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Abstract

This thesis studies equilibrium computation algorithms for extensive games. We

focus on the enumeration of Nash equilibria and on the computation of an extensive

form correlated equilibrium.

The contribution of this thesis consists of two parts. First, we study an algorithm

for enumerating all Nash equilibria of a two-player extensive game. This algorithm

is based on the sequence form description for Nash equilibria of extensive games

(von Stengel 1996). We develop a systematic way of eliminating redundancy in

this system, and prove that all the equilibria are represented by vertices of a pair of

polyhedra. Then we apply the reverse search vertex enumeration algorithm by Avis

(2000) to this pair of polyhedra to enumerate all the vertices. We use a label system

to verify pairs of vertices that represent Nash equilibria.

Second, we present a polynomial time algorithm for computing an extensive

form correlated equilibrium (EFCE) of a multi-player game with chance moves. To

achieve this, we first characterize the EFCE as product distributions that satisfy a

set of incentive constraints. We then provide a constructive proof of the existence

of EFCE. Based on this proof, we show that an EFCE of a multi-player game with

chance moves can be computed in polynomial time.
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CHAPTER 1

Introduction

This thesis discusses two equilibrium computation problems of extensive games

with perfect recall: the enumeration of Nash equilibria, and the computation of one

extensive form correlated equilibrium (EFCE). The main results are accordingly

explained in two chapters. The first is presented in Chapter 2 which deals with the

enumeration of Nash equilibria. In it we recall the linear complementarity prob-

lem that characterizes the set of Nash equilibria for the sequence form (von Sten-

gel 1996). We identify the redundancy in the system and obtain a reduced system

by removing the redundant variables and constraints. We investigate several algo-

rithms computing Nash equilibria for bimatrix games, and extend these algorithms

to extensive games. Chapter 3 contributes to the study of extensive form correlated

equilibria (EFCE). We give one characterization of the set of EFCE, an existence

proof, and describe the computation of one of the EFCE for multi-player extensive

games.

1.1 Contribution of this thesis

In Chapter 2, we develop an algorithm of computing all equilibria for two-player

extensive games. Analogously to the equilibrium computation algorithm by Avis

et al. (2010) for bimatrix games that computes all the vertices of a pair of best

response polytopes, this algorithm computes all the vertices of a pair of polyhedra.

Unlike the algorithm for bimatrix games that uses the strategic form to construct the

best response polytopes, the algorithm for extensive games developed in this thesis

constructs the pair of polyhedra based on the sequence form (von Stengel 1996),

because the sequence form is of smaller dimension than the strategic form.
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Unfortunately, using the lower-dimensional sequence form no longer allows us

to transform the polyhedra to polytopes, which are useful for vertex enumeration,

because the sequence form has several linear constraints and therefore several dual

variables which cannot be eliminated the way that the scalar payoff variable of a

player in the strategic form is eliminated.

On the other hand, it is possible to reduce the dimension of the polyhedra ob-

tained for an extensive game. The dual variables can be interpreted as partial payoffs

at information sets. Because of multiple dual variables, there may be some pairs of

points that represent the same extreme equilibria. These pairs of points only differ

in their value of the multiple dual variables. Since our goal is finding Nash equilib-

ria, we are not particularly interested in these variables, so it is useful to eliminate

as many of these variables as possible. The goal is to have a dimension, in terms of

number of variables, that is never larger than the dimension of the strategic form,

and this is possible.

We describe a systematic way of eliminating variables based on the sequences

in the game tree. The resulting system has lower dimension than the original one.

Unfortunately, writing all this down is less elegant than the original sequence form

with its constraints (see Theorem 2.7).

Multiple dual variables also cause the problem of considering points on extreme

rays as part of extreme equilibria. We prove that all Nash equilibria are represented

by pairs of vertices. Hence, points on extreme rays cannot represent Nash equilibria.

We do this by showing that the dual system for the original unreduced sequence

form has only bounded solutions in equilibrium, which then carries over to the dual

variables of the reduced sequence form obtained by eliminating primal variables

with the help of the given equations. The argument for this (see Lemma 2.17) is

general and possibly of independent interest.

Chapter 3 explores the computation of an EFCE for multi-player games. Start-

ing with games without chance moves, we develop a system of consistency and

incentive constraints to describe the set of EFCE for multi-player games. We prove
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the existence and present a polynomial time algorithm for computing an EFCE.

Then we extend the proof and the algorithm to games with chance moves.

For two-player extensive games without chance moves, von Stengel and Forges

(2008) provide a compact description, which is a system of constraints of the real-

ization plans. This description, however, does not apply to multi-player games or

games with chance moves. In such games, the consistency and incentive constraints

are necessary but not sufficient conditions. For this reason, we use constraints of

strategy profiles instead of realization plans in our system to describe the set of

EFCE for multi-player games.

The existence proof and the algorithm for computing an EFCE is analogous to

that for a strategic form correlated equilibrium (CE) by Papadimitriou and Rough-

garden (2008). The existence proof for both CE and EFCE exploit the duality theo-

rem of linear programming. The proof for EFCE involves some tedious but straight-

forward proof of properties which are derived mainly from the tree structure and by

using induction.

Papadimitriou and Roughgarden (2008) claim that a correlated equilibrium of

a succinctly-representable game can be computed in polynomial time. Their algo-

rithm is based on a polynomial time algorithm called the ellipsoid method, which

applies to linear strict inequalities (LSI). In a paper recently uploaded to arXiv,

Stein et al. (2010) pointed out that this algorithm can fail even for small games, due

to numerical precision issues. Papadimitriou (2010) acknowledged the need to up-

date his algorithm in an online blog and expressed confidence that this issue could

be overcome without dramatic changes. Since then and possibly in response to this

comment, Stein et al. have withdrawn their paper. Jiang and Leyten-Brown (2010)

recently presented a variant of Papadimitriou and Roughgarden’s algorithm, and

showed that the numerical precision issue could be overcome by their algorithm.

We elaborate on this discussion in Section 3.3.

Chapter 3 is joint work with Bernhard von Stengel. A version of this chapter has

been presented in WINE 2008 and published in Lecture Notes in Computer Science

(Huang and von Stengel 2008).
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1.2 Extensive games

In this dissertation, the words extensive game always refer to a finite game in exten-

sive form. Extensive games are a standard description of strategic situations in game

theory. A game of this kind is a “dynamic” description of an interactive situation,

compared with the strategic form that gives a “static” description.

We first state some standard vocabulary for extensive games. In an extensive

game, the players act sequentially. Some moves can made by chance (or nature). An

extensive game is represented as a game tree. The basic structure is a directed tree.

Each nonterminal node (called a decision node) represents a possible state of play of

the game as it is played. The game begins at a unique initial node, which is the root

of the tree, and goes through the tree along a path determined by the players’ moves

at each node, until a terminal node (which is a leaf of the tree) is reached, where the

game ends and payoffs are assigned to all players. Each nonterminal node belongs

to either a player or to chance. For the node of a player, that player chooses among

the possible moves at that node; for a chance node, chance can be considered as an

additional player that receives no payoff and always plays according to a strategy

with probabilities that are given in the description of the game.

Every nonterminal node has one or several branches, which are edges leading

from this nonterminal node to other nodes. For the nodes that belong to players,

each branch shows a possible move for the player at the state that the nonterminal

node represents. If the edge leads to another nonterminal node, the player choosing

that possible move goes to another state of the game. Otherwise, when the edge

leads to a terminal node, the game is terminated and all players get their payoffs.

Branches of a chance node are chance moves. They are assigned the chance proba-

bilities that are nonnegative and sum up to 1.

Every terminal node is a possible outcome of the game. The sequence of edges

of a path from the root to a terminal node of the tree specifies a play of the game.

Games where the players have imperfect information about the game state are

modelled with in information sets, due to Kuhn (1953). The set of information sets

is a partition of the decision nodes. All nodes in one information set belong to the
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same player and have the same moves. When the player reaches one node in this

information set, he only knows the information set but not the particular node he

reaches. For all nodes that are in the same information set, they have the same

number of branches, representing that the play has the same set of choices at all

these states. When a game has an information set with more than one node, we say

that this game has imperfect information. Otherwise, if every information set of a

game is a singleton set, this game has perfect information, and every player knows

exactly what has taken place earlier in the game. In this dissertation, an information

set is indicated by a dotted line connecting all nodes in that set.

In this dissertation, we focus on extensive games for which the players have

perfect recall. When a player has perfect recall, at any time the player knows what

moves she has done before. In other words, all the nodes of an information set of

this player have the same earlier own moves.

Following the description of the extensive form by Myerson (1991), an extensive

game is formally a rooted tree G, together with functions that assigns labels to every

node and branch, satisfying the following conditions:

1. Each nonterminal node has a player label that is in the set P = {0, . . . ,n},
where 0 is assigned to the chance node. The nonterminal nodes are the decision

nodes.

2. Each nonterminal node, except for the chance nodes, has a second label that

specifies the information set. We denote the set of the information set labels by H.

Nodes with the same information set label belong to the same information set.

3. Each branch of a nonterminal non-chance node has a move label. The set

of move labels that are assigned to branches of nodes belonging to the information

set h is denoted Ch. Nodes belonging to the same information set h have the same

number of branches with the same set of move labels.

4. Each branch of a chance nodes is assigned a chance probability. For each

chance node, the chance probabilities are nonnegative and sum up to 1.

5. The payoff function a assigns a vector a(s) = (a1(s), . . . ,an(s)) with real

numbers as components to every terminal node s.
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To illustrate these concepts, consider the two extensive games in the following

examples. The first is an extensive game without chance moves, the second is a

game with chance moves.
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Figure 1.1: An extensive game without chance moves. At a leaf, the top payoff is

to player 1 and the bottom payoff is to player 2.

Example 1.1 (An extensive game without chance moves) In Figure 1.1, moves are

marked by upper-case letters for player 1 and by lower-case letters for player 2. The

three information sets of player 1 have move sets {A,B}, {C,D} and {E,F}, and the

information set of player 2 has move set {a,b,c}. A play of the game is a sequence

of moves that leads to a leaf of the tree. For example, player 1 chooses A, player 2

chooses b, and player 1 chooses C, after which the game terminates with payoffs

9 for player 1 and 7 for player 2. The move b of player 2 is the same no matter

whether player 1 chooses A or B (but the resulting plays are of course different).

Player 2 does not know the game state in her information set.

Example 1.2 (An extensive game with chance moves) In Figure 1.2, the informa-

tion set of player 1 has move set {L,R}, and the information sets of player 2 have

move sets {a,b} and {c,d}. The game is initially played by the chance move.

An extensive game can be represented by the “strategic form” or the “sequence

form”. We explain and compare the two representations.

For the strategic form representation, a pure strategy of a player specifies one

move for each information set of this player. The set of all pure strategies of player i
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Figure 1.2: An extensive game with chance moves.

is denoted Si, and S = ∏i∈P Si is the set of all strategy profiles. Thus a strategy profile

specifies one pure strategy for each player. For Example 1.1, the set of all strategies

for player 1 is

S1 = {(ACE),(ACF),(ADE),(ADF),(BCE),(BCF),(BDE),(BDF)},

where (ACE) etc. stands for (A,C,E) for brevity.

The description of these strategies can be reduced. Consider in the extensive

game of Example 1.1 the pure strategies (BCE), (BDE), (BCF) and (BDF). The

initial move B of player 1 makes the subsequent choice of C or D, and E or F ir-

relevant since these two information sets of player 1 cannot be reached after move

B. Therefore these four strategies can be regarded as identical. For the two un-

reachable information sets, we let ∗ denote an arbitrary move. Thus these strategies

are written as (B∗∗). This is called a reduced strategy of player 1. Generally, a

(pure) reduced strategy of a player specifies one move for each information set of

this player except for the information sets that are unreachable due to an own earlier

move. The set of all reduced strategies of player i is denoted S∗i . The set of reduced

strategies for player 1 is

S∗1 = {(ACE),(ACF),(ADE),(ADF),(B∗∗)}.

In this example, player 1 has two parallel information sets that have the sets

of moves {C,D} and {E,F}. These information sets are not distinguished by own

earlier moves and arise because player 1 receives information about an earlier move
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by player 2. Combinations of moves at parallel information sets cannot be reduced,

because by definition two information sets are parallel if they are preceded by the

same sequence of own earlier moves of the player.

The strategic form (or normal form) of an extensive game is given by tabulating

all pure strategies of the players and recording the resulting expected payoffs. The

reduced strategic form is given by tabulating all reduced strategies of the players

and the expected payoffs. The strategic form of the extensive game in Example 1.2

is

@
@@

1
2

ac

ad

bc

bd

L R

8 4

4 0

6 6

2 3

3 7

3 2

1 9

1 5

A behaviour strategy of a player assigns a probability distribution on the moves for

each information set of this player. Obviously a pure strategy is a special behaviour

strategy.

Kuhn (1953) has proved an important theorem for games with perfect recall:

Any mixed strategy of a player can be replaced by a behaviour strategy which is

realization equivalent to the mixed strategy, that is, all nodes of the game tree are

reached with the same probability, given any fixed strategies of the other players.

Theorem 1.3 (Kuhn’s theorem) For a player with perfect recall, any mixed strat-

egy is realization equivalent to a behaviour strategy.

The sequence form representation for an extensive game has been introduced by

von Stengel (1996). For player i and any node t of the game tree, the sequence of
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moves of player i on the path from the root to the node t is uniquely determined,

and is denoted by σi(t). The empty sequence is denoted by /0. Since we focus on

perfect recall extensive games in this dissertation, for any nodes s and t that are in

the same information set of player i, we have σi(s) = σi(t); this is the definition of

perfect recall used by Selten (1975), which is equivalent to the definition by Kuhn

(1953). We denote by ξi the set of all sequences of player i, and by ξ = ∏i∈P ξi the

set of sequence profiles.

For the extensive game in Example 1.1, the sets of sequences are

ξ1 = { /0,A,B,AC,AD,AE,AF}

for player 1 and

ξ2 = { /0,a,b,c}

for player 2. The sequence form payoffs are given for those sequence pairs that lead

to a leaf of the game tree, with its corresponding payoff pair. Here they are given as

@@1
2

/0

A

B

AC

AD

AE

AF

/0 a b c

0
8

7 3 5
7 2 4

9
7

5
3

1
1

9
4

where empty boxes correspond to pairs of sequences that do not arise from plays

and have payoff entries zero for each player.

For the extensive game in Example 1.2, the sets of sequences are

ξ1 = { /0,L,R}
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for player 1 and

ξ2 = { /0,a,b,c,d}

for player 2. The sequence form payoffs represent contributions to expected pay-

offs, using the chance probabilities, and are given by

@@1
2

/0

L

R

/0 a b c d

4 −1 4 2
1 0 3 1

2 5 2 4
0 2 0 3

Compared with the strategic form and reduced strategic form that are both possi-

bly exponential in the size of the game tree, the number of sequences of a game is

bounded by the number of nodes of the game tree. Therefore, the sequence form

is a polynomial-sized representation of the extensive game. However, randomizing

between sequences can no longer be described by a single probability distribution,

but requires a system of linear equations. We cover this in the next section.

1.3 The sequence form

In this section, we explain the extensive game sequence form representation of sys-

tems of linear equations. We explore how the theory of linear programming can be

applied to the enumeration of equilibria for extensive games in the next section.

We recall some notation and propositions of the sequence form for two-player

extensive games with perfect recall. For i = 1,2, the set of information sets of

player i is denoted by Hi. For any information set h ∈ Hi, the set of moves at h is

denoted by Ch. Let ξi be the set of sequences of player i. Since player i has perfect

recall, any sequence σ in ξi is either the empty sequence /0 or uniquely given by its

last move c at the information set h of player i. That is,

ξi = { /0}∪{σhc | h ∈ Hi,c ∈Ch},
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where σh denotes the unique sequence leading to the information set h in Hi, defined

by σh = σi(t) for any t in h.

The number of sequences is given by

|ξi| = |{ /0}|+ |{σhc | h ∈ Hi,c ∈Ch}|
= 1+∑h∈Hi |Ch|

which is polynomial in the size of the game tree. We denote by m and n the number

of sequences for player 1 and 2 respectively, and let k = |H1|+1 and l = |H2|+1.

A realization plan for player i assigns a realization probability to every sequence

in ξi. A realization probability is not a probability distribution, but satisfies a set of

linear equalities that are stated in the following theorem:

Theorem 1.4 (von Stengel 1996) For player 1, x is the realization plan of a mixed

strategy if and only if x(σ)≥ 0 for all σ ∈ ξ1 and

x( /0) = 1, ∑
c∈Ch

x(σhc) = x(σh) for all h ∈ H1. (1.1)

Similarly, y is the realization plan of a mixed strategy of player 2 if it is nonnegative

and

y( /0) = 1, ∑
c∈Ch

y(σhc) = y(σh) for all h ∈ H2. (1.2)

Equivalently, we can use matrix inequalities to express conditions (1.1) and

(1.2):

Ex = e, x≥ 0 and Fy = f , y≥ 0. (1.3)

A sequence σ of player i leads to a leaf t of the game tree if σ = σi(t). Sequence

form payoffs are defined for pairs of sequences that lead to a leaf of the game tree,

given by the payoff at the leaf times the probabilities of chance moves (if any) on

the path to the leaf.

The sequence form payoffs are two sparse matrices A and B of dimension |ξ1|×
|ξ2| for player 1 and 2, respectively. The expected payoffs under the realization

plans x and y are x>Ay and x>By, for player 1 and player 2, respectively. We con-

sider the sequence form for the game trees in Examples 1.1 and 1.2.
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Example 1.5 (Constraint matrices and payoff matrices) Consider the game tree

in Example 1.1. The pair of sequences (A,a) leads to a leaf. None of the pairs

(AC,a), (AD,a), (AE,a) or (AF,a) leads to a leaf.

The constraints (1.3) for this extensive game are



/0 A B AC AD AE AF

1 0 0 0 0 0 0

−1 1 1 0 0 0 0

0 −1 0 1 1 0 0

0 −1 0 0 0 1 1

x =


1

0

0

0




/0 a b c

1 0 0 0

−1 1 1 1

y =

 1

0


x≥ 0, y≥ 0.

The sparse payoff matrices are

A =


0 7

3 9 5

5 1 9



B =


8 7

2 7 3

4 1 4

 .

For the extensive game in Example 1.2, the constraint matrices are

E =

 1

−1 1 1

 , e =

 1

0

 ,

F =


1

−1 1 1

−1 1 1

 , f =


1

0

0

 ,
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and the sparse payoff matrices are

A =

 4 −1 4 2

2 5 2 4

 , B =

 1 0 3 1

0 2 0 3

 .

1.4 The LCP for the sequence form

In this section, we discuss the theory of linear complementary problems (LCPs)

applied to the enumeration of equilibria of two-player extensive games with perfect

recall. The LCP that describes the set of Nash equilibria of such a game using the

sequence form has been introduced by Koller, Megiddo, and von Stengel (1996). In

our exposition, we use the notation of von Stengel (2002).

Theorem 1.6 Consider the sequence form of a two-player extensive game with per-

fect recall. Let A, B be the payoff matrices and E, F be the constraint matrices for

player 1 and player 2, respectively. The pair (x,y) of realization plans is a Nash

equilibrium if and only if there are vectors u and v such that

Ex = e

Fy = f

E>u −Ay ≥ 0

F>v −B>x ≥ 0

x , y ≥ 0

(1.4)

and x>(E>u−Ay) = 0, y>(F>v−B>x) = 0.

To get this result, consider the best response of player 1 against a given realiza-

tion plan y of player 2. A best response realization plan of player 1 is the optimal

solution of the following linear program (LP):

maximizex x>(Ay)

subject to Ex = e

x≥ 0

(1.5)
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Similarly, the best response realization plan of player 2 against a given realization

plan x of player 1 is the optimal solution to

maximizey (x>B)y

subject to Fy = f

y≥ 0

(1.6)

Thus a Nash equilibrium is a pair of realization plans (x,y) that is the optimal so-

lution for the system (1.5) and (1.6). Unfortunately, by considering both x and y

as variables, the objective functions are no longer linear. To avoid the non-linear

system, the linear programming duality theorem is used to construct a new linear

system.

We recall the LP duality theorem: Given the primal LP

maximize ∑
n
j=1 c jx j

subject to ∑
n
j=1 ai jx j ≤ bi (i = 1,2, . . . ,m),

x j ≥ 0 ( j = 1,2, . . . ,n),

(1.7)

its dual LP is

minimize ∑
m
i=1 biyi

subject to ∑
m
i=1 yiai j ≥ c j ( j = 1,2, . . . ,n),

yi ≥ 0 (i = 1,2, . . . ,m).

(1.8)

The duality theorem can be stated as follows:

Theorem 1.7 (LP duality theorem) If the LP (1.7) has an optimal solution x, then

the dual LP (1.8) also has an optimal solution y, and

c>x = b>y.

Here c = (c j) j=1,...,n and b = (bi)i=1,...,m.

In addition, the following complementary slackness conditions characterize a

pair x,y of primal and dual solutions as optimal.
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Theorem 1.8 (Complementary slackness) A feasible solution x of the LP (1.7) is

optimal if and only if there is an m-vector y such that

m

∑
i=1

ai jyi = c j when x j > 0

yi = 0 when
n

∑
j=1

ai jx j < bi

and

m

∑
i=1

ai jyi ≥ c j for all j = 1,2, . . . ,n,

yi ≥ 0 for all i = 1,2, . . . ,m.

Proofs of Theorems 1.7 and 1.8 can be found in Chvátal (1983, pp. 54–65).

Now apply Theorem 1.8 to the LPs (1.5) and (1.6) that describe the set of all

Nash equilibria of an extensive game. The respective dual systems are

minimizeu e>u

subject to E>u≥ Ay
(1.9)

and
minimizev f>v

subject to F>v≥ B>x
(1.10)

and the complementary slackness conditions are

x>(E>u−Ay) = 0 (1.11)

and

y>(F>v−B>x) = 0. (1.12)

This proves Theorem 1.6.

1.5 Extensive form correlated equilibrium

The concept of correlated equilibrium (CE) for the strategic form has been intro-

duced by Aumann (1974), to explore the properties of solutions for games with
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communication. A correlated equilibrium is a Nash equilibrium of a game in which

players can condition their action on payoff-irrelevant messages received before the

game.

For a correlated equilibrium in canonical form, the messages can be seen as

private recommendations for each player of what strategies to play. These recom-

mendations can be correlated across the players. A correlated equilibrium can be

defined as a probability distribution over the set of strategy profiles such that, when a

correlation device draws a strategy profile according to this probability distribution

and sends the strategies to the corresponding players privately as recommendations,

the players do not have an incentive to deviate to any other strategy – assuming that

the other players conform to the recommendation they get.

Formally, consider a finite strategic form game Γ = (P,(Sp)p∈P,(ap)p∈P). The

set of players is P. The set of pure strategies of player p is Sp. Let S = ∏p∈P Sp

be the set of strategy profiles. The payoff function of player p is ap : S→ R. A

correlated equilibrium is a distribution x on S such that for all players p and all

pairs of strategies i, j ∈ Sp

∑
s−p∈S−p

[
ap(i,s−p)−ap( j,s−p)

]
x(i,s−p)≥ 0 (1.13)

where (i,s−p) is the strategy profile resulting from s−p ∈ S−p by adding the com-

ponent i ∈ Sp. The inequalities (1.13) are the incentive constraints that characterize

the equilibrium property. For every pair of strategies i, j ∈ Sp, the sum of prod-

ucts ∑s−p∈S−p[a
p(i,s−p)− ap( j,s−p)]x(i,s−p) is the expected payoff player p gets

by playing i. It is as large as that by playing j, conditional on the recommended

strategy being i.

It is easy to verify that a Nash equilibrium is a correlated equilibrium that

happens to be a product distribution, that is, a distribution x on S so that there

is a distribution xp on Sp for each p ∈ P and so that x(s) = ∏
n
p=1 xp(sp) for all

s = (s1, . . . ,sn) ∈ S.

The original approach by Aumann (1974) to correlated equilibria is more de-

tailed. The correlated equilibrium refers to the Nash equilibrium of the extended

game γd where players are first informed by the correlated device of their private
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messages and then play γ . The probability distribution on strategy profiles that is

induced by a correlated equilibrium is called a correlated equilibrium distribution.

The difference between the definition of correlated equilibrium and correlated

equilibrium distribution is important when the mere revelation of strategies fails

for some concepts. For instance, Dhillon and Mertens (1996) show that this di-

rect mechanism does not yield a “perfect” correlated equilibrium. However, for

us signals can be recommended actions and so we use the shorter word correlated

equilibrium for correlated equilibrium distribution without ambiguity.

Consider the (strategic-form) correlated equilibrium for an extensive game with

perfect recall. A pure strategy of a player in an extensive game specifies one move

at each of this player’s information sets. The posterior of a player p at any stage

of the game is the probability of the other players’ recommendations, based on the

information player p gets. There are two ways to extend the definition of correlated

equilibrium to extensive form games. One is to interpret the extensive form as

being merely a concise description of a strategic form game and apply the concepts

described above to this strategic form game. In this case, the recommendations

are generated before the beginning of the game and are sent to the corresponding

players immediately.

Alternatively, one may consider a definition of correlated equilibrium where the

players receive delayed recommendations. That is, the strategy profile selected ac-

cording to the device defines a move c for each information set h of each player p,

which is sent to player p only when he reaches h. It is optimal for the player to

follow the recommended move, assuming that all other players follow their recom-

mendations. The advantage, compared to the CE for the strategy form, is that the

player only has to compare possible alternative moves at a time, rather than alter-

native strategies. As long as the player follows the recommendation, he gets further

information as he reaches a subsequent information set, thus his posterior changes

as the game proceeds. This extension of correlated equilibrium has been proposed

and explored by von Stengel and Forges (2008), as extensive form correlated equi-

librium. They also show (p. 1005) that the set of EFCE does not change when the
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player does not get any further information whenever he deviates at some informa-

tion set, which means that the strategies chosen as recommendations can be reduced

strategies; we always make this assumption. The following is the formal definition

of an EFCE.

Definition 1.9 Given a correlation device µ , consider the extended game in which

a chance move first selects a strategy profile π according to µ . Then, whenever a

player p reaches an information set h in Hp, he receives the move c at h specified

in π as a signal, interpreted as a recommendation to play c. An extensive form

correlated equilibrium (EFCE) is a Nash equilibrium of such an extended game in

which the players follow their recommendations.

As recommendations become local to each information set, the players know

less than in the CE where players get all recommendations before the game starts,

so the equilibrium conditions are easier to satisfy. As a result the set of EFCE is

larger than the set of CE. Von Stengel (2001) gives an example of an extensive form

game which has an EFCE that is not in the set of CE. Another example showing

this is given by Myerson (1986).

Example 1.10 (Myerson 1986) Consider the game tree in Figure 1.3.
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Figure 1.3: Extensive game with an EFCE that is not a CE.

The correlated device that selects (BC, l) and (BD,r) with probability 1
2 , and all

other strategy profiles with probability 0 is an EFCE (with expected payoff 3 for

each player) but not a strategic form correlated equilibrium. If player 1 gets the

recommended strategy, say, BC before the game, he knows that his opponent gets l
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as recommendation for sure. Thus player 1 prefers to deviate to A∗ to get a higher

payoff of 2, instead of 1 from BC.

The set of correlated equilibrium distributions is a convex polyhedron, unlike

the set of Nash equilibria. We now list a few results of the complexity of correlated

equilibrium computation.

For the strategic form, based on a variant of the existence proof due to Hart and

Schmeidler (1989), Papadimitriou and Roughgarden (2008) develop an algorithm

for finding correlated equilibria in a class of succinctly representable multi-player

games, including graphical games, anonymous games, polymatrix games, conges-

tion games, scheduling games, local effect games and several generalizations. They

employ linear programming duality, the ellipsoid algorithm, Markov chain steady

state computations, and application-specific methods for computing multivariate ex-

pectations over product distributions, to compute a correlated equilibrium for such

games in polynomial time.

Theorem 1.11 (Papadimitriou and Roughgarden 2008) Consider a game G in

some description so that the number of players and the number of strategies per

player is polynomial in the size of the description, and so that the expected payoff

for any product distribution (mixed strategy profile) can be computed in polyno-

mial time. Then one can compute in polynomial time a CE of G that is a convex

combination of polynomially many product distributions.

Their algorithm is based on an assertion that if the ellipsoid algorithm is run

on an infeasible linear program, and the resulting sequence of cuts are combined to

form a new linear program, then this new LP will also be infeasible because the el-

lipsoid algorithm would run the same way on it. This is called the “Ellipsoid Against

Hope” algorithm. As Stein et al. (2010) point out, the problem with the reasoning

of this algorithm is that the coefficients of the new LP may be larger, requiring a

bigger initial bounding ellipsoid when running the ellipsoid algorithm on it. They

construct a counterexample which is a game with a unique irrational exchangeable

equilibrium. Since the steps of Papadimitriou and Roughgarden’s algorithm imply
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that a rational exchangeable equilibrium can be computed, the algorithm fails when

applied to this game. Jiang and Leyton-Brown (2010) present a variant of the El-

lipsoid Against Hope algorithm that they called the “Simplified Ellipsoid Against

Hope” algorithm. They prove that this algorithm overcomes the precision issue and

computes a CE in polynomial time.

For the strategic form correlated equilibrium of an extensive game, von Stengel

(2001) and Chu and Halpern (2001) proves that the set of CE cannot be computed

in polynomial time, unless P=NP. Here polynomial (or linear or exponential) size

and time always refers to the size of some description of the extensive game with

its game tree, information sets, moves, chance probabilities, and payoffs.

Theorem 1.12 (von Stengel 2001, Chu and Halpern 2001) For extensive two-

player games with perfect recall and without chance moves, it is NP-hard to find

a strategic form correlated equilibrium with maximum payoff sum.

In contrast, von Stengel and Forges (2008) prove that the set of EFCE for a two-

player perfect-recall extensive game without chance moves has a polynomial-sized

description.

Theorem 1.13 (von Stengel and Forges 2008) For a two-player, perfect-recall ex-

tensive game without chance moves, the set of EFCE can be described by a system

of linear equations and inequalities of polynomial size. For any solution to that sys-

tem (which defines an EFCE), a pair of pure strategies containing the recommended

moves can be sampled in polynomial time.

Von Stengel and Forges (2008) also show that for games with chance moves, the

problem of computing a maximum-sum EFCE is NP-hard.

However, it can be easier to compute one EFCE. For multi-player extensive

games with perfect recall, we show that the problem of finding one EFCE is poly-

nomial.

Theorem 1.14 (Computing one EFCE in polynomial time) For a multi-player ex-

tensive game with perfect recall, one EFCE can be found in polynomial time.

This is the main result of Chapter 3 of this thesis.



CHAPTER 2

Equilibrium Enumeration Using the

Sequence Form

This chapter focuses on equilibrium enumeration for two-player extensive games.

Using the sequence form that we reviewed in Section 1.3, we start in Section 2.1

with simplifying the system (1.4) in Section 1.4 that describes the set of Nash equi-

libria. The resulting system given in Section 2.2 is less elegant but has fewer vari-

ables and constraints. We review in Section 2.3 algorithms for computing equilibria

of bimatrix games. In Section 2.4, we discuss the polyhedra that result from the

sequence form. In Section 2.5, we show how a classic equilibrium enumeration al-

gorithm based on vertex enumeration can be extended to apply to extensive games.

In Section 2.6, we extend the (different) EEE algorithm to extensive games, and

conclude with some examples.

The following is a summary of the novel contributions of this chapter.

First, we present a reduced system for the set of Nash equilibria of extensive

games. We categorize the sequences into three groups: terminal independent se-

quences, terminal dependent sequences and non-terminal sequences, and study the

relations between the three kinds of sequences. Then we remove the redundant con-

straints for the realization probabilities of the non-terminal sequences. Compared

with the system by von Stengel (1996) that also uses the sequence form representa-

tion, our system after removing the redundancy has fewer variables and constraints,

and is a reduced system to describe the set of Nash equilibria.

Second, we present (and implemented) an algorithm for finding all Nash equi-

libria of extensive games based on vertex enumeration. The algorithm we use to find

all Nash equilibria of extensive games is analogous to that for the strategic form. We
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prove that for any Nash equilibrium of the extensive game, there is a pair of vertices

representing this Nash equilibrium. The lrs algorithm by Avis and Fukuda (1992)

and integer pivoting, are used for the implementation of this algorithm.

Third, we extend the EEE equilibrium enumeration algorithm to two-player ex-

tensive games. The EEE algorithm for bimatrix games, for “enumeration of extreme

equilibria”, is due to Audet, Hansen, Jaumard, and Savard (2001). Several improve-

ments to this algorithm, as well as putting it in the context of vertex enumeration,

have been presented by Avis Rosenberg, Savani, and von Stengel (2010). Both the

EEE and improved EEE algorithm, as well as the algorithm based on vertex enu-

meration mentioned before, use a pair of best response polyhedra. We introduce a

pair of polyhedra for the reduced system for the extensive game and label the points

in these polyhedra to identify the complementary slackness condition. These poly-

hedra are analogous to the best response polyhedra to identify the possible supports

of strategies for bimatrix games. We prove that the EEE algorithm applied to these

polyhedra computes all extreme Nash equilibria for a two-player extensive game.

2.1 Removing redundant variables and constraints

In Chapter 1 we explained, using the duality theorem, how the set of Nash equilibria

can be described as the solutions of system (1.4) that satisfy the complementary

slackness conditions. The LCP (1.4) has nonnegative variables x, y that are subject

to the equations Ex = e and Fy = f . The goal of this section is to use these equations

to remove the redundant variables and redundant constraints in the system (1.4).

To explain the redundant variables and redundant constraints, we first categorize

the sequences into two groups: terminal sequences and non-terminal sequences.

As we explained in Section 1.3, the realization plans satisfy certain constraints.

Redundancy arises because of the constraint equalities. The realization probabilities

assigned to sequences that are determined by the realization probabilities of certain

other sequences are redundant variables.

We define a terminal sequence as follows.
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Definition 2.1 A sequence σ is called a terminal sequence if and only if there is

no move extending σ to a longer sequence. Otherwise it is called a non-terminal

sequence.

As an example, the terminal sequences of the game in Example 1.1 are B, AC,

AD, AE and AF for player 1 and a, b and c for player 2. All these sequences lead to

leaves.

A terminal sequence σ leads to a leaf, but not all sequences that lead to a leaf

are terminal. Some non-terminal sequences can still lead to leaves.

Example 2.2 (A non-terminal sequence leading to a terminal node) Consider

the game tree in Figure 2.1 where the payoffs are omitted. Here the sequence R

of player 1 leads to a terminal node with the sequence r of player 2. The terminal

node is reached by a move of player 2. When player 1 chooses R and player 2

chooses l, the subsequent decision node of player 1 is parallel to the terminal node

that R leads to. All the moves that player 1 can choose at that decision node can

extend the sequence R. Thus R is a non-terminal sequence that leads to a terminal

node.
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Figure 2.1: An extensive game with a non-terminal sequence, here R for player 1,

which leads to a terminal node.

In the constraint matrices E and F , columns without −1 as an entry correspond

to terminal sequences; other columns correspond to non-terminal ones.

In this chapter, we denote m and n to the numbers of sequences (including the

empty sequence) for player 1 and player 2, respectively. We show that the k equa-

tions Ex = e are k linearly independent equations for m variables, where k is defined
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in Section 1.3 as the number of information sets plus one. Therefore it is possible

to express k of these variables, called dependent variables, as linear functions of the

other m−k variables, which are called independent. We call the k variables “redun-

dant variables” because it is not necessary to compute these variables when all the

other m− k independent variables are known. Substituting linear expressions into

the other constraints reduces the number of variables for player 1 by k. Further-

more, we show that it is possible to express the realization probabilities of all the

non-terminal sequences as linear combinations of realization probabilities of certain

terminal sequences. So the variables for non-terminal sequences are all redundant

variables.

The nonnegativity constraints for the dependent variables are normally still nec-

essary. When deriving the corresponding LCP via linear programming as in Section

1.4, this leads to k dual variables. As we will show, some nonnegativity constraints

for the components of x are implied by the others because of the equations (1.1).

Namely, the realization probability of any non-terminal sequence is the sum of the

realization probabilities of sequences extended by moves at the information set that

the non-terminal sequence leads to. Moreover, we show that the realization proba-

bility of any non-terminal sequence is the sum of realization probabilities of certain

terminal sequences. Thus the nonnegativity constraints for the non-terminal se-

quences are satisfied if the realization probabilities of all the terminal sequences are

nonnegative. We say these nonnegativity constraints for the non-terminal sequences

are redundant constraints because they can be eliminated from the system without

changing the solution set of the system. The nonnegativity constraints for terminal

sequences are not redundant and must be stated explicitly.

The following lemma shows that the constraints for non-terminal sequences are

redundant.

Lemma 2.3 For every non-terminal sequence σh there are some terminal sequences

σi so that

x(σh) = ∑
i

x(σi).
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Proof. Suppose the above is not true. Since the game is finite, we can find a non-

terminal sequence σh with the largest number of moves, for which the realization

probability cannot be written as the sum of the realization probabilities of some

terminal sequences.

Since σh is non-terminal, it can be extended to longer sequences σhc and

x(σh) = ∑
c∈Ch

x(σhc).

There must be at least one non-terminal sequence σhc∗ whose realization probability

cannot be written as ∑i x(σ c∗
i ) where σ c∗

i are some terminal sequences. Otherwise

x(σh) = ∑c∈Ch
x(σhc) = ∑c∈Ch ∑i x(σ c

i ) which is the sum of the realization proba-

bilities of some terminal sequences. That is a contradiction.

Thus σhc∗ is a longer sequence for which the realization probability cannot be

written as the sum of the realization probabilities of some terminal sequences. But

we have assumed σh is the longest one. So it is a contradiction. Therefore the above

statement is true.

To identify the redundant variables, we categorize the sequences into dependent

sequences and independent sequences.

Given an extensive game, consider the two system of linear equations, Ex = e

and Fy = f , for the two players. These systems are both consistent, and in most

cases both have infinitely many solutions. This holds because both systems have

fewer equations than unknowns. The only exception arises when a player has only

information sets with a trivial single move (or no information sets at all). Otherwise,

observe that for each system, the number of equations for player i (that is, k for

player 1 and l for player 2) is equal to |Hi|+1, that is, the number of information sets

of that player plus 1. The number of unknowns for player i is equal to the number

of sequences (that is, m for player 1 and n for player 2), which is ∑h∈Hi |Ch|+ 1.

Every information set h has at least one move, that is, |Ch| ≥ 1, so as soon as there

is an information set h with more than one move, |Ch|> 1, we have more unknowns

than equations. In this dissertation, we focus on non-trivial games with k < m and

l < n.
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When the systems (1.3) are solved, to describe the infinitely many solutions,

the variables are designated as either independent (or free) or dependent. The inde-

pendent variables are those that are allowed to take any value (subject to inequality

constraints), while the remaining (dependent) variables are dependent on the val-

ues of the independent variables. For a given description of solutions of the system

(1.3), we say the sequences whose realization probabilities are independent are in-

dependent sequences, and the other sequences are called dependent sequences.

For a system of linear equations Ax = b, the number of dependent variables is

equal to the rank of the matrix A. We now show that the ranks of the constraint

matrices E and F are full, that is, k and l, which are 1 more than the number of

information sets of the respective player. We also show how to identify the k and l

independent columns for E and F , respectively.

Consider the constraint matrix E. One of the rows is x( /0) = 1. Each of the re-

maining rows ∑c∈Ch
x(σhc) = x(σh) corresponds to an information set h of player 1,

and is written as

−x(σh)+ ∑
c∈Ch

x(σhc) = 0. (2.1)

Of course, (2.1) could also be written with opposite signs for all coefficients, but

this way every sequence /0 or σhc for some h ∈ H1 and c ∈Ch appears exactly once

with coefficient 1 in a column of E. We order the rows of E so that:

1. the first row of E is x( /0) = 1, and

2. for any i, j≤ k, if hi is the information set of the ith row and h j is the information

set of the jth row of E, and hi precedes h j, then i < j.

Lemma 2.4 For each row i of the matrix E with rows in the described order, written

as (2.1), there is a column so that in that column: (i) the ith row entry is 1, and (ii)

for any 0≤ j < i, the jth row entry is 0.

Proof. First we show that the first non-zero row entry of each column is 1, and

all other non-zero row entries are −1. Each column of E corresponds to a sequence

of player 1. If the sequence of the column is /0, then the first row entry is also the first

non-zero row entry, and it is 1. If the sequence of the column is σhc for some h and
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move c at h, then the row entry for h is 1. All other non-zero row entries correspond

to information sets that the sequence leads to. So h precedes these information sets,

and the indices of these non-zero rows are all greater than that of the row of h. That

is, the first non-zero row entry is in the row of h, and the value of it is 1. The value

of any other non-zero row entry is −1.

For each row corresponding to information set h, there is at least one move c

at h. Consider the column of the sequence σhc. The row entry for h of this column

is 1. It is the first non-zero row entry of this column.

Fix any choice of k columns according to Lemma 2.4. These define a lower

triangular matrix with 1’s on the diagonal and zeros above the diagonal. So the rank

of E is k. Similarly, the rank of F is l.

For clarity, we note that the concepts of independent variables and independent

columns are different. The matrix E has rank k, which means that there are k linearly

independent columns, and all remaining columns are “dependent” in the sense that

they can be expressed as linear combinations of these k columns. The independent

columns do not correspond to the independent variables. On the contrary, for the

system Ex = e, there is a description for any solution such that all the variables

corresponding to the k independent columns are designated dependent variables

and all the other n−k variables are independent variables. This applies similarly to

the system Fy = f .

Therefore, we can use the k independent columns to find n− k independent

sequences (or independent variables). The n− k sequences (or variables) that cor-

responds to the remaining columns are the independent sequences (or independent

variables). Let EB be a square matrix made up from the k linearly independent

columns of E, and let E = [EB EI]. So EB and EI are the columns corresponding

to the dependent variables and independent variables, respectively. The constraints

Ex = e become

[EB EI]

 xB

xI

= e,

where the components of xB correspond to the columns in EB, and thus are depen-

dent variables, and the components of xI are the independent variables. Thus Ex = e
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is written as

EBxB +EIxI = e (2.2)

where EB is invertible, and the dependent variables xB are given by

xB = E−1
B (e−EIxI).

The set of k independent columns is not uniquely determined. There may be

more than one set such that all k columns are independent. For convenience, we

choose the sets B and I so that all variables for the non-terminal sequences are

in xB. We can always do this according to the following lemma.

Lemma 2.5 In the constraint matrices E and F, the columns of all non-terminal

sequences are linearly independent.

Proof. The last non-zero row entry of any column of a non-terminal sequence

is −1. This holds because each nonempty sequence is uniquely determined by its

last move at a unique information set, so there is only one 1 in each column. By

Lemma 2.4, this row of 1 is the first non-zero row. By definition, there is at least

one information set that the non-terminal sequence leads to, and thus at least one

−1 in a column of the non-terminal sequence.

For each row of an information set, there is only one −1, since this information

set is reached by only one sequence. Therefore, the indices of the last non-zero rows

of columns of non-terminal sequences are all different. So none of these columns

can be expressed as a linear combination of the other columns. That is, all of these

columns are linearly independent.

Let kn denote the number of non-terminal sequences. Then we can find the

remaining k− kn columns by iteration. For initialization, let EB be the columns of

all the non-terminal sequences. In each iteration, choose one column that does not

belong to EB. Check whether the column and the columns in EB are independent.

If so, add this column to EB. Otherwise go to the next iteration, until the number

of columns in EB reaches k, which is the rank of E. So EB is the required matrix.

Alternatively, we can find EB by Gaussian elimination, in time O(n3). When using
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Gaussian elimination to find EB, we need to order the columns so that for any index

0 < i ≤ k and 0 < j ≤ l, if the sequence of the ith column is non-terminal and

that of the jth column is terminal, then i < j. That is, we make sure that columns

for non-terminal sequences are on the left of the matrix and columns for terminal

sequences on the right. Doing this ordering guarantees that columns of all non-

terminal sequences are in EB.
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Figure 2.2: Extensive game, without payoffs, to show choices of independent se-

quences.

Figure 2.2 gives an example that demonstrates that the described way of choos-

ing all non-terminal sequences as part of the independent columns in EB is not the

algorithmically most straightforward way of finding k linearly independent columns

of E. For the game in Figure 2.2, the constraints Ex = e are



/0 L R LS LT RC RD

1 0 0 0 0 0 0

−1 1 1 0 0 0 0

0 −1 0 1 1 0 0

0 0 −1 0 0 1 1

x =


1

0

0

0

 .

The most straightforward way of finding k independent columns of E would be to

select in each row the first column with a 1 in it. In this example, these would give

the colums /0,L,LS,RC. This selection gives a lower triangular submatrix EB of E

that is easy to invert. The resulting row operations define the following system, with

the columns of the matrix EB (which becomes the identity matrix) underlined:
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

/0 L R LS LT RC RD

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 1 0 0

0 0 −1 0 0 1 1

x =


1

1

1

0

 .

However, the non-terminal sequence R does not define a column of EB, contrary to

our intention.

In Figure 2.2, using the columns /0,L,R,LS to define EB includes all non-terminal

sequences as intended. The resulting system after row operations that convert EB to

an identity matrix is



/0 L R LS LT RC RD

1 0 0 0 0 0 0

0 1 0 0 0 1 1

0 0 1 0 0 −1 −1

0 0 0 1 1 1 1

x =


1

1

0

1

 .

We explain the construction of EB in more detail for the game tree in Figure 1.1.

Example 2.6 (Finding independent variables) Consider the game tree in Figure

1.1. The constraint matrices E and F are shown in Example 1.5. Let the independent

columns of E be defined by the sequences /0,A,B,AC and those of F by /0,a. After

the row operations, the two systems of constraints become



/0 A B AC AD AE AF

1 0 0 0 0 0 0

0 1 0 0 0 −1 −1

0 0 1 0 0 1 1

0 0 0 1 1 −1 −1

x =


1

0

1

0




/0 a b c

1 0 0 0

0 1 1 1

=

 1

1


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The solutions can be described as

x /0 = 1

xA = xAE + xAF

xB = 1 − xAE − xAF

xAC = −xAD + xAE + xAF

and
y /0 = 1

ya = 1 − yb − yc .

The independent sequences are AB, AE, AF for player 1 and b, c for player 2. As

required, all the independent sequences are terminal sequences.

This is not the only choice of set of independent sequences. The following

shows another choice of EB for player 1 with a different set of independent se-

quences:



/0 A B AC AD AE AF

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 −1 0 1 1 0 0

0 −1 0 0 0 1 1

x =


1

1

0

0


The solution is described as

x /0 = 1

xB = 1 − xA

xAD = xA − xAC

xAE = xA + xAF

The independent sequences are A, AC, AF for player 1. Here, A is an indepen-

dent non-terminal sequence. As mentioned, we do not use this description for our

algorithm to find Nash equilibria.

2.2 The system after removing redundancy

As we explained in the last section, all independent variables in xI correspond to ter-

minal sequences. Dependent variables in xB correspond to either terminal sequences



40 Chapter 2. Equilibrium Enumeration Using the Sequence Form

or non-terminal sequences. Let xB = [xN xD] where all non-terminal sequence vari-

ables are in xN and all terminal sequence variable components of xB are in xD.

So there are three kinds of sequences:

1. Terminal sequences whose realization probabilities xI are independent;

2. Terminal sequences whose realization probabilities xD are dependent, which

can be expressed as p2 +P2xI;

3. Non-terminal sequences whose realization probabilities xN are dependent,

which can be expressed as p1 + P1xI , and for which the nonnegativity con-

straints are redundant, according to Lemma 2.3.

Here  p1

p2

= E−1
B e,

 P1

P2

=−E−1
B EI. (2.3)

We now introduce the new system describing the set of Nash equilibria after

eliminating the redundant variables xN and their nonnegativity constraints xN ≥ 0.

The realization plans for player 1 and 2 are

x =


xN

xD

xI

 =


p1

p2

0

+


P1

P2

Im−k

xI,

y =


yN

yD

yI

 =


q1

q2

0

+


Q1

Q2

In−l

yI.

(2.4)

We substitute x and y as functions of xI and yI , respectively, according to (2.4), and

remove the redundant nonnegativity constraints xN ≥ 0 and yN ≥ 0 for non-terminal

sequences. Then the pairs (1.5) and (1.6) of LPs become:

maximizexI c1 + x>I (a′+A′yI)

subject to −P2xI ≤ p2

xI ≥ 0

(2.5)
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and
maximizeyI c2 +(b′+ x>I B′)yI

subject to −Q2yI ≤ q2

yI ≥ 0

(2.6)

where

c1 =


p1

p2

0


>

A(


q1

q2

0

+


Q1

Q2

In−l

yI),

c2 = (


p1

p2

0

+


P1

P2

Im−k

xI)>B


q1

q2

0

 ,

a′ =


P1

P2

Im−k


>

A


q1

q2

0

 , b′ =


p1

p2

0


>

B


Q1

Q2

In−l

 ,

and

A′ =


P1

P2

Im−k


>

A


Q1

Q2

In−l

 , B′ =


P1

P2

Im−k


>

B


Q1

Q2

In−l

 .

The dual systems to (2.5) and (2.6) use vectors of dual variables u and v of the same

dimensions as xD and yD, respectively, and are given by

minimizeu c1 + p>2 u

subject to −P>2 u ≥ a′+A′yI

u ≥ 0

(2.7)

and
minimizev c2 +q>2 v

subject to −Q>2 v ≥ (b′)>+(B′)>xI

v ≥ 0

(2.8)

By strong duality, we have the following theorem for the reduced system that de-

scribes the set of Nash equilibria.
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Theorem 2.7 The pair (x,y) of realization plans as in (2.4) defines an equilibrium

if and only if there are vectors u, v so that

P2xI ≥−p2

Q2yI ≥−q2

−P>2 u −A′yI ≥ a′

−Q>2 v − (B′)>xI ≥ (b′)>

u, v, xI , yI ≥ 0

(2.9)

and the following complementarity conditions hold:

u>(P2xI + p2) = 0,

v>(Q2yI +q2) = 0,

x>I (−P>2 u−A′yI−a′) = 0,

y>I (−Q>2 v−B′xI− (b′)>) = 0.

(2.10)

Although the system (2.9) is less elegant than the original system (1.4), it is

important for the equilibrium computation algorithms in the sense of reducing run

time and memory space. We now illustrate this theorem by Example 1.1.

Example 2.8 (The reduced system describing the set of Nash equilibria) Consi-

der the extensive game in Example 1.1. With the choice of independent sequences

in Example 2.6,

xI = (xAD,xAE ,xAF), xN = (x /0,xA), xD = (xB,xAC),

yI = (yb,yc), yN = (y /0), yD = (ya)

and

xN =

 1

0

+

 0 0 0

0 1 1

xI

xD =

 1

0

+

 0 −1 −1

−1 1 1

xI

yN =
(

1
)

+
(

0 0
)

yI
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yD =
(

1
)

+
(
−1 −1

)
yI

where

p1 =

 1

0

 , p2 =

 1

0

 ,

q1 = q2 = (1),

and

P1 =

 0 0 0

0 1 1

 , P2 =

 0 −1 −1

−1 1 1

 ,

Q1 = (0 0), Q2 = (−1 −1).

Only a′, b′, A′ and B′ are needed in Theorem 2.7. They are

a′ =


0

−7

−7

 , b′ =
(
−5−3

)
,

and

A′ =


−4 0

13 3

13 11

 , B′ =


−4 0

4 −4

4 −1

 .

2.3 Review of equilibrium enumeration for bimatrix

games

In this section we recall some algorithms for computing equilibria of bimatrix

games. Although we focus on computing equilibria of two-player extensive games

in this chapter, we explore the algorithms for bimatrix games for two reasons. First,

by the strategic form representation, a two-player extensive game is of the form of

a bimatrix game. Thus all algorithms for computing equilibria of bimatrix games

can be applied to extensive games. Second, the algorithms computing equilibria

of two-player extensive games we introduce in this chapter are extensions of the

algorithms for bimatrix games in this section.
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For a bimatrix game (A,B), we denote the sets of labels of strategies of player

1 and 2 by Φ = {1, . . . ,ϕ} and Ψ = {ϕ + 1, . . . ,ϕ + ψ}, respectively, so that the

two sets are disjoint. The payoff matrices A and B belong to RΦ×Ψ. For i = 1,2, a

best response of player i against a certain strategy of the other player is a strategy

of player i that maximizes player i’s expected payoff.

The algorithms in this subsection are all based on the following best response

condition by Nash (1951); our exposition follows Avis et al. (2010).

Theorem 2.9 (Best response condition, Nash 1951) Let x and y be mixed strate-

gies of player 1 and 2, respectively. Then x is a best response to y if and only if for

all i ∈Φ,

xi > 0 ⇒ (Ay)i = u = max{(Ay)k | k ∈Φ}. (2.11)

and y is a best response to x if and only if for all j ∈Ψ,

y j > 0 ⇒ (B>x) j = v = max{(B>x)k | k ∈Ψ}. (2.12)

We recall (following von Stengel 2002) some notions from the theory of convex

polytopes (see Ziegler 1995). An affine combination of points z1, . . . ,zk in some

Euclidean space is of the form ∑
k
i=1 ziλi where λ1, . . . ,λk are reals with ∑

k
i=1 λi = 1.

It is called a convex combination if λi ≥ 0 for all i. A set of points is convex if it is

closed under forming convex combinations. Given points are affinely independent

if none of these points is an affine combination of the others. A convex set has

dimension d if and only if it has d +1, but no more, affinely independent points.

A polyhedron P is of the form

{y ∈ Rd |Cy+b≥ 0} (2.13)

where C is some matrix and b a vector. It is called a polytope if it is bounded.

A face of P is defined by making some of the inequalities in (2.13) binding, that

is, considering them as equations. An edge is a 1-dimensional face. Suppose P

has dimension d. A facet is a (d− 1)-dimensional face of P, where exactly one

inequality in (2.13) is binding. A vertex y ∈ Rd is a point of P that satisfies an

independent set of d inequalities in (2.13) as equations, so a vertex is the unique
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element of a 0-dimensional face of P. An extreme ray z∈Rd is a direction such that

for some vertex y and any positive number α , the point y+αz is in P and satisfies a

certain set of d−1 independent inequalities as equations.

For any mixed strategy, the set of pure strategies that have positive probability

is called the support of this mixed strategy. Two best response polyhedra are used

to identify the possible supports of strategies in an equilibrium. The best response

polyhedron of a player is the set of that player’s mixed strategies together with

the “upper envelope” of expected payoffs (and larger payoffs) to the other player.

Denote by P and Q the best response polyhedra of player 1 and player 2, given by

P = {(x,v) ∈ RΦ×R | x≥ 0, 1>x = 1, B>x≤ 1v},

Q = {(y,u) ∈ RΨ×R | Ay≤ 1u, y≥ 0, 1>y = 1}.

We say a point (x,v) of P has label i in Φ if xi = 0, and label j in Ψ if ∑i∈Φ bi jxi =

v. Similarly, a point (y,u) of Q has label j in Ψ if y j = 0, and label i in Φ if

∑ j∈Ψ ai jy j = u.

Assume, without loss of generality, that A and B> are nonnegative and have no

zero column. We divide each inequality ∑i∈Φ bi jxi ≤ v by the positive scalar v for

P, and similarly divide each inequality ∑ j∈Ψ ai jy j ≤ u by the positive scalar u. The

resulting polytopes P and Q are given as

P = {x ∈ RΦ | x≥ 0, B>x≤ 1},

Q = {y ∈ RΨ | Ay≤ 1, y≥ 0}.

The points in P−{0} and Q−{0} are in one-to-one correspondence with those of P

and Q, respectively, via the mappings x 7→ (x ·v,v) and y 7→ (y ·u,u) with v = 1/1>x

and u = 1/1>y. For each point (1
v )x in P, let the label be the same as that of the

point (x,v) in P. Similarly, for each point (1
u)y in Q, let the label be the same as that

of the point (y,u) in Q. A vertex pair (x,y) in P×Q is completely labelled if every

label in Φ∪Ψ appears as a label of x or y.

This and the following paragraphs of this section review algorithms that are

developed and described in Avis et al. (2010). The set of all Nash equilibria is the
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union of sets of “maximal Nash subsets” (Millham 1974). These maximal Nash

subsets are defined by the maximal “cliques”, which are the maximal complete

bipartite subgraphs of the bipartite graph R on the vertices of P−{0} and Q−
{0}, with equilibria as edges; Nash equilibria that are pairs of such vertices are

also called extreme equilibria. The maximal Nash subsets can thus be computed

by the Clique algorithm with all extreme equilibria as input (see Avis et al. 2010,

Algorithm 2).

Algorithm 2.10 (Clique – Equilibrium components) Input: All pairs (x,y) of ex-

treme equilibria. Output: All components of Nash equilibria, given as unions of

maximal Nash subsets. Method: Consider the set of extreme equilibria as a bipar-

tite graph R. Each connected component C of R defines an equilibrium component;

enumerate the maximal cliques of C, which define the maximal Nash subsets.

All extreme equilibria can be found by enumerating all vertices of the best re-

sponse polytopes and matching the completely labelled pairs:

Algorithm 2.11 (Equilibria by vertex enumeration) Input: A nondegenerate bi-

matrix game. Output: All Nash equilibria of the game. Method: For each vertex x

of P−{0}, and each vertex y of Q−{0}, if (x,y) is completely labelled, output the

Nash equilibrium (x ·1/1>x,y ·1/1>y).

The following lrsNash algorithm requires only one of the two vertex enumera-

tion problems to be solved. For a set of labels L, the face of Q defined by having

all inequalities corresponding to the elements of L hold has equalities is denoted by

Q(L).

Algorithm 2.12 (lrsNash) Input: Bimatrix game (A,B). Output: All extreme equi-

libria (x,y). Method: For each vertex x of P−{0} and set L of labels missing

from x,

(a) determine whether Q(L) is empty or else find a vertex of Q(L), and then

(b) enumerate the vertices y of Q(L) and output (x,y).
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Audet et al. (2001) introduced the algorithm “Enumeration of Extreme Equi-

libria” (EEE algorithm). Avis et al. (2010) present some modifications of this EEE

algorithm. Both the EEE and the improved EEE algorithm work on bimatrix games.

Instead of enumerating all vertices of the best response polyhedra, these algorithms

traverse an implicit search tree by depth-first search, forcing one pure strategy to

be either zero or a best response at each node of the search tree. If all pure strate-

gies are either best responses or have zero probability, the resulting solution is an

equilibrium. The improved EEE algorithm is explained in geometric terms and han-

dles degenerate games significantly better. It has been implemented in Java, first by

Rosenberg (2005), using integer arithmetic, which avoids rounding errors.

We extend these algorithms to game trees later in Sections 2.5 and 2.6.

2.4 Equilibria via labelled polyhedra

In this section, we find all the Nash equilibria of a two-player extensive game by us-

ing a pair of “reduced polyhedra”. These polyhedra for extensive games are analo-

gous to the best response polyhedra P and Q for bimatrix games. The facets of these

polyhedra are labelled. We use the labels to identify the complementary slackness

conditions in Theorem 2.7.

Suppose there are s terminal sequences for player 1 and t terminal sequences

for player 2. Player 1 has m− k independent terminal sequences that define xI

and s− (m− k) dependent terminal sequences that define xD. Player 2 has n− l

independent terminal sequences that define yI and t − (n− l) dependent terminal

sequences that define yD. We assign distinct labels to these sequences so that M and

S are the sets of labels for the independent and dependent terminal sequences for

player 1, and N and T are these sets for player 2, that is,

xI = {xi | i ∈M}, xD = {xi | i ∈ S}, u = {ui | i ∈ S},
yI = {y j | j ∈ N}, yD = {y j | j ∈ T}, v = {v j | j ∈ T}.

(2.14)

We want to use these labels in order to identify which of the s + t inequalities in

(2.9) are binding. One way to define these labels as numbers is in the order of the
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inequalities in (2.9) and the respective complementarity conditions in (2.10). That

is, S,T,M,N are consecutive sets of numbers, with S = {1, . . . ,s−m+k}, T = {s−
m+k+1, . . . ,s−m+k+t−n+ l}, M = {s−m+k+t−n+ l +1, . . . ,s+t−n+ l},
N = {s+t−n+ l +1, . . . ,s+t}. The particular choice of these labels is not relevant;

all that matters is (2.14).

Now consider the following polyhedra, where R≥ = {α ∈ R | α ≥ 0}:

D1 = {(xI,v) ∈ RM
≥ ×RT

≥ | P2xI + p2 ≥ 0, −Q>2 v− (B′)>xI ≥ (b′)>},
D2 = {(yI,u) ∈ RN

≥×RS
≥ | Q2yI +q2 ≥ 0, −P>2 u−A′yI ≥ a′}.

(2.15)

We call D1 and D2 “reduced polyhedra” because they are derived from the reduced

system (2.9) that has the redundant variables and redundant constraints removed.

Each polyhedron is the set of the realization probabilities of the independent se-

quences together with the vectors of dual variables u or v. Different from the sys-

tem for bimatrix games, for which the scalar dual variables u and v define the up-

per envelope of expected payoffs, the upper envelopes of the expected payoffs for

two-player extensive games are given by the expressions c1 + p>2 u for player 1 and

c2 +q>2 v for player 2 in (2.7) and (2.8).

Example 2.13 (Polyhedra for finding Nash equilibria) Consider the extensive

game in Example 1.1. The reduced system and a′, b′, A′, B′ are shown in Example

2.8. So the polyhedron D1 is defined by the following system of inequalities:

5 +4xAD −4xAE −4xAF + v0 ≥ 0

3 +4xAE + xAF + v0 ≥ 0

1 − xAE − xAF ≥ 0

−xAD + xAE + xAF ≥ 0

xAD, xAE , xAF , v0 ≥ 0

and D2 by the system:

4yb +u1 ≥ 0

7 −13yb −3yc +u0 −u1 ≥ 0

7 −13yb −11yc +u0 −u1 ≥ 0

1 − yb − yc ≥ 0

yb, yc, u0, u1 ≥ 0.
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The following is a simpler example to illustrate these polyhedra and their labels.
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Figure 2.3: Myerson’s example of an extensive game, and its sequence form payoff

matrix.

Example 2.14 (Myerson 1986) Consider the extensive game by Myerson (1986)

and its sequence form payoff matrix shown in Figure 2.3. Let xI = (xIn,T , xIn,B) and

yI = (yr); both u and v are here scalars. We have five labels and let in (2.14) S = {1},
T = {2}, M = {3,4}, N = {5} (so only M is not a singleton), with xI = (xIn,T ,

xIn,B) = (x3,x4) and yI = (yr) = (y5). Then the polyhedra in (2.15) are

D1 = {(xI,v) ∈ RM×T
≥ | −x3− x4 +1≥ 0, v+ x3−5x4 ≥ 0},

D2 = {(yI,u) ∈ RN×S
≥ | u+5y5−3≥ 0, u− y5 +2≥ 0}.

(2.16)

These polyhedra are shown in Figure 2.4.

In (2.15), the binding inequalities define the labels of a point (xI,v) in D1 and

of a point (yI,u) in D2, according to

L(xI,v) = {i ∈ S | (P2xI + p2)i = 0}∪{ j ∈ T | v j = 0}
∪{i ∈M | (xI)i = 0)}∪{ j ∈ N | (−Q>2 v−B′xI− (b′)>) j = 0},

L(yI,u) = {i ∈ S | ui = 0}∪{ j ∈ T | (Q2yI +q2) j = 0}
∪{i ∈M | (−P>2 u−A′yI−a)i = 0}∪{ j ∈ N | (yI) j = 0)}.

(2.17)

In Example 2.14, the point (x3,x4,v) = (0,0,0) of D1 has labels 2,3,4,5, and

the point (y5,u) = (3
5 ,0) of D2 has labels 1,3, as shown in Figure 2.4.
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x4

v

1

(front)
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Figure 2.4: Polyhedra D1 and D2 for the extensive game of Myerson’s Exam-

ple 2.14. The “bottom” facets of D1 have labels 2 and 5, those of D2 have labels 3

and 1.

The following lemmas and theory in this section show that a pair of points in

D1×D2 in (2.15) represents a Nash equilibrium if and only if it is completely la-

belled. We prove that such a Nash equilibrium is the convex combination of vertices

of the polyhedra. Therefore, all Nash equilibria can be described by Nash equilibria

that are vertex pairs of D1×D2.

Here we say a pair of points ((xI,v),(yI,u)) in D1×D2 is completely labelled

if every label appears as a label of (xI,v) or (yI,u), that is, L(xI,v)∪ L(yI,u) =

S∪T ∪M∪N.

Let K,L⊆ S∪T ∪M∪N and define

D1(K) = {(xI,v) ∈ D1 | ∀i ∈ K∩S : (P2xI + p2)i = 0, ∀ j ∈ K∩T : v j = 0,

∀i ∈ K∩M : xi = 0, ∀ j ∈ K∩N : (−Q>2 v−B′xI) j = b′j},
D2(L) = {(yI,u) ∈ D2 | ∀i ∈ L∩S : ui = 0, ∀ j ∈ L∩T : (Q2yI +q2) j = 0,

∀i ∈ L∩M : (−P>2 u−A′yI)i = a′i, ∀ j ∈ L∩N : y j = 0}.
(2.18)
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The set of all Nash equilibria is described in the following lemma.

Lemma 2.15 With (2.4) and (2.18), the pair of realization plans (x,y) is a Nash

equilibrium if and only if there are sets K,L and vectors u,v so that K∪L = S∪T ∪
M∪N and ((xI,v),(yI,u)) ∈ D1(K)×D2(L).

Proof. Given K and L so that K ∪ L = S∪ T ∪M ∪N, any ((xI,v),(yI,u)) in

D1(K)×D2(L) is completely labelled, so it fulfills the complementarity conditions

(2.10), and because ((xI,v),(yI,u))∈D1×D2, the constraints in (2.9) hold, so (x,y)

is a Nash equilibrium by Theorem 2.7.

Conversely, the constraints (2.9) imply that any Nash equilibrium (x,y) fulfills

((xI,v),(yI,u)) ∈D1×D2. Let K = L(xI,v) and L = L(yI,u) according to (2.17), so

that ((xI,v),(yI,u)) ∈ D1(K)×D2(L). Then K ∪L = S∪T ∪M∪N holds because

of (2.10).

By Lemma 2.15, the set of all Nash equilibria is the union of products D1(K)×
D2(L) of faces of the polyhedra D1 and D2. The following theorem characterizes

these products in terms of pairs of vertices or points on extreme rays of D1 and D2.

We write convU for the convex hull of a set U . The following lemma and its proof

is analogous to Proposition 4 of Avis et al. (2010).

Lemma 2.16 Let G be a two-person extensive game, ((xI,v),(yI,u)) ∈ D1×D2,

and let x and y be defined by (2.4). Then (x,y) is a Nash equilibrium of G if and

only if there is a set U of vertices or points on extreme rays of D1 and a set V of

vertices or points on extreme rays of D2 so that (xI,v)∈ convU and (yI,u)∈ convV ,

and every (µ,ν) ∈U×V is completely labelled.

Proof. Suppose (x,y) is a Nash equilibrium. By Lemma 2.15, there are sets K

and L so that K ∪L = S∪T ∪M∪N and vectors u and v so that ((xI,v),(yI,u)) ∈
D1×D2. By definition, see (2.18), every point µ in D1(K) has at least the labels

in K, and every v in D2(L) has at least the labels in L. Let U and V be the sets

of vertices and points on extreme rays of D1(K) and D2(L), respectively. Then

D1(K) = convU and D2(L) = convV and ((xI,v),(yI,u)) ∈ convU × convV , re-

spectively, and every (µ,ν) ∈U×V is completely labelled.
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Conversely, given sets of vertices and points on extreme rays U and V so that

every (µ,ν) ∈U ×V is completely labelled, let K be the set of labels common to

all µ ∈U , and let L be the set of labels common to all ν ∈ V . Then K ∪L = S∪
T ∪M∪N, because otherwise there would be some label that is missing from some

µ in U and from some ν in V , so that (µ,ν) is not completely labelled, contrary to

the assumption. Then (xI,v) ∈ convU ⊆ D1(K) and (yI,u) ∈ convV ⊆ D2(L), and

(x,y) is a Nash equilibrium by Lemma 2.15.

Lemma 2.16 shows that the set of all Nash equilibria can be described by the

set of Nash equilibria that are represented by pairs of vertices or points on extreme

rays of D1 and D2. The Nash equilibria given by pairs of vertices are called extreme

equilibria in the sense that they are not convex combinations of other equilibria.

For strategic form games, the scalar dual variables u and v always represent

equilibrium payoffs and can be easily eliminated. The polyhedra are reduced to

a pair of polytopes. Thus all the extreme equilibria are represented by pairs of

vertices of the polytopes. For extensive games, since the dual variables u and v

are not scalar, the polyhedra cannot be replaced by polytopes. A polyhedron is the

convex hull of its vertices and extreme rays. The following lemmas show that every

Nash equilibrium that is a convex combination of points on extreme rays is also a

convex combination of vertices.

Lemma 2.17 Suppose (x,y) represents an equilibrium where (xI,v′) is a point in

D1 and (yI,u′) is a point in D2. Then neither (xI,v′) nor (yI,u′) is a point on an

extreme ray, except for the endpoint of such a ray.

Proof. All points on a ray of D1 or D2 fulfill the same tight inequalities and thus

have the same labels, except for the endpoint of such a ray which has additional

labels. So if (xI,v′) or (yI,u′) is a point on a ray and not an endpoint, all points on

that ray have the same labels and would represent parts of an equilibrium, giving

vectors (xI,v′) or (yI,u′) with at least one unbounded component. We show that

this is not case, which is immediate for the components of xI or yI but not for u′

or v′. We consider player 1 and show that u′ is bounded in any equilibrium; the

same consideration for player 2 implies that v′ is also bounded.
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We proceed in three steps: First, we show that the unreduced system (1.9) has

only bounded optimal solutions u. Second, we show how the reduced system where

x is expressed as a linear function of xI according to (2.4) has a dual LP whose

solutions are bounded because they are linear functions of the solutions u of the

unreduced dual system. Third, we show how these considerations also apply after

eliminating redundant inequalities in the reduced primal system, which has fewer

dual variables u′.

Let x and y be realization plans. Then x is a best response to y if it solves the

primal LP (1.5), which has the dual LP (1.9). The first primal constraints in Ex = e

is x( /0) = 1; let its corresponding dual variable by u0. Any other row of Ex = e is

given by (2.1) for one of player 1’s information sets h in H1; let its corresponding

dual variable by uh. The dual constraints in E>u ≥ Ay correspond to the empty

sequence /0 and to the sequence σhc for each h in H1 and c in Ch. They are therefore

given by u0−∑h∈H1:σh= /0 uh ≥ (Ay) /0 or equivalently

u0 ≥ (Ay) /0 + ∑
h∈H1:σh= /0

uh (2.19)

and correspondingly for the nonempty sequences σhc by

uh ≥ (Ay)σhc + ∑
k∈H1:σk=σhc

uk (c ∈Ch, h ∈ H1) (2.20)

(see also von Stengel 1996, p. 239). We use (2.19) and (2.20) inductively, starting

with the information sets h closest to the leaves, to show that each component uh or

u0 of u is bounded from below. If σhc is a terminal sequence, then the sum on the

right hand side in (2.20) is empty and uh is bounded from below because the entries

of Ay are bounded. If σhc is not a terminal sequence, then there exists k in H1 with

σk = σhc. By induction, we can assume that uk is bounded from below, so that

(2.20) shows that uh is also bounded. Eventually, (2.19) shows that u0 is bounded

from below. In an optimal solution, (2.19) holds as equality by the complementary

slackness condition because the primal variable x /0 is nonzero; also, u0 is equal to

the optimal value e>u of the dual LP and thus represents the best response payoff to

player 1. So u0 is bounded from above and we can now use (2.19) and (2.20) with
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induction down the tree to show that uh, for information sets h with successively

longer incoming sequences σh, are bounded from above. This shows u is bounded

as claimed. The same reasoning applied to the second player shows that v in an

optimal solution to the dual LP (1.10) is also bounded when (x,y) is an equilibrium.

The second step is to consider the reduced system, first without omitting redun-

dant inequalities. Let the row vector a be given by a = (Ay)>. The primal LP (1.5)

says: maximize ax subject to Ex = e, x ≥ 0. Its dual (1.9) says: minimize u>e

subject to u>E ≥ a (for readability, we transpose the vector u of variables rather

than the constraints). Split the columns of E into sets B and I of dependent and

independent variables, respectively, as in (2.2), with a = (aB,aI), so that the primal

LP says
maximize aBxB + aIxI

subject to EBxB + EIxI = e

xB , xI ≥ 0

(2.21)

and the dual
minimize u>e

subject to u>EB ≥ aB, u>EI ≥ aI .
(2.22)

The equations in (2.21) are equivalent to xB = E−1
B e−E−1

B EIxI , so that if we use

this equation to express x = (xB,xI) in terms of xI then the primal LP (2.21) can be

written as

maximize aBE−1
B e+(aI−aBE−1

B EI)xI

subject to E−1
B EI xI ≤ E−1

B e

xI ≥ 0

(2.23)

where the inequalities stand for xB ≥ 0 and the equations Ex = e hold implicitly.

This LP has a constant aBE−1
B e added to its objective function, which is simply

added to the usual dual objective function to obtain the dual LP. The dual of (2.23)

with variables w is therefore

minimize aBE−1
B e + w>E−1

B e

subject to w>E−1
B EI ≥ aI−aBE−1

B EI

w ≥ 0

(2.24)
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which is equivalent to

minimize (aB +w>)E−1
B e

subject to (aB +w>)E−1
B EI ≥ aI

w ≥ 0 .

(2.25)

Suppose w is feasible and optimal for (2.25), and let u> = (aB + w>)E−1
B . Then

u>EI ≥ aI , and w> = u>EB− aB ≥ 0, that is, u>EB ≥ aB, so u is feasible for the

unreduced dual LP (2.22). Moreover, u>e = (aB + w>)E−1
B e, so u is optimal for

(2.22) if and only if w is optimal for (2.25) which holds when the dual objective

function has the same value as the primal objective function, which is the same for

the unreduced and reduced primal LPs (2.21) and (2.23). So w can be unbounded in

an optimal solution to (2.25) if and only if u can be unbounded in an optimal solution

to (2.22), which we have shown above is not possible. Note here that a = (Ay)> is a

bounded function of y, which is bounded in the same way if y is expressed in terms

of its independent variables yI due the constraints Fy = f , y≥ 0 for y.

The third step is to note that in our derivation of the polyhedra D1 and D2,

not all primal constraints xB ≥ 0 which define the inequalities in (2.23) have been

used because xB = (xN ,xD) and the inequalities xN ≥ 0 are redundant (recall that

N contains the nonterminal sequences). By (2.3), the inequalities E−1
B EI xI ≤ E−1

B e

in (2.23) are −P1xN ≤ p1 and −P2xD ≤ p2, where only the latter are irredundant.

When omitting the former from (2.23), the corresponding dual system is like (2.24)

with w = (wN ,wD) where wN is set to zero, that is, it has only dual variables wD

which we call u′ = wD in our consideration of points (xI,v′) and (yI,u′) of D1

and D2. Any optimal solution u′ to the dual LP (for the reduced primal LP that

uses only the irredundant inequalities−P2xD ≤ p2) gives rise to an optimal solution

w = (wN ,wD) = (0,u′) of (2.24), because the complementary slackness condition

holds for the rows indexed by N since wN = 0. So if u′ was unbounded, then w

would be unbounded, which we have shown impossible.

The following theorem for finding all Nash equilibria is a corollary of the above

lemmas.
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Theorem 2.18 Let G be a two-person extensive game, and ((xI,v),(yI,u)) ∈ D1×
D2. The vectors x and y are defined by (2.4). Then (x,y) is a Nash equilibrium of

G if and only if there is a set U of vertices of D1 and a set V of vertices of D2 so

that (xI,v) ∈ convU and (yI,u) ∈ convV , and every (µ,ν) ∈U ×V is completely

labelled.

Theorem 2.18 shows that all Nash equilibria can be completely described by

Nash equilibria that are represented by vertex pairs of D1×D2, which are finitely

many. For example, the two extreme equilibria (d, f ) and (d,g) of the game in

Example 2.14 represent a component {d}×conv{ f ,g} of the set of Nash equilibria.

Consider the bipartite graph R on the vertices of D1 and D2 whose edges are the

completely labelled vertex pairs ((xI,v),(yI,u)). The maximal complete bipartite

subgraphs are the maximal “cliques” of R of the form U ×V . They define the sets

of Nash equilibria convU × convV , whose union is the set of all Nash equilibria.

These sets are called “maximal Nash subsets”. Analogous to the Clique algorithm

for bimatrix games (see Avis et al. 2010), for two-player extensive games, all com-

ponents of Nash equilibria are computed by the following algorithm.

Algorithm 2.19 (Clique for extensive games) Input: All Nash equilibria repre-

sented by vertex pair of the polyhedra of a two-player extensive game. Output:

All components of Nash equilibria of the extensive game, given as unions of max-

imal Nash subsets. Method: Consider the set of extreme equilibria as a bipartite

graph R. Each connected component C of R defines an equilibrium component;

enumerate the maximal cliques of C, which define the maximal Nash subsets.

In the next sections, we concentrate on finding all the vertex pairs that represent

equilibria, which define the input for the Clique algorithm.

2.5 Extreme equilibria using vertex enumeration

In this section we present a straightforward method to generate all vertex pairs rep-

resenting equilibria by enumerating all vertices of D1 and D2, and matching the

completely labelled pairs. We also explain a variant of this method.
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Algorithm 2.20 (Enumerating and matching vertices of both polyhedra) Input:

Two-person extensive game G. Output: All vertex pairs (x,y) that represent equi-

libria. Method: Enumerate all vertices (xI,v) of D1 and (yI,u) of D2 in (2.16). For

every ((xI,v),(yI,u)), check if it is completely labelled. If yes, compute (x,y) by

(2.4) and check if (x,y) has been output already. If not, output (x,y).

Enumerating the vertices of a polyhedron by linear inequalities is a standard

problem in computational geometry (see Ziegler 1995). One method is lrs by Avis

and Fukuda (1992). Briefly, the reverse search algorithm works as follows. The al-

gorithm starts at a known initial vertex of the polyhedron, and uses a linear objective

function which is maximized at the initial vertex. For any vertex of the polyhedron,

the simplex algorithm with e.g. the lexicographic pivoting rule (see Chvátal 1983)

generates a unique path to the initial vertex at which the objective function is max-

imized. This defines a directed tree with the initial vertex as its root and of which

every vertex of the polyhedron is a node. The algorithm lrs explores this directed

tree by a depth-first search from the root. That is, the algorithm reverts the simplex

steps by considering recursively for each vertex u of the polyhedron the edges to

another vertex v such that the simplex algorithm pivots from v to u.

To get an initial vertex, a generic method is to use the initialization method of

the simplex algorithm for getting a feasible basis for the system (see Chvátal 1983).

For an LP
maximize ∑

n
j=1 c jx j

subject to ∑
n
j=1 ai jx j ≤ bi (i = 1,2, . . . ,m)

x j ≥ 0 ( j = 1,2, . . . ,n),

this method computes an initial feasible solution (if any) of the system by solving

the auxiliary problem

maximize x0

subject to ∑
n
j=1 ai jx j− x0 ≤ bi (i = 1,2, . . . ,m)

x j ≥ 0 ( j = 0,1, . . . ,n).

Obviously x j = 0 for all j = 1, . . . ,m and x0 = maxi{|bi|} is an initial feasible solu-

tion for the auxiliary problem. The original LP has a feasible solution if and only if
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the optimum value of the auxiliary problem is zero, and then the optimum solution

for the auxiliary problem is a feasible solution for the original LP.

An alternative to this generic method is to use the structure of D1 and D2 and

start with realization plans x and y that represent pure strategies, where every se-

quence has probability zero or one. In order to find corresponding dual variables

in (2.7) and (2.8), one can assign them in analogy to (2.19) and (2.20) by starting

from the information sets h closest to the leaves and successively assign uh so as to

fulfill all inequalities (2.20) and one of them tightly. This, translated to the reduced

systems (2.7) and (2.8), is also easily seen to produce initial vertices for D1 and D2.

For the implementation of the algorithm, the technique of integer pivoting can

be used to guarantee exact solutions and avoid the relatively costly computation of

greatest common divisors when computing with fractions of integers; for details see

Avis et al. (2010).

For the example game in Example 1.1, lrs outputs all five vertices of D1:

(xAD,xAE ,xAF ,v0) = (0,0,0,0)

(xAD,xAE ,xAF ,v0) = (0,0,1,0)

(xAD,xAE ,xAF ,v0) = (0,1,0,0)

(xAD,xAE ,xAF ,v0) = (1,0,1,0)

(xAD,xAE ,xAF ,v0) = (1,1,0,0)

and all six vertices of D2:

(yb,yc,u0,u1) = (0,0,0,0)

(yb,yc,u0,u1) = (0,0,0,7)

(yb,yc,u0,u1) = (0,1,4,0)

(yb,yc,u0,u1) = (0,
7

11
,0,0)

(yb,yc,u0,u1) = (1,0,6,0)

(yb,yc,u0,u1) = (
7

13
,0,0,0)
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For the game tree of Figure 1, the only pair generated by Algorithm 2.20 is

((xAD,xAE ,xAF ,v0),(yb,yc,u0,u1) = ((0,0,0,0),(0,0,0)).

So the only sequence form equilibrium of the game is

(( /0,xA,xB,xAC,xAD,xAE ,xAF),( /0,ya,yb,yc)) = ((1,0,1, ,0,0,0,0),(1,1,0,0)).

Avis (2011) implemented the lrsNash algorithm described in Avis et al. (2010)

as the method nash to enumerate all extreme equilibria of bimatrix games. Com-

pared to the straightforward algorithm of enumerating all vertices of both polytopes

and output all completely labelled pairs, the lrsNash algorithm only completely

solves one of the two vertex enumeration problems, requires only memory pro-

portional to the input size because only the vertices of one polyhedron are gener-

ated sequentially, and does not require a separate matching process. The following

lrsNash-extensive algorithm for two-person extensive games, analogously, enumer-

ates the vertices (xI,v) of only one polyhedron D1. The set L = (M∪N∪S∪T )−K

of missing labels from (xI,v) defines the face D2(L) of D2 according to (2.18). If

D2(L) is not empty, then it has a vertex that is be used as a starting point for enu-

merating all its vertices with lrs.

Algorithm 2.21 (lrsNash-extensive) Input: Two-person extensive game G. Out-

put: All extreme equilibria (x,y). Method: For each vertex (xI,v) of D1 and set L of

labels missing from (xI,v),

(a) determine whether D2(L) is empty or else find a vertex of D2(L),

(b) enumerate the vertices (yI,u) of D2(L),

(c) compute (x,y) according to (2.4), and then

(d) check if (x,y) has been output already and if not output (x,y).

2.6 The modified EEE algorithm for two-player ex-

tensive games

Audet et al. (2001) defined the algorithm “Enumeration of all Extreme Equilibria

of bimatrix games” (EEE). Avis et al. (2010) have improved that algorithm and
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called it the “modified EEE algorithm”, using arbitrary precision arithmetic and

more efficient treatment of degenerate games. Both algorithms work on bimatrix

games. Instead of enumerating all vertices of the best response polyhedra of both

players they traverse an implicit search tree by depth-first search, and force one

pure strategy to be either zero or a best response at each node of the search tree. If

all pure strategies are either best responses or have zero probability, the resulting

solution is an equilibrium. The improved EEE algorithm is explained in geometric

terms and handles degenerate games significantly better. It has been implemented in

Java, first by Rosenberg (2005), using integer arithmetic which avoids the rounding

errors of the floating-point arithmetic of Audet et al. (2001).

We extend the improved EEE algorithm, and compute all extreme equilibria for

two-player extensive games. Like the algorithm for bimatrix games, the algorithm

traverses the search tree by depth-first search. Each node of the tree corresponds

to a pair of vertices of the polyhedra D1 and D2; recall that they have dimension s

and t, respectively, because they are defined only by inequalities in (2.15) and are

full-dimensional. Given (K,L,(xI,v),(yI,u)) representing a node of the search tree

so that |K ∪L| < s + t, a new label h that is not in K ∪L is selected and added to

either K or L, which defines the two new branches of the tree. If the resulting subset

D1(K ∪{h}) or D2(L∪{h}) is empty and thus has no vertex, then the branch is

omitted and the search tree pruned at that point.

The algorithm starts at the node of tree which is given by K = L = /0 and a pair

of vertices ((xI,v),(yI,u)) of D1×D2. Set the depth of this node to be zero, and the

depth of any other node as one more than the depth of its parent. At depth s+ t, we

have K ∪L = M∪S∪N ∪T and at this point the pair (x,y) of this node defines an

equilibrium.

Now we apply the EEE algorithm with D1, D2, D1(K) and D2(L) defined as in

(2.18). In the initial step, a pair of vertices is selected. Analogous to Audet et al.

(2001), these vertices can be computed as follows. Set xI
′ to be an arbitrary feasible

value, for example, xI
′ = ( 1

m−k , . . . ,
1

m−k). Choose (yI,u) that is feasible for D2 and
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maximizes (b′+ x>I B′)yI − p>2 u, and (xI,u) that is feasible for D1 and maximizes

x>I (a′+A′y>I )−q>2 v. This produces a vertex pair of D1×D2.

For choosing the label h, we let

τi =


(xI)i(−P>2 u−A′yI−a′)i if the variable (xI)i of D1 is not forced to be

null, and the inequality (−P>2 u−A′yI)i ≥ a′i
of D2 is not fixed at equality,

−1 otherwise,

π j =


u j(P2xI + p2) j if the variable u j of D2 is not forced to be null,

and (P2xI + p2) j ≥ 0 of D1 is not fixed at equality,

−1 otherwise,

ϕc =


(yI)c(−Q>2 v−B′xI−b′)c if the variable (yI)c of D2 is not forced to be null,

and the inequality (−Q>2 v− (B′)>xI)c ≥ (b′)>c
of D1 is not fixed at equality,

−1 otherwise,

ψd =


vd(Q2yI +q2)d if the variable vd of D1 is not forced to be null,

and (Q2yI +q2)d ≥ 0 of D2 is not fixed at equality,

−1 otherwise.

Select the index h among i, j,c,d that gives the maximum of τi, π j, ϕc and ψd .

That is, the label h is chosen so that (xI)h(−P>2 u−A′yI−a′)h or uh(P2xI + p2)h or

(yI)h(−Q>2 v−B′xI−b′)h or vh(Q2yI +q2)h is maximal among these products, with

smallest h in case of ties.

The algorithm is summarized as follows, in analogy to Algorithm EEE-m of

Avis et al. (2010):

Algorithm 2.22 (EEE for extensive games) Input: Two-person extensive game G.

Output: All extreme equilibria (x,y). Method: Implicit depth-first search on a

binary tree by choosing any vertices (xI,v) of D1 and (yI,u) of D2, and calling

visit-extensive( /0, /0,xI,yI) with the recursive visit-extensive method. For

each (xI,yI) output by visit-extensive, compute (x,y) from (xI,yI) by (2.4).

Output (x,y) if not already output earlier.
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The visit-extensive method is a standard recursive depth-first exploration

of a search tree:

visit-extensive(K,L,xI,yI):

[assumption: (xI,v) vertex of D1(K), (yI,u) vertex of D2(L) ]

if |K∪L|< m+n+ s+ t then

select h ∈ (M∪N∪S∪T )− (K∪L)

if |K|< m+ s and ∃ vertex ((xI)′,v′) of D1(K∪{h}) then

visit(K∪{h},L,(xI)′,yI)

if |L|< n+ t and ∃ vertex ((yI)′,u′) of D2(L∪{h}) then

visit(K,L∪{h},xI,(yI)′)

else

for all vertices (xI,v) of D1(K) and (yI,u) of D2(L) do

output (xI,yI) if not already output earlier.

As an example, consider the extensive game in Example 2.14. The tree shown

in Figure 2.5 displays the complete search tree generated by the algorithm. The

circled numbers indicate the order in which the nodes are selected.

We start with the vertex (x1,x2,v5) = (0,0,0) in D1( /0) and (y4,u3) = (0,3) in

D2( /0). The first extreme equilibrium is found at node 15, with x1 = x2 = v5 = 0,

K = {1,2,4,5} and L = {3}. Two extreme equilibria are found by the two ver-

tices (y4,u3) = (1,0) and (y4,u3) = (3
5 ,0) in D2(L). The same extreme equilib-

ria are found at node 22 but are not recorded again. The extreme equilibrium

with (x1,x2,v5) = (0,0,0) and (y4,u3) = (1,0) is also found at node 16 but is not

recorded again. Thus the algorithm outputs three extreme equilibria:

(x /0,xIn,xOut ,xIn,T ,xIn,B) = (1,0,1,0,0),(y /0,yl,yr) = (1,0,1),

and

(x /0,xIn,xOut ,xIn,T ,xIn,B) = (1,0,1,0,0),(y /0,yl,yr) = (1,
2
5
,
3
5
).
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Figure 2.5: Search tree generated by EEE algorithm. The equations represented by

e1, · · · ,e10 are: e1 : −x1− x2 + 1 = 0, e2 : u3 = 0, e3 : x1 = 1, e4 : u3 + y5− 3 = 0,

e5 : x2 = 0, e6 : u3− y4 + 2 = 0, e7 : v5 + x1−5x2 = 0, e8 : y4 = 0, e9 : v5 = 0, and

e10 :−y4 +1 = 0.





CHAPTER 3

Computing an Extensive Form

Correlated Equilibrium

3.1 Introduction

In this chapter we focus on the computation of one Extensive Form Correlated Equi-

librium (EFCE). We prove that an EFCE can be computed by a polynomial time

algorithm. This algorithm is achieved by applying analogous steps of the algorithm

(Papadimitriou and Roughgarden 2008, Jiang and Leyton-Brown 2010) for comput-

ing CE to a system of EFCE that is similar to the EFCE description by sequences

(von Stengel and Forges 2008). At the time of this writing, there are ongoing dis-

cussions about some necessary amendments of the algorithm by Papadimitriou and

Roughgarden, which can be similarly applied to our adaption of this method; this is

discussed further in Section 3.3.

The existence of Nash equilibrium in any game is well known. In strategic form

games, while the complexity of computing Nash equilibrium is PPAD-complete

even for two-player games (Chen and Deng 2006, Daskalakis, Goldberg and Pa-

padimitriou 2006), the computation problem for CE is typically “easier”, that is,

polynomial-time solvable (Gilboa and Zemel 1989). In addition, a correlated equi-

librium for a succinctly represented game is easier to compute, in the sense that

the complexity can be polynomial, even for multi-player games (Papadimitriou and

Roughgarden 2008).

For extensive games, there is not an easy way to get a polynomial time algorithm

by transforming the game tree into normal form and applying the algorithm for CE

directly to it. This holds because a player may have an exponential number of
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strategies, so that the length of transformed normal form itself is exponential in the

size of the game tree input. In fact, the set of strategic-form CE cannot be a polytope

defined by polynomially many inequalities, unless P = NP, because finding a max-

payoff CE is NP-hard (von Stengel 2001, Chu and Halpern 2001).

This motivates a different concept, the EFCE, where a player only gets move

recommendations, and so has to compare moves at each information set, instead

of comparing strategies. The idea of this sort of correlated equilibrium was first

proposed by Myerson (1986), and elaborated by von Stengel and Forges (2008). As

mentioned in Chapter 1, von Stengel and Forges proposed a compact description for

EFCE of two-player games without chance moves, and proved that the complexity

of computing all EFCE of two-player games without chance moves is polynomial.

However, the consistency and incentive constraints in their compact description are

only necessary but not sufficient conditions for multi-player games or when chance

moves are introduced. In fact, computing a maximum-payoff EFCE for multi-player

games or two-player games with chance moves is NP-hard (von Stengel and Forges

2008).

Papadimitriou and Roughgarden’s polynomial time algorithm for computing a

CE is based on the proof of the existence of a CE that uses LP duality (Hart and

Schmeidler 1989, Nau and McCardle 1990). Briefly speaking, this proof exploits

the existence of stationary distributions for Markov chains to show the infeasibility

of the dual problem of an LP, whose normalized nontrivial solution represents a CE.

By the duality theorem, this LP is unbounded and thus a CE exists. This proof pro-

vides an interpretation of the dual system. In this interpretation, the dual variables

are considered as what we call the players’ “deviation plan”, and the inequalities

describe a rationality concept called “joint coherence” (Nau and McCardle 1990).

This polynomial time algorithm can be applied to a succinctly specified game,

i.e. a game with polynomial number of players, the polynomial expectation property

for product distributions, and of polynomial type (meaning a polynomial number of

actions per player). When looking at behaviour strategies for extensive games, we

find that all the conditions are satisfied except for the polynomial type: a player has
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an exponential number of strategies to deviate to when given a recommendation.

However, this is potentially recoverable because given a fixed behaviour of the other

players, a best response, even from a set of exponentially many pure strategies, can

be computed in polynomial time. This is essentially done by backward induction,

as already described by Wilson (1972), and is used by Koller and Megiddo (1992)

in a precursor to the sequence form. This can also be captured by the system of

incentive constraints described above when considering the EFCE concept.

The goal of this chapter is to adapt Papadimitriou and Roughgarden’s algorithm

to compute an EFCE. In Section 3.4, we construct the system for EFCE using

product profiles rather than sequences. We provide the proof for the existence of

EFCE and the algorithm for EFCE computation. The main theorem in this chapter

is the following; its contribution is its constructive proof with the help of LP duality

that can be turned into a polynomial-time algorithm.

Theorem 3.1 (Existence of EFCE, Huang and von Stengel 2008) Every multi-

player, perfect-recall extensive game has an EFCE, which can be constructed with

the help of LP duality.

In our EFCE description using product profiles, given a recommended move

at an information set, the incentive constraints compare the expected payoff con-

tribution that the player gets by following the recommendation, with the optimal

expected payoff that the player obtains by deviating. We prove that an EFCE is

a correlated device such that the expected payoff contribution is no less than the

optimal expected payoff for every move of every player.

This system is suitable also for computational considerations. As mentioned

earlier, all conditions for a succinctly specified game are either satisfied or recover-

able. Thus it is possible to compute a EFCE in polynomial time with this system.

The existence proof for EFCE is adapted from that for CE. Induction is used

based on the structure of the tree. Details are provided in Section 3.5.

Recently there have been discussions on the correctness of Papadimitriou and

Roughgarden’s algorithm. Stein, Parrilo and Ozdaglar (2010) claimed to have found



68 Chapter 3. Computing an Extensive Form Correlated Equilibrium

an error in this algorithm. In a recent online comment, Papadimitriou (2010) ex-

pressed confidence that the algorithm could still achieve polynomial time CE iden-

tification without dramatic changes. Stein et al. have withdrawn their paper from

arXiv. The latest update on this discussion is that Jiang and Leyton-Brown (2010)

have presented an extension of the algorithm that avoids the numerical problems and

computes a CE in polynomial time. In Section 3.6, we show that both the original

and the extension by Jiang and Leyton-Brown of the algorithm for CE computation

can be adapted to EFCE. Thus an EFCE can also be computed in polynomial time,

as stated in Theorem 1.14.

This chapter is joint work with Bernhard von Stengel. A version of this chapter

has been presented in WINE 2008 and published in Lecture Notes in Computer

Science (Huang and von Stengel 2008).

3.2 Background

In this section we review the proof of CE existence, and the description for EFCE

of two-player games without chance moves.

As mentioned in the previous section, generally the CE concept has better com-

putational complexity properties than Nash Equilibrium (NE). Gilboa and Zemel

(1989) summarize the complexity results of some computational problems for both

NE and CE for strategic form games. They conclude that, broadly speaking, NE is

a complicated solution concept whereas CE is a simple one.

Papadimitriou and Roughgarden propose a polynomial time algorithm to com-

pute one CE for a succinctly specified game. The three conditions for a succinctly

specified game are:

1. it has a polynomial number of players;

2. it has the polynomial expectation property for product distributions; and

3. it is of polynomial type.
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Their algorithm is based on a constructive proof of CE existence that uses LP

duality (Hart and Schmeidler 1989, Nau and McCardle 1990). The proof uses the

following lemma, adapted from the Lemma by Hart and Schmeidler (1989).

Lemma 3.2 Let Yi j be nonnegative numbers for 1 ≤ i, j ≤ n. Then there are prob-

abilities x1, . . . ,xn so that for all i

xi

n

∑
j=1

Yi j =
n

∑
k=1

xkYki (3.1)

where if ∑
n
j=1Yr j = 0 for some r, then xr = 1 and xk = 0 for k 6= r, and otherwise

for 1≤ i≤ n

x′i =
ui

∑
n
j=1Yi j

, xi =
x′i

∑
n
j=1 x′j

(3.2)

with (u1, . . . ,un) as a stationary distribution of the Markov chain that moves from i

to j with probability Yi j/∑
n
k=1Yik.

Proof. If ∑
n
j=1Yr j = 0 for some r, then with xr = 1 and xk = 0 for k 6= r both

sides of (3.1) are always zero. Otherwise, let (u1, . . . ,un) be a stationary distribution

of the described Markov chain, that is, for all i we have

ui =
n

∑
k=1

uk
Yki

∑
n
j=1Yk j

which with x′i as in (3.2) and its constant multiple xi is exactly (3.1) as claimed.

An example for the numbers in Lemma 3.2 is (Yi j) =

1 1

9 1

, with Markov

chain

0.5 0.5

0.9 0.1

, which has the stationary distribution (u1,u2) = ( 9
14 , 5

14), so that

(x′1,x
′
2) = (

9
14 ·2

,
5

14 ·10
), (x1,x2) = (0.9,0.1).

Each probability ui of the stationary distribution of the Markov chain has to be re-

scaled as in (3.2), which has been overlooked in Papadimitriou and Roughgarden

(2008, p. 14:9).

This lemma is used to prove the existence of a CE.
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Theorem 3.3 Every game has a correlated equilibrium.

Proof. Consider the LP

maximize ∑xs

subject to Ax≥ 0

x≥ 0

(3.3)

where the constraints Ax≥ 0 are the matrix form of (1.13) in the definition of CE in

Chapter 1. This LP is either trivial, with maximum 0, or unbounded. There exists a

CE if and only if it is unbounded. By the LP duality theorem, we can show the LP

being unbounded by showing the infeasibility of its dual, which is

A>y ≤−1

y ≥ 0,
(3.4)

This can be achieved by showing that for every y≥ 0 there is a product distribution x

such that x>A>y = 0. If (3.4) is feasible then there exists y such that all components

of A>y are negative, which is a contradiction to its convex combination x>A>y

being zero. Let x : S→ R be a product distribution with x(s) = ∏p∈P xp(sp). Then

(summing over all players p in P and strategies i, j,k in Sp and s−p in S−p)

x>A>y = ∑
p,i, j

∑
s−p

x(i,s−p) [ap(i,s−p)−ap( j,s−p)]y
p
i j

= ∑
p,i, j

∑
s−p

x(i,s−p)ap(i,s−p)yp
i j− ∑

p,i, j
∑
s−p

x(i,s−p)ap( j,s−p)yp
i j

= ∑
p,i, j

∑
s−p

x(i,s−p)ap(i,s−p)yp
i j− ∑

p,k,i
∑
s−p

x(k,s−p)ap(i,s−p)yp
ki

= ∑
p,i

∑
s−p

ap(i,s−p) ∏
q6=p

xq(sq)

(
xp(i)∑

j
yp

i j−∑
k

xp(k)yp
ki

)
.

Let Yi j = yp
i j and choose xp(i) like xi in Lemma 3.2. This sets the last term in

parentheses to zero, which shows that x>A>y = 0 as claimed.

Hart and Schmeidler (1989) give the above proof of the existence of a CE by

introducing a zero-sum auxiliary game. This proof inspires an analogous proof

of existence of an EFCE. In the auxiliary game in their proof, player I chooses a

strategy profile s and player II chooses a triple p, i, j where p∈ P and i, j ∈ Sp. Then
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if i = sp, player II pays to player I the amount ap(i,s−p)− ap( j,s−p), otherwise

player II pays zero.

Suppose player II employs a mixed strategy y which chooses the triple p, i, j

with probability yp
i j. Then the expected payment from player II to player I if player I

chooses s is (A>y)s, because the payoff matrix to player I is A when player I is the

column player.

It suffices to show that for any action of player II, a product distribution x ex-

ists to “neutralize” player II’s expected payoffs in the sense that x>A>y = 0. It

is useful consider the payment ap(i,s−p)− ap( j,s−p) as split into a first payment

ap(i,s−p) from player II to player I and a second payment ap( j,s−p) from player I

to player II. The probability of player II paying ap(i,s−p) to player I is given by

∏q6=p xq(sq)xp(i)∑ j yp
i j, and the probability of player I paying ap(i,s−p) to player II

is ∏q6=p xq(sq)∑k xp(k)yp
ki. Then we can use Lemma 3.2 to show that there exists x

with

∏
q6=p

xq(sq)xp(i)∑
j

yp
i j−∏

q6=p
xq(sq)∑

k
xp(k)yp

ki

= ∏
q6=p

xq(sq)
[
xp(i)∑

j
yp

i j−∑
k

xp(k)yp
ki

]
= 0.

(3.5)

Note that y is a mixed strategy of player II only if ∑yp
i j = 1. Because the dual vari-

ables yp
i j do not necessarily sum to 1, they have to be re-scaled in the CE existence

proof that uses an auxiliary game. However, this does not affect the contradiction

obtained from using a neutralizing strategy x. The only case where it may fail is

when ∑yp
i j = 0, when A>y≤−1 is not fulfilled anyway.

Myerson (1997) used this interpretation to obtain further properties of the strate-

gic CE concept. He also modified the LP and added some variables so that in the

dual system ∑ j yp
i j = 1 holds for each p, i and a re-scaling of the probabilities of a

stationary distribution as in Lemma 3.2 is not necessary.

The goal of this chapter is to adapt the above technique in the proof of CE

existence, and the algorithm of CE computation, to EFCE. We first review the

description of EFCE for two-player games by von Stengel and Forges (2008). As

mentioned earlier, this description is not suitable for multi-player games or games
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with chance moves. However, the polynomial-sized incentive constraints proposed

in it can be adapted to our computation of an EFCE.

For the simple case of two-player, perfect recall extensive game without chance

moves, von Stengel and Forges (2008) prove that the set of EFCE can be described

with polynomially many constraints. In such games, the EFCE can be characterized

by the concept of a correlation plan based on sequences. Let ξ1 and ξ2 be the set of

sequences of player 1 and 2, respectively.

Theorem 3.4 (von Stengel and Forges 2008) In a two-player, perfect-recall exten-

sive game without chance moves, an EFCE is a correlation device induced by a

function z : ξ1× ξ2 → R that fulfills the following consistency constraints (i), (ii),

for all σ ∈ ξ1, h ∈ H1 and τ ∈ ξ2, k ∈ H2 such that there is a path from the root to

a leaf containing a node of h and a node of k:

(i) ∑
c∈Ch

z(σhc,τ) = z(σh,τ), ∑
d∈Ck

z(σ ,τkd) = z(σ ,τk),

(ii) z( /0, /0) = 1, z(σ ,τ)≥ 0,

and the incentive constraints for any information sets h and k of player 1, with k = h

or h preceding k, and σ ∈ ξ1,σ = σhc:

(iii) u(σ) = ∑
τ

z(σ ,τ)a(σ ,τ)+ ∑
k∈H1|σk=σ

∑
d∈Ck

u(σkd),

(iv) v(k,σ)≥∑
τ

z(σ ,τ)a(σkd,τ)+ ∑
l∈H1|σl=σkd

v(l,σ) for d ∈Ck, and

(v) v(h,σhc) = u(σhc),

where a(σ ,τ) is the payoff to player 1, and similarly for information sets and se-

quences of player 2.

A function z that fulfills the consistency constraints (i) and (ii) is called a cor-

relation plan.

For every sequence σ , the auxiliary variable u(σ) is the expected payoff that

player 1 gets when he reaches information set h and follows the recommended
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move c. According to (iii), this is obtained from payoff contributions at leaves

given by z(σ ,τ)a(σ ,τ) with the entries a(σ ,τ) of the sparse sequence form pay-

off matrix, plus contributions u(σkd) from longer sequences σkd. For the incentive

constraints (iv), notice that the player’s posterior on the behavior of the other player

is given by the correlation plan and the recommendation he gets at the information

set h where where σ = σhc. If the player deviates after he gets to information set h

and considers another move at this information set or at a subsequent information

set, the posterior of this player does not change but remains based on the last recom-

mendation he gets. Therefore v(k,σ) is the optimal expected payoff to player 1 if at

information set h he gets the recommended move c, and considers another move at

this information set or at a subsequent information set k. When the incentive con-

straints are satisfied, the expected payoffs by following the recommendations are no

less than the optimal expected payoffs; hence, the players do not have an incentive

to deviate.

These consistency and incentive constraints define a polynomial description of

the set of EFCE. This is possible because in a two-player game without chance

moves, for every correlation plan that fulfills the consistency constraints, there is a

probability distribution µ on the set of strategy profiles S such that for each sequence

pair (σ ,τ),

z(σ ,τ) = ∑

(p1, p2) ∈ S

(p1, p2) agrees with (σ ,τ)

µ(p1, p2)

where (p1, p2) agrees with (σ ,τ) if p1 chooses all the moves in σ and p2 chooses

all the moves in τ . That is, for every z found by the system of consistency and

incentive constraints, a unique correlation device can be defined. Von Stengel and

Forges (2008) explain how the required correlation device is induced by generating

move recommendations from the correlation plan. Briefly, the generation of moves

starts from the root of the game tree. For the moves of an information set of player p,

consider a “reference sequence” of the other player that leads to this information set.

Because the game has only two players and no chance moves, for every selected
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reference sequence, the information set is uniquely determined by the player’s own

history path and the reference sequence.

This description is not suitable for multi-player games or games with chance

moves. Von Stengel and Forges (2008) show, by an example, that for such games,

the consistency constraints (i) and (ii) in Theorem 3.4 do not suffice to characterize

the convex hull of pure strategy profiles. That is, there may be a distribution on

sequence pairs that fulfills (i) and (ii) but is not a convex combination of pure

strategy pairs (and thus cannot represent an EFCE).

3.3 Recent developments on CE computation

In this section, we review Papadimitriou and Roughgarden’s (2008) polynomial

time algorithm for computing CE. We summarize recent developments on this algo-

rithm, including Stein, Parrilo, and Ozdaglar’s (2010) claim on the error they found

in this algorithm, and Jiang and Leyton-Brown’s (2010) variant that they called “the

Simplified Ellipsoid Against Hope” algorithm.

Based on the constructive proof of CE existence described in the previous sec-

tion, Papadimitriou and Roughgarden describe a polynomial time algorithm for CE

computation that they call the “Ellipsoid Against Hope” algorithm. This algorithm

runs the ellipsoid algorithm on the dual LP (3.4). (A review of the ellipsoid algo-

rithm is given in the Appendix.) According to the proof of existence, at each step

i of the ellipsoid algorithm, for the candidate solution y(i) there is a product dis-

tribution x(i) such that (x(i)A>)y ≤ −1 is violated by y = y(i). This is used as the

separation oracle. The ellipsoid algorithm will stop after a polynomial number of

steps and determines that the program is infeasible. Let X = (x(i))>i be the matrix

whose rows i are the generated product distributions. Consider the LP

[XU>]y≤−1, y≥ 0. (3.6)

If we apply the same ellipsoid algorithm to (3.6), the algorithm will go through

the same sequence of queries y(i) and cutting planes that violate x(i)U>y≤−1 and
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return infeasibility. This implies its dual

[UX>]α ≥ 0, α ≥ 0 (3.7)

is unbounded. Note that the entries of UX> are differences between expected pay-

offs under different product distributions, and so can be computed in polynomial

time for succinctly specified games. Also, because (3.6) is of polynomial size, a

nonzero feasible α can be computed in polynomial time. We can scale α to ob-

tain a probability distribution. Then the convex combination X>α of the product

distributions x(i) is a CE, as it is feasible for (3.3).

In the paper that they have recently withdrawn, Stein, Parrilo and Ozdaglar

(2010) raised concerns about the Ellipsoid Against Hope algorithm. They showed

a counterexample in which the algorithm failed to compute a CE. They pointed out

that the output of this algorithm satisfied all of the three conditions:

1. the solution is rational;

2. the solution is a convex combination of product distribution;

3. the solution is a convex combination of symmetric product distribution when

the game is symmetric.

Then they constructed a symmetric game for which the only CE that satisfies the

second and third conditions is irrational. Thus the algorithm must fail to find an

exact CE for this game.

They observed that the reason of this failure in computing an exact CE was that

the algorithm incorrectly handled certain numerical precision issues. Recall that

each iteration of the ellipsoid algorithm requires an initial bounding ball with radius

R and volume bound v as input such that the algorithm stops when the ellipsoid’s

volume is smaller than v. In the Ellipsoid Against Hope algorithm, each cut returned

by the separation oracle is a convex combination of the constraints. As a result,

the initial R and v may not be set appropriately, and infeasibility of (3.7) is not

guaranteed.

Papadimitriou (2010) recently acknowledged the need of some minor modifi-

cations of his algorithm. He wrote as comment to a blog that “Details need to be

worked out”, and he was “pretty sure it should work”. Possibly in consequence to
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this reply, at the time of this writing Stein et al. have withdrawn their paper from

arXiv (its first version is still accessible).

In a paper by Jiang and Leyton-Brown (2010), recently uploaded to the arXiv,

the authors show that they overcome the numerical precision issues and present a

variant of the Ellipsoid Against Hope algorithm that guarantees to compute an exact

CE in polynomial time. Their algorithm uses a different separation oracle that they

call “the purified separation oracle”. Instead of having a product distribution x to

neutralize A>y≤−1, they find a pure strategy profile s such that (As)>y≥ 0. Proof

of existence of such s is a straightforward application of the probabilistic method.

Consider xA>y as expected value of (As)>y under the distribution x. The nonnega-

tivity of this expectation implies the existence of some s such that (As)>y≥ 0.

Obtaining this pure strategy s in polynomial time needs identifying the product

distribution x satisfying xA>y = 0 that is used in the separation oracle of the original

algorithm. For every player p, the pure strategy sp in s is computed by iterating

though all strategies in Sp to find a strategy sp such that [x(p→sp)A
>]y ≥ 0, where

x(p→sp) is the product distribution in which player p plays sp and all other players

play according to x. Therefore after the algorithm stops and returns infeasibility

we have a sequence of pure strategy profiles (s(i))i instead of a sequence of product

distributions (x(i))i. If we denote by A′ = AX> the matrix for which each column i

corresponds to the pure strategy s(i) from each iteration, then we have

(A′)>y≤−1, y≥ 0. (3.8)

Replace (3.6) in the original Ellipsoid Against Hope algorithm with (3.8). The

precision issues are overcome because each constraint of (3.8) is also one of the

constraints of (3.3), and as a result neither the maximum value of the coefficients

nor the right-hand side of (3.8) is greater than that in (3.3). Therefore the initial

bound and volume for (3.3) are also suitable for (3.8). This algorithm is called “the

Simplified Ellipsoid Against Hope Algorithm”.

The above CE computation algorithms based on the Ellipsoid algorithm with a

separation oracle are possible to adapt to EFCE, due to the similarity in the existence

proofs for CE and EFCE. We show this in Section 3.6.
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3.4 EFCE and incentive constraints

As we pointed out in Section 3.2, there is no “sequence form” to compute an EFCE

for multi-player games. The compact description holds for two-player games be-

cause the condition of perfect recall imposes strong restrictions on the player’s in-

formation sets, so that the recommended move at each information set can be gen-

erated uniquely. However, with more players or chance introduced, the consistency

across information sets is only a necessary condition. For this reason, our system

does not use the sequence form. Instead, we compute the correlated distribution

z : S→ R on the set of strategy profiles, and introduce the expected payoff contri-

bution and optimal expected payoff of a move.

We make two assumptions for the EFCE:

Assumption 1: each player assumes all other players always follow their recom-

mendations; this is a standard assumption for any equilibrium concept.

Assumption 2: When a player deviates, he gets no further information. Hence

the posterior of the player at subsequent information sets is that at the last infor-

mation before he deviates. This assumption can be made without loss of generality

because any EFCE can be defined using reduced strategies only (von Stengel and

Forges 2008, Section 2.2). Throughout this thesis, whenever we consider a strategy

sp of player p, any move of that strategy at an information set k of p that is unreach-

able due to an own earlier move in sp is always assumed to be the same (say, the

first) move at k which therefore assumes the role of an unspecified move “∗” as in a

reduced strategy because it carries no information.

Analogous to the incentive constraints in Theorem 3.4 for two-player games,

the incentive constraints for multi-player games have three kinds of attributes: the

constraints for the expected payoff contribution, the constraints for the optimal ex-

pected payoff, and the constraints for comparing the expected payoff contribution

and the optimal expected payoff. We first explain the expected payoff contribution.

We introduce the auxiliary variable u(c) for any c ∈ Ch and h ∈ Hp to denote

the expected payoff contribution of c when player p gets the recommendation c

at information set h, and follows all the recommendations he gets. The following
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definitions clarify the relationship between the relevant information sets, moves,

strategies, and the leaves of the game tree.

Definition 3.5 An information set h ∈ Hp precedes another information set k ∈ Hq

if and only if p = q and there are nodes u ∈ h and v ∈ k such that u is on the path

from the root to v. And h ∈ Hp immediately precedes k ∈ Hp if there is a move

d ∈Ch such that σk = σhd.

We write h < k (equivalently, k > h) if h precedes k, and h ≤ k (equivalently,

k ≥ h) if h = k or h precedes k. Note that whenever h < k is written then h and k

belong to the same player p. By perfect recall, < is a partial order on Hp, in fact a

“tree order” where the set {h | h < k} for any k is linearly ordered.

When von Stengel and Forges (2008) describe the EFCE for two-player games,

they use the word “precede” for any two information sets that are connected (that

is, there are nodes in these information sets that are on one path from the root of

the tree to a leaf), regardless of which players these information sets belong to.

In this thesis, two information sets so that one “precedes” the other belong to the

same player. We do this because only the relationship between information sets

of the same player is important for the system that we use to describe the set of

EFCE; moreover, < describes an order only for information sets of one player (see

von Stengel and Forges, Fig. 6, for information sets of two players with a cyclical

“precedes” relationship).

Definition 3.6 An information set h ∈ Hp is reachable by a partial strategy profile

s−p ∈ S−p if and only if there exists sp such that player p reaches h with positive

probability at a certain stage if all players choose the moves in s = (sp,s−p).

Let T be the set of leaves (or terminal nodes) of the game tree. For a node t ∈ T

and a player p, let σ p(t) be the sequence of moves of player p on the path from the

root of the game tree to t.

Definition 3.7 For a move c of player p, we say t ∈ T succeeds c if c is a move

in σ p(t), and that t terminates c if c is the last move of σ p(t). We say that c is a
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terminal move if there exists t ∈ T such that t terminates c. A strategy sp of player p

agrees with t if sp agrees with σ p(t), that is, makes all moves in that sequence. A

partial profile (sq)q∈Q of strategies for some set of players Q agrees with t if each

sq agrees with t.

We denote by āp(t) the payoff to player p if node t is reached at the end of the

game. For games with chance moves, let the expected payoff contribution be ap(t),

which is āp(t) times the product of all chance probabilities on the path from the root

to t.

The following example illustrates the relationships defined above.

Example 3.8 Consider the game tree in Figure 3.1.
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Figure 3.1: An extensive game.

The information set h precedes both k and k′ but not the information set of

player 2. Let t be the node with payoffs (0,2). Then σ1(t) = be. Also, t succeeds b

and e, and terminates e. The strategies (bde) and (bce) agree with t.

For any move c of player p, the expected payoff contributions u(c) are given by

u(c) = ∑
t∈T : t succeeds c

ap(t) ∑
s∈S : s agrees with t

z(s). (3.9)

where z(s) is the probability distribution according to which the correlation device

selects the strategy profile s.
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Now we explain the incentive constraints for the optimal expected payoff.

At any information set h and any move c ∈ h, the expected payoff contribution

u(c) is compared with the possible payoff for the player when he deviates from his

recommendation. Given a move c ∈ h and an information set k such that k ≥ h, we

use v(k,c) to denote the optimal expected payoff at k given that the player gets the

recommended move c at h. It is the maximum of the payoffs for the possible moves

d ∈Ck, this optimal expected payoff is given by a payoff ap(t) where t terminates

d, or given as the subsequent optimal payoffs at later information sets. This is

expressed by the following inequalities:

v(k,c)≥ ∑

sp : sp agrees

with σhc

∑

t ∈ T : t

terminates d

∑

s−p : s−p

agrees with t

ap(t)z(sp,s−p)+ ∑
l : σl=σkd

v(l,c),

for all d ∈Ck.
(3.10)

Intuitively, the player follows the recommendations at all preceding information sets

he arrives, and reaches the information set h when he considers deviating. From

the moment that he deviates, by Assumption 2, he decides to ignore any further

recommendations he would get (or, equivalently, he is not given recommendations

any more). There is a path from h to anther information set k of this player. If he

follows this path and gets k, the expected payoff for him is

∑

sp : sp agrees

with σhc

∑

t ∈ T : t

terminates d

∑

s−p : s−p

agrees with t

ap(t)z(sp,s−p)+ ∑
l : σl=σkd

v(l,c)

for a certain move d he chooses at the information set k, assuming that for the

subsequence information sets l, the optimal expected payoff he can get is v(l,c).

Thus, v(k,c) is the optimal expected payoff for this player considering deviating to

c at information set k.

Note also the strong similarity of (3.10) with, first, the incentive constraints in

(iv) of Theorem 3.4, and secondly with the dual constraints E>u ≥ Ay of the se-

quence form for Nash equilibria in (2.20) where v(k,c) takes the role of a dual
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variable uk associated with an information set, except that these variables exist now

conditional on each recommended move c. This is no coincidence, as these vari-

ables express the best possible payoff contribution at an information set k.

We complete the system characterizing the set of EFCE with the expression that

compares the expected payoff contribution and the optimal expected payoff. For

any player p and any move c ∈Ch of this player, this is given by

u(c) = v(h,c). (3.11)

We prove that the incentive constraints characterize the EFCE.

Theorem 3.9 In a perfect-recall extensive game, a probability distribution z that

fulfills for all players the incentive constraints (3.9),(3.10) and (3.11) defines an

EFCE. The number of these constraints that describe the set of EFCE is polynomial

in the size of the game tree.

Proof. When player p gets the recommended move c at information set h, his

posterior on the behavior of the other players is given by z(s) for any strategy profile

s−p ∈ s−p. When player p deviates and considers another move d at h or at any suc-

ceeding information set k, as in (3.10), his posterior about the other players does not

change because he will not get further information when he deviates. The recom-

mendation is generated at the beginning of the game (the root of the tree), and the

equilibrium conditions assumes that the other players follow the recommendations.

Thus v(h,c) is the optimal payoff he can get from deviating from c.

Intuitively, at any information set h, by choosing the recommended move c, the

player p gets at least as much payoff as he does from deviating to any other moves

at h. Therefore, the player has no incentive to deviate.

Von Stengel and Forges (2008) mention that in general extensive form games,

any EFCE is an agent form correlated equilibrium or AFCE, where each informa-

tion set is replaced by a separate player whose actions are exactly the moves at that

information set, and who receives the same payoff as the original player. However,

the set of AFCE outcomes can be larger than the set of EFCE outcomes. Concep-

tually, this holds because the incentive constraints in an EFCE are more restrictive
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because the player can change his behaviour at his future information sets after a

deviation; in an AFCE, that future behaviour is fixed as given by the other agents,

including his own agents. Technically, this is expressed by the incentive constraints

(iv) in Theorem 3.4 for two-player games, and for multi-player games by the incen-

tive constraints (3.10).

Consider the incentive constraints (3.9), (3.10) and (3.11) that describe the set

of EFCE. For every move c ∈ h, the equation (3.11) compares the expected payoff

contribution of c and the optimal expected payoff at the information set h where

c is given as a recommended move. The auxiliary variables u(c) and v(h,c) are

redundant. We can remove these variables in two steps: first we substitute the

redundant v(h,c) (that is, the auxiliary variable v(h,c) such that c ∈ h) with u(c);

and second we substitute u(c) with the sum in (3.9). Then, the system (3.9), (3.10)

and (3.11) is equivalent to a smaller system. An EFCE is a distribution z on S such

that for each player p, the following constraints are satisfied.

(i) For all h ∈ Hp and c,d ∈Ch,

∑
t∈T : t succeeds c

ap(t) ∑
s∈S : s agrees with t

z(s)≥

∑

sp : sp agrees

with σhc

∑

t ∈ T : t

terminates d

∑

s−p : s−p

agrees with t

ap(t)z(sp,s−p) + ∑
l : σl=σkd

v(l,c)

(3.12)

and

(ii) For all pairs (k,c) of an information set k ∈ Hp and a move c ∈Ch such that

h ∈ Hp and h < k, and all d ∈Ck,

v(k,c)≥ ∑

sp : sp agrees

with σhc

∑

t ∈ T : t

terminates d

∑

s−p : s−p

agrees with t

ap(t)z(sp,s−p)+ ∑
l : σl=σkd

v(l,c)

(3.13)

So there are a polynomial number of constraints in the systems (3.12) and (3.13).

Let K be the set of all pairs (c,d) of moves c ∈Ch and d ∈Ck such that h,k ∈ Hp

and h≤ k. The constraints are one for a pair in K.
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The smaller system of inequalities (3.12) and (3.13) also defines the set of

EFCE. We use this smaller system in later sections.

3.5 The existence proof

This section presents a constructive proof of the existence of the EFCE for multi-

player games with perfect recall. We do this by providing an interpretation of the

dual variables in the proof, which is adapted from that for CE by Hart and Schmei-

dler (1989) as described above (see also Nau and McCardle 1990).

The main theorem of this section is the existence of an EFCE as stated in Theo-

rem 3.1.

The proof of Theorem 3.1 is adapted from the proof of existence for CE by

Hart and Schmeidler. For the first step, let D be the set of all pairs (k,c) of an

information set k ∈Hp and a move c ∈Ch such that h ∈Hp and h < k. The variables

of the combined system (3.12) and (3.13) are z(s) for all s ∈ S and v(k,c) for all

(k,c)∈D. Denote z = (z(s))s∈S and v = (v(k,c))(k,c)∈D. We write the system (3.12)

and (3.13) as the matrix inequality Az + Bv ≥ 0. Consider the linear program that

maximizes the sum of z(s) for all s ∈ S

maximize ∑s∈S z(s)

subject to Az +Bv ≥ 0

z ≥ 0

(3.14)

where the constraints Az + Bv ≥ 0 are the inequalities in (3.12) and (3.13), and the

variables v are the free variables that are without nonnegativity constraints. Obvi-

ously (3.14) is always feasible with the trivial solution z = 0 and v = 0. For the

existence of an EFCE, it is sufficient to prove that (3.14) is unbounded. By duality,

this can be achieved by showing the infeasibility of its dual system

A>y ≤ −1

B>y = 0

y ≥ 0.

(3.15)

For that purpose we need the following lemma, which we will show subsequently.
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Lemma 3.10 For every y ≥ 0, B>y = 0, there is a product distribution x such that

x>A>y = 0.

Lemma 3.10 shows that a product distribution x exists to “neutralize” each pur-

ported dual solution y to (3.15).

Inspired by the CE existence proof by Hart and Schmeidler (1989), we use an

auxiliary zero-sum game between two players I and II to prove Lemma 3.10. Sim-

ilarly to the game for CE, the auxiliary game for EFCE is constructed such that

player I chooses a strategy profile s ∈ S, and player II’s payment to player I is

(A>y)s, where (which we show later) any y ≥ 0 that fulfills B>y = 0 represents a

mixed strategy of player II. A mixed strategy z of player I is then an EFCE if it

guarantees nonnegative payoff to player I. For that it suffices to show that to any

mixed strategy y of player II, player I has a best response that gives him nonnega-

tive payoff, which is the product distribution x in Lemma 3.10. This replicates the

argument by Hart and Schmeidler (1989).

In the auxiliary game, a pure strategy of player II is to choose a triple
(
h,c,V (c)

)
where c ∈Ch, and V (c) is a combination of moves at k ≥ h (including d for k = h)

such that k > h are reachable by move d, and reachable due to subsequently chosen

moves, as in a reduced strategy. Let sp
V (c) be the (pure) strategy of player p that

chooses moves at k≥ h according to V (c) and at all other information sets (including

those preceding h) according to sp, and let s′ = (sp
V (c),s−p).

As in the auxiliary game for CE, it is useful to consider two payments, the first

payment from player II to player I when following the strategy profile s chosen by

player I, and the second payment from player I to player II according to s′, that is,

when s chosen by player I is followed except for the deviation of player II. If sp

does not agree with σhc, there is no payment. Otherwise, player II pays to player I

∑

t ∈ T : t

agrees with s

ap(t) (3.16)

and player I pays to player II
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∑

t ∈ T : t

agrees with s′

ap(t). (3.17)

For any y such that y≥ 0 and B>y = 0, we want to construct a mixed strategy for

player II so that player II’s combined expected payment to player I, that is, (3.16)

minus (3.17), is (A>y)s if player I chooses s. We can assume that player II plays in

two steps by first choosing an information set h and a move c ∈Ch, and then in step

two chooses the combination V (c).

For the given y, let

qh
c = ∑

d∈Ch

yh
c,d , (3.18)

which is the probability that player II chooses h and c ∈Ch. (We will shortly show

that it is no restriction to assume that the numbers qh
c are indeed probabilities.) If

qh
c = 0, then neither c nor V (c) is chosen at all. For d ∈Ch, choose d with probability

yh
c,d/qh

c . For information sets l > h and moves e ∈Cl , let σl = σkd for the preceding

information set k ≥ h. Then if yh
c,d = 0, then l will not be reached with V (c) and no

move at l has to be specified. Otherwise, choose e with probability yh
c,e/yh

c,d .

This describes the random choice of V (c) by player II in the second step, after

having chosen h and c, as a “partial behaviour strategy” that specifies a behaviour

for all information sets k that succeed h. This requires that for any information sets

h, k, l, and moves c ∈Ch, d ∈Ck such that h ≤ k and σkd = σl , we must have that

yh
c,e/yh

c,d are probabilities for all e ∈Cl , so that ∑e∈Cl
yh

c,e/yh
c,d = 1. Also, in the first

step, qh
c must be probabilities for all h and c ∈Ch, so that ∑h ∑c∈Ch

qh
c = 1. The first

condition holds because of the following lemma.

Lemma 3.11 B>y = 0 if and only if for any h and moves c ∈ Ch, d ∈ Ck, where

k ≥ h, we have

yh
c,d = ∑

e∈Cl

yh
c,e, (3.19)

where σl = σkd.

Proof. Notice that (3.19) is analogous to (2.1), with yh
c,d corresponding to x(σkd),

except that yh
c, /0 corresponding to x( /0) is not defined, and that only rows of Ex = e are
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considered that correspond to the information set h and any succeeding information

sets k ≥ h. In particular, we do not consider the first row x( /0) = 1 of Ex = e, which

is the only row with a nonzero right hand side. We therefore have E ′y = 0, with

yh
c,d replacing xσkd in Ex = e, where E ′ is obtained by only keeping the rows in

E that correspond to h and any succeeding information sets k. The corresponding

dual constraints are (E ′)>v′ = 0. The components of v′ will be v(k,c) for k ≥ h.

Comparing (3.12) and (3.13) with (2.20), which are written as Az+Bv≥ 0, we find

that the columns of B for variables v(k,c) consist of these matrices (E ′)>, which are

constructed for each choice of h and c. The conditions (3.19) hold in each case.

We call B>y = 0, that is, (3.19), the consistency constraints for the dual vari-

ables y.

For the second condition that qh
c must be probabilities, we need

∑
h

∑
c∈Ch

qh
c = ∑

h
∑

c,d∈Ch

yh
c,d = 1. (3.20)

However, the dual variables yh
c,d in (3.15) do not necessarily sum up to 1 for c,d ∈

Ch. Similarly to the existence proof for CE, this issue can be handled by re-scaling

these variables. The contradiction from a neutralizing strategy x is not affected.

This holds because A>y≤−1 is linear, so the re-scaling only means the right-hand

side of these inequalities will not be −1 but a different negative number. The only

case this may fail is when ∑h ∑c,d∈Ch
yh

c,d = 0. Due to the consistency constraints

(3.19), this means that all yh
c,d = 0 for all c ∈Ch, d ∈Ck and k≥ h. However, in that

case A>y≤−1 is not fulfilled anyway.

Given that player II chooses c at h as a first step, the choice of V (c) in the

second step as described above defines a partial behaviour strategy by specifying

a behaviour for each reachable information set k ≥ h, which according to Kuhn’s

theorem is realization equivalent to any mixture of partial pure strategies V (c). In

fact, we have replicated the proof of Kuhn’s theorem in the construction before

Lemma 3.11. It implies the following observation.

Lemma 3.12 Assume that y≥ 0, B>y = 0 and that y represents a probability distri-

bution on pairs h,c with c ∈Ch as in (3.20). Then for k≥ h and d ∈Ck, the variable
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yk
c,d is the probability that player II chooses h and c and V (c) so that V (c) reaches k

and chooses d at k.

Now suppose player I chooses s and player II employs the described strategy

of choosing first h and c, and then V (c). If sp does not agree with σhc, there is

no payment. Otherwise, the payment (3.16) from player II to player I given that

player I chooses s is independent of V (c) and given by

∑
h

∑
c,d∈Ch

yh
c,d ∑

t ∈ T : s agrees with t,

t succeeds c

ap(t) . (3.21)

The payment from player I to player II (3.17) is determined by the terminal

moves in V (c) and s−p. It is given by

∑
(h,c,d)∈U

yh
c,d ∑

t ∈ T : t terminates d

and s−p agrees with t

ap(t) (3.22)

where U = {(h,c,d) | c ∈Ch, d ∈Ck where k ≥ h and d is a terminal move}. So the

combined payoff to player I is

∑
h

∑
c,d∈Ch

yh
c,d ∑

t ∈ T : s agrees with t,

t succeeds c

ap(t)− ∑
(h,c,d)∈U

yh
c,d ∑

t ∈ T : t terminates d

and s−p agrees with t

ap(t) . (3.23)

We now examine the entries of A, which are defined by (3.12) and (3.13). By

(3.12),
u(c) = ∑

t∈T : t succeeds c
ap(t) ∑

s∈S : s agrees with t
z(s)

= ∑

sp : sp agrees

with σhc

z(s) ∑

t ∈ T : s agrees with t,

t succeeds c

ap(t).

The second equation holds because sp agrees with σhc if and only if there is a node

t such that t succeeds c and s agrees with t. So (3.12) is equivalent to
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∑

sp : sp agrees

with σhc

z(s)
[

∑

t ∈ T : t terminates d

and s−p agrees with t

ap(t)− ∑

t ∈ T : s agrees with t,

t succeeds c

ap(t)
]
+

∑
l : σl=σkd

v(l,c)≥ 0.

(3.24)

Compare (3.24), which replaces (3.12), and (3.13), with (3.23). Notice that there is

no payment when sp does not agree with σhc, which is consistent with the obser-

vation that in (3.24) and (3.13) the entries of A corresponding to column s and row

(h,c,d) are zero for sp not agreeing with σhc. We find that player II’s expected pay-

ment to player I (over the mixed behaviour strategy y) given that player I chooses s

is indeed (A>y)s.

It remains to show that the neutralizing mixed strategy x exists. Let us consider

the product probability distribution x = ∏h xh where xh is the probability distribution

over moves at the information set h. Since Ck
⋂

Ch = /0 for h 6= k, without ambiguity,

for any move c ∈Ch we can use x(c) instead of xh(c) to denote the probability of c

being chosen according to xh.

When player II chooses
(
h,c,V (c)

)
according to the mixed strategy y, it is not

immediately clear how to neutralize the resulting “deviating behaviour” at an infor-

mation set k which may be due to any choice of player II of an information h where

h ≤ k, and corresponding move c at h, if player I chooses a strategy profile s so

that s agrees with σhc. The neutralizing product strategy x is stated in the following

theorem.

Theorem 3.13 Consider an information set k ∈ Hp and assume that the product

distribution x defines the behaviour of player p at every information set h < k. For

σ = σh or σ = σk, let x[σ ] = ∏c in σ x(c). Let y ≥ 0 and B>y = 0 and (3.20) hold.

For every e,d ∈Ck define

Yed = x[σk]yk
e,d + ∑

h<k
x[σh] ∑

c∈Ch

x(c)yh
c,d . (3.25)

With n = |Ck|, choose x(d) as xd for d ∈ Ck according to Lemma 3.2. Suppose

x is defined inductively this way for all information sets k of every player. Then

x>A>y = 0 as claimed in Lemma 3.10.
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Proof. We show that the payment in the auxiliary game is zero if player I chooses

s according to the product distribution x and player II chooses
(
h,c,V (c)

)
according

to y.

Assume that the information sets that precede k are h1, . . . ,hK with h1 < · · · <
hK = k, and let d ∈ Ck and σkd = d1 · · ·dK−1dK where d j ∈ Ch j (and dK = d) for

1≤ j ≤ K. We prove that

x[σkd]

(
K

∑
j=1

qh j
d j

)
=

K

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c)yh j
c,d . (3.26)

First, suppose that K = 1, so that there are no information sets that precede k. Then

σk is the empty sequence and x[σk] = 1, so that (3.26) states

x(d) ·qk
d = ∑

c∈Ck

x(c)yk
c,d ,

which because qk
d = ∑e∈Ck

yk
d,e is exactly the stationarity property (3.1) of x(d) stated

in Lemma 3.2. This is generalized in the following inductive proof, where we as-

sume that (3.26) holds for K−1 instead of K, that is,

x[σk]

(
K−1

∑
j=1

qh j
d j

)
=

K−1

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c)yh j
c,dK−1

. (3.27)

We use the stationarity property of the probabilities x(d) for the moves d at k

according to (3.1) in Lemma 3.2, that is,

x(d) ∑
e∈Ck

Yde = ∑
e∈Ck

x(e)Yed . (3.28)

We expand the two sides of this equation using (3.25).

The left hand side of (3.28) is

x(d) ∑
e∈Ck

Yde = x(d) ∑
e∈Ck

(
x[σk]yk

d,e + ∑
h<k

x[σh] ∑
c∈Ch

x(c)yh
c,e

)

= x(d)x[σk] ∑
e∈Ck

yk
d,e + x(d)

K−1

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c) ∑
e∈Ck

yh j
c,e

= x(d)x[σk] ∑
e∈Ck

yk
d,e + x(d)

K−1

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c)yh j
c,dK−1

by (3.19)

= x[σkd]qk
d + x(d)x[σk]

(
K−1

∑
j=1

qh j
d j

)
by (3.27)
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which is the left hand side of (3.26).

The right hand side of (3.28) is (note that the second term in (3.25) is indepen-

dent of e)

∑
e∈Ck

x(e)Yed = ∑
e∈Ck

x(e)x[σk]yk
e,d +

(
∑

e∈Ck

x(e)

)
K−1

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c)yh j
c,d

=
K

∑
j=1

x[σh j ] ∑
c∈Ch j

x(c)yh j
c,d

which is the right hand side of (3.26). This completes the proof of (3.26).

Equation (3.26) is exactly the analogous property as used in the auxiliary game

for a strategic form CE in the reasoning before (3.5). Namely, consider any leaf t

of the game tree and the unique path from the root to t. Suppose that σkd is the

sequence of moves of player p on that path, where σkd = d1 · · ·dK on the left side

of (3.26) (if that sequence is empty, that is, player p does not move at all, there is

no payment). According to the product strategy x of player I in the auxiliary game,

that sequence is chosen with probability x[σkd], and the sequence has to be chosen

in order to reach the leaf p. Assume that chance and the other players choose moves

in s−p so that the leaf t is reached (which has a fixed probability); the probabilities

considered in the following are conditioned on this event.

In the same way as argued before (3.5), the first payment ap(t) from player II to

player I as one of the terms in (3.16) results if and only if player I chooses one of

the moves in σkd and player II chooses one of the information sets h j and move d j

at h j for 1≤ j≤ K. The probability for any of these disjoint events is ∑
K
j=1 qh j

d j
. The

combined probability of this first payment is the expression on the left hand side of

(3.26).

The right hand side of (3.26) is the probability that the second payment (3.17)

from player I to player II results at leaf t. This happens if player II has chosen one

of the information sets h j for j = 1, . . . ,K, that play has reached that information set

(with probability x[σh j ]), and that player I has chosen a move c at h j so that player II

deviates from c and later chooses move d at the last information set k, according to

Lemma 3.12.
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By (3.26), the two probabilities are equal. This shows that x neutralizes y as

claimed.

This completes the proof of Theorem 3.1.

3.6 The algorithm for EFCE computation

In this section, we turn our existence proof in Section 3.5 into a polynomial al-

gorithm. This algorithm is adapted from the polynomial time algorithm for CE

computation, which we reviewed in Section 3.3.

In each iteration of the ellipsoid algorithm, compared with the algorithm that

computes a CE, our algorithm for EFCE has an extra step to maintain the candi-

date solution yi to satisfy the consistency constraints B>yi = 0. Before the first

iteration, it simplifies the system B>y = 0, y = 0 in the usual way by identifying

basic columns of this system and expressing the corresponding basic variables as

linear combinations of free variables ȳ, so that y = B̄ȳ. Then the system (3.15) is

equivalent to

A>B̄ȳ ≤ −1

ȳ ≥ 0.
(3.29)

We apply the ellipsoid algorithm to the system (3.29). The separation oracle be-

comes that for any ȳ ≥ 0, there exists z such that z[A>B̄]ȳ = 0, or for the purified

separation oracle, there exists a pure strategy profile s such that AsB̄ȳ≥ 0.

Since we know that (3.29) is infeasible, the algorithm will result in recognizing

the infeasibility of the system after polynomially many iterations. Thus when the

algorithm halts, we have polynomially many candidate solutions yi and for each yi

a corresponding product distribution zi.

We now show that a convex combination, denoted Z>ξ , of these product dis-

tributions can be found in polynomial time, such that the system AZ>ξ + Bv ≥ 0,

ξ ≥ 0 is unbounded. When the ellipsoid algorithm is applied to (3.29), in each itera-

tion the inequality (z>i A>B̄)ȳ≤−1 is violated by ȳi. Let Z be the matrix where each

row i is the product distribution zi found by the ellipsoid algorithm. We consider
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the system of linear inequalities

[ZA>B̄]ȳ≤−1, ȳ≥ 0 . (3.30)

Clearly, the number of variables of (3.30) is equal to that of (3.29), and is poly-

nomial in the size of the game tree. Thus the ellipsoid algorithm is appropriate to

solve (3.30) too. Apply it to (3.30). Let the initial candidate solution be ȳ0 = 0. In

each iteration i, the ith constraint of (3.30) (z>i A>B̄)ȳ ≤ −1 is violated by the ith

candidate solution yi. Thus the algorithm will determine that (3.30) is infeasible

too. That is,

[ZA>]y≤−1, y = B̄ȳ, ȳ≥ 0

or equivalently

[ZA>]y≤−1, B>y = 0, y≥ 0

is infeasible. The dual problem

maximize∑
i
(ξA)i subject to [AZ>]ξA +BξB ≥ 0, ξA ≥ 0 (3.31)

is unbounded. Here (ξA,ξB) is a partition of the variable vector ξ .

For any feasible solution ξ of (3.31), ξA after normalization is a probability dis-

tribution on the set of strategy profiles. The product Z>ξA is a convex combination

of the rows of Z>, which are the product distributions that are computed at all the

iterations of the ellipsoid algorithm. Thus the nonnegative constraints ξA ≥ 0 are

satisfied if and only if Z>ξA ≥ 0. Let z = Z>ξA, and v = ξB. The system (3.31)

becomes

maximize∑
s

z(s) subject to Az+Bv≥ 0, z≥ 0

which is the system that characterizes an EFCE. Therefore, (z,v) = (Z>ξA,ξB) is a

nontrivial solution to (3.15) when ξ is a nontrivial solution to (3.31). Furthermore,

z = Z>ξA is the desired EFCE.

For the complexity of this algorithm, we examine the three conditions in the

Ellipsoid Against Hope by Papadimitriou and Roughgarden (2008). We find that it

satisfies that the game has polynomial number of players and polynomial expecta-

tion property for product distributions. It is not of polynomial type. But this can be
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Algorithm: Computing One EFCE.

Initialize: y = B̄ȳ, i = 1,

ȳ = 0,V = n4DI,v = (2D+1√n)n

Step 1: Get xi by Lemma 3.10 such that [x>i A>]B̄ȳ = 0.

Compute Ṽ , ṽ, ˜̄y

(Or for Simplified Ellipsoid Against Hope algorithm, get the pure strat-

egy profile s such that AsB̄ȳ≥ 0.)

Step 2: If ṽ < 2−(n+1)D then go to Step 3.

Otherwise replace V,v, ȳ with Ṽ , ṽ, ˜̄y,

i = i+1 and return to Step 1.

Step 3: Let X = [xi]i, solve the problem (3.31) for ξ .

For a non-trivial, normalized (by dividing by ∑ξA) ξA, let z = X>ξA.

Output: z, represented in polynomial size as z = X>ξA.

overcome. This holds because given a fixed behaviour of player II, the mixed strat-

egy x in Step 1 can be computed in polynomial time. Therefore this is a polynomial

time algorithm for EFCE computation, and we have Theorem 1.14.

Appendix: The ellipsoid algorithm

Here we explain the ellipsoid method we use in Algorithm 3.6 to compute one

EFCE. Our description is based on Papadimitriou and Steiglitz (1998). Although

this polynomial algorithm works for linear strict inequalities (LSI) only, one can

prove that the complexity of linear programming (LP), linear inequalities (LI) and

LSI are equivalent.

We first briefly review the definition of LP, LI, and LSI, and the relationship

between the complexity of these problems.

Definition 3.14 Linear programming (LP) is the following computational problem:

Given an integer m×n matrix A, an m-vector b and and n-vector c, either
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(a) Find a rational n-vector x such that x≥ 0, Ax = b,and c>x is minimized sub-

ject to these conditions, or

(b) Report that there is no n-vector x such that x≥ 0 and Ax = b, or

(c) Report that the set {c>x | Ax = b,x≥ 0} has no lower bound.

The problem of linear inequalities (LI) is defined as follows:

Given an integer m× n matrix A and m-vector b, is there an n-vector x such

that Ax≤ 0?

Linear strict inequalities (LSI) is the following problem:

Given an m× n integer matrix A and m-vector b, is there an n-vector x such

that Ax < b?

Consider an m×n LP

maximize c>x

subject to Ax = b

x ≥ 0

(A.32)

The following lemma states that the rational numbers in a basic feasible solution to

such an LP have an upper bound.

Lemma 3.15 (Papadimitriou and Steiglitz 1998) The basic feasible solutions of

(A.32) are n-vectors of rational numbers, both the absolute value and the denomi-

nators of which are bounded by 2L, where

L = mn+ dlog|P|e,

and P is the product of the nonzero coefficients appearing in A, b, and c.

It is easy to induce an upper bound for a LI from that of LP. Consider the LI

Ax≤ b. It is equivalent to the following LP

maximize 0

subject to Ax+ Iy = b

y ≥ 0
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The vector in the objective function is c = 0. In the constraints, I is the m×m

identity matrix and for the component yi of the m-vector y is the vector of slack

variables.

Theorem 3.16 The solutions of the LI Ax ≤ b are n-vectors of rational numbers,

both the absolute value and denominators are bounded by 2L, where

L = mn+ dlog|P|e,

and P is the product of the nonzero coefficients appearing in A and b.

For a LSI Ax < b, consider the LI

Ax≤ b− ε (A.33)

where ε is an m-vector and each component εi = 2−2L. Obviously any solution of

the of the LSI Ax < b is also a solution of (A.33). Therefore, the upper bound of

(A.33) is the upper bound of the LI too.

The following result describes the relationship between the complexity of these

problems.

Theorem 3.17 The following statements are equivalent:

(i) There is a polynomial algorithm for LP.

(ii) There is a polynomial algorithm for LI.

(iii) There is a polynomial algorithm for LSI.

The ellipsoid algorithm works for LSI system. It determines whether the system

has a solution in polynomial time. The idea is to start with an initial ellipsoid that

contains the solutions of the given system, if there is any solution. Since the upper

bound is given in Lemma 3.15, as long as the volume of the initial ellipsoid is large

enough, one solution can be contained. The algorithm then proceeds in iterations. In

each iteration, it first checks whether the center point of the ellipsoid is a solution of

the LSI system. If yes, then the algorithm stops with output this solution. Otherwise
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the ellipsoid shrinks by a certain ratio, yet the solution is maintained in it, and the

next iteration starts. After polynomial iterations, either a solution is found, or the

ellipsoid becomes too small to contain a solution, when the algorithm reports that

the system is infeasible. The algorithm is shown below:

The Ellipsoid Algorithm.

Input: An m×n system of linear strict inequalities Ax < b, of size L.

Initialize: Set j = 0, t0 = 0, B0 = n222L · I.

Step 1: If t j is a solution to Ax < b then return t j;

If j > K = 16n(n+1)L then return “no”.

Step 2: Choose any inequality a>t j ≥ b in Ax < b that is violated by t j. Set

t j+1 = t j−
1

n+1
B ja√
a>B ja

B j+1 =
n2

n2−1
[B j−

2
n+1

(B ja)(B ja)>

a>B ja
]

j = j +1

and go to Step 1.

Output: An n-vector x such that Ax < b, if such a vector exists; “no” otherwise.

In the initial step, the initial ellipsoid is

T (Sn) = {y ∈ Rn | (y− t0)>B−1
0 (y− t0)≤ 1}

= {y ∈ Rn | y>B−1
0 y≤ 1}

= {y ∈ Rn | n−22−2Ly>y≤ 1}

is the round sphere of radius n ·2L, hence contains the set of solutions of the prob-

lem, if there is any. The initial candidate of solution is the origin which is the center

of the round sphere. In each iteration, the algorithm checks in Step 1 if the candi-

date of the solution, which is the center of the current ellipsoid, is a solution of the

system. Then a sphere a>t j ≥ b is chosen in Step 2. Since a>t j ≥ b is a constraint of

the system, there must be a solution in the intersection of this sphere and the current
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ellipsoid. In this step, the ellipsoid shrinks with the intersection maintained in the

new ellipsoid. When the new iteration starts, the counter j is checked to determine

if the current ellipsoid is large enough to contain the solution.

If the system is infeasible, then the ellipsoid will become too small to contain

a solution before polynomial steps. This is because of the following two theorems,

one for the ratio by which the ellipsoid shrinks at each iteration, and the other for

the minimum volume of the intersection of the set of solutions of LSI and the sphere

of the initial round of the algorithm.

Theorem 3.18 (Papadimitriou and Steiglitz 1998) Let B j be a positive definite

matrix, let t j ∈ Rn, and let a be any nonzero n-vector. Let B j+1 and t j+1 be as

in Step 2 of the ellipsoid algorithm. Then the following hold.

(a) B j+1 is positive-definite (or, equivalently,

E j+1 = {x ∈ Rn | (x− t j+1)>B−1
j+1(x− t j+1)≤ 1} is an ellipsoid.)

(b) The semiellipsoid

1
2

E j[a] = {x ∈ Rn | (x− t j)>B−1
j (x− t j)≤ 1,a>(x− t j)≤ 0}

is a subset of E j+1.

(c) The volumes of E j and E j+1 satisfy

vol(E j+1)
vol(E j)

< 2−1/2(n+1)

Theorem 3.19 If an LSI system of size L has a solution, then the set of solutions

within the sphere ‖x‖ ≤ n2L has volume at least 2−(n+2)L.
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