y) =1UJ — {k} for some k € / UJ. This
path consists of pairs of edges and vertices in the product graph.

The fact that the L-H algorithm applies to a product graph makes it diffi-
cult to visualise it for games of higher dimension. In this section, it is shown
that every L-H path in X x Y that is defined by a missing label k£ € I of player I
can be interpreted as a path in the labelled dual X*A that consists of paths that
are almost completely labelled with missing label k. This allows one to give
a new geometric interpretation not only of the L-H algorithm but also of the
fact that equilibria at the ends of an L-H path have opposite indices (see Sec-
tion 2.4 below).

Similar to the definition of M (k) in (1.9), one can define the set of almost
completely labelled points on the labelled surface PE fora missing label k of
player L. So let M (k)*A , for k € I, denote all those points wy in P*A that have at
least labels 1 — {k}, i.e.

M(K)2 = {ws € P2 | I —{k} C I{w;)}. Q.11)
One obtains the following proposition (compare Theorem 1.3).

Proposition 2.7. Let G be a non-degenerate m X n bimatrix game. Fix a label
kel Then M (k)*A consists of disjoint paths and cycles in P*A . The endpoints
are the equilibria of the game, including the artificial equilibrium.

Proof. As before, let |[P?| denote the simplicial surface of P2. Since the
payoff matrix A(v) is non-degenerate for all simplices v> in |P%|, the set
of almost completely labelled points in v~ with a missing label  is, if not
empty, an edge (or line segment) in v2*. Now take an endpoint w € v> of an
edge in v with labels 7 — {k}. Then there are two cases. The first is where
w; lies in the interior of v2. In this case, wy represents an equilibrium and is
fully labelled. So wy is endpoint of a unique edge in v>. The second case is



46 2 A Reformulation of the Index for Equilibria in Bimatrix Games

where w; lies on the boundary of v2. In this case, due to the non-degeneracy
assumption, the point w; lies in the interior of some (m — 2)-face of v2. This
(m— 2)-face is the face of another simplex v in |P2| that is adjacent to v2.
In V2, the point w, must be the endpoint of another edge with labels I — {k}.
So the endpoints of edges of M (k)*A in v® are incident to one or two edges of
M(k)S in P2 M

Note that X is just a projection of the labelled facets of P2 — X2 on X2,
So the paths and cycles in X2 with labels 1 — {k} are projections of the paths
and cycles in P2 — X2 with labels / — {k}. For notational convenience, the
projection of these paths and cycles in X,kA is also denoted as M (k),kA . Equiva-
lently, one can define M(k)% = {ws € X2 | I — {k} C I(ws)}. The endpoints
of the paths in X2 are the equilibria of the game, not including the artifi-
cial equilibrium, since the artificial equilibrium lies on the face X 4 on which
PA—x2is projected. Le. the artificial equilibrium is not seen under the pro-
jection and can be thought of lying under X2, In the same way as above one
can confirm that M (k)*A in X2 consists of paths and cycles.

The following lemma shows how the definitions of M (k) and M (k)*A are
related. This yields a straightforward interpretation of the L-H algorithm on
the labelled surface P*A and in the labelled dual construction X*A .

Lemma 2.8. Equilibria that are connected by a L-H path in M (k) are con-
nected by a path in M(k)*A. Anedge ex x {w} € M(k) is represented in M(k)*A
by two adjacent simplices. An edge {v} x ey € M(k) is represented in M (k)*A
by an edge in v® with labels I — {k}.

Proof. First consider an edge ex x {w} € M(k). Then ey is an edge in Xj.
Let this be an edge in X between v; and v,. Edges in X are represented in
|X%| and |P?| by an (m — 2)-face that is common to le and va. As for the
edge that connects the artificial equilibrium with a pure strategy, i.e. the edge
between 0 and a pure strategy v, note that every pure strategy v is represented
in |PA[ by a simplex v* that is adjacent to X2, the latter representing the
artificial strategy 0 € R™. In X2 this is reflected by the fact that v* has an
(m —2)-face on the boundary of X2, So, if (v1,w) and (v2,w) lie along a L-H
path, then le and VZA are adjacent an