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Abstract

Noncooperative game theory enjoys a vast canon of solution concepts.

The predominant solution concept is Nash equilibrium (Nash, 1950a; Nash,

1951). Other solution concepts include generalizations and refinements of

Nash equilibrium as well as alternatives to it.

Despite their successes, the established solution concepts are in some

ways unsatisfactory. In particular, for many games, such as the Centipede

Game (Rosenthal, 1981), the p-Beauty Contest (Moulin, 1986; Simonsen, 1988),

and the notorious Traveler’s Dilemma (Basu, 1994; Basu, 2007), many of the

solution concepts yield solutions that are both unreasonable in theory and

refuted by the experimental evidence. And when a solution concept manages

to yield the expected or reasonable solutions for such games, it often suffers

from other difficulties such as unwieldy complexity or reliance on ad hoc or

game-specific constructions that may fail to be generalizable.

We propose a new solution concept, which we call least-squares regret,

that yields the expected or reasonable solutions for games that have thus

far proved to be problematic, such as the Traveler’s Dilemma; that is sim-

ple; that involves no ad hoc or game-specific constructions and can thus be

applied immediately and consistently to any arbitrary game; that exhibits

nice properties; and that is grounded in human psychology. Intuitively, we

suppose that a player chooses a strategy so as to minimize the divergence

from perfect play overall. In particular, we suppose that a player is partially

strategic and chooses a strategy so as to minimize the sum, across all partial

profiles of strategies of the other players, of the squares of the regrets, where

the regret of a strategy with respect to a partial profile is the difference of the

best-response payoff with respect to the partial profile and the payoff from

choosing the strategy with respect to the partial profile.

The aim of this work is to develop the solution concept of least-squares

regret; explore its properties; assess its performance with respect to various

games of interest; determine its merits and demerits, especially in relation

to other solution concepts; review its weaknesses; introduce a refinement,

which we call mutual weighted least-squares regret, that addresses some of the

weaknesses; and propose some questions for further research.
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Introduction

Noncooperative game theory enjoys a vast canon of solution concepts. The pre-

dominant solution concept is Nash equilibrium (Nash, 1950a; Nash, 1951). Other

solution concepts include generalizations and refinements of Nash equilibrium as

well as alternatives to it.

Despite their successes, the established solution concepts are in some ways un-

satisfactory. In particular, for many games, such as the Centipede Game (Rosenthal,

1981), the p-Beauty Contest (Moulin, 1986; Simonsen, 1988), and the notorious

Traveler’s Dilemma (Basu, 1994; Basu, 2007), the last of which we address in detail

in Chapter 4, many of the solution concepts yield solutions that are both unrea-

sonable in theory and refuted by the experimental evidence. And when a solution

concept manages to yield the expected or reasonable solutions for such games, it

often suffers from other difficulties such as unwieldy complexity or reliance on ad

hoc or game-specific constructions that may fail to be generalizable.

Thus, we are led naturally to ask: is it possible to develop a solution concept

that yields the expected or reasonable solutions for games that have thus far proved

to be problematic if not also for other games of interest; that is sufficiently simple

so as to be both trivial to apply and also a plausible characterization of typical

reasoning and behavior; that involves no ad hoc or game-specific constructions

and can thus be applied immediately and consistently to any arbitrary game; that

exhibits nice mathematical and conceptual properties; and that is grounded in

human psychology? This dissertation seeks to develop such a solution concept.

While there may be reasons to act in accordance with one or another of the

established solution concepts, we propose that there is an alternative way to reason

about a game. This alternative way to reason is best understood by considering

how a player might envisage his decision problem. We consider a brief informal

characterization here and an illustrative example in Section 1.2.

In playing a game, a player must choose a single strategy in ignorance of the
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strategies chosen by the other players. But whether or not a strategy is a best

response may depend on the strategies that the other players choose. Thus, a

strategy may not be perfect with respect to every course of play: while it may

constitute perfect play with respect to some strategies of the other players, it may

diverge from perfect play with respect to other strategies. Furthermore, a strategy

may diverge more or less from perfect play depending on the extent to which it

falls short.

We suppose that a player chooses a strategy so as to minimize the divergence

from perfect play overall. In particular, we suppose that a player chooses a strategy

so as to minimize the sum, across all partial profiles of strategies of the other

players, of the squares of the regrets, where the regret of a strategy with respect

to a partial profile is the difference of the best-response payoff with respect to

the partial profile and the payoff from choosing the strategy with respect to the

partial profile. This idea is the basis of our solution concept, which we call least-

squares regret. This dissertation is concerned with defining, developing, defending,

assessing, and refining least-squares regret.

The remainder of this chapter is concerned with explaining the need to develop

an alternative solution concept and discussing informally the essential ideas

behind least-squares regret. Section 1.1 considers some of the established solution

concepts and their inadequacies. Section 1.2 motivates least-squares regret by

considering a simple decision problem. Section 1.3 discusses the concept of

regret, its origin in decision theory, its use in game theory, and evidence from

experimental economics suggesting its role in human psychology. Section 1.4

considers the various degrees to which a player might be strategic. Section 1.5

outlines the contributions of this dissertation.

1.1 Solution Concepts for Noncooperative Games

We noted earlier that the established solution concepts are in some ways unsat-

isfactory, suggesting the need to develop an alternative solution concept such as

least-squares regret. In this section, we consider briefly some of the established

solution concepts and the issues surrounding them.

One of the oldest and most developed solution concepts is maximin (von

Neumann, 1928; Wald, 1939; Wald, 1945; von Neumann and Morgenstern, 1947;

Wald, 1950). While maximin is the standard solution concept for two-person zero-

sum games, its significance when it comes to other classes of games is less certain.

In particular, focusing exclusively on the minimum payoff may be too restrictive,

and for many games of interest, maximin yields unsatisfactory solutions. We

examine maximin in more detail, especially in relation to least-squares regret, in
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Sections 3.1 and 7.2.

That Nash equilibrium is the predominant solution concept and has enjoyed

considerable success is undeniable. For perspectives on Nash equilibrium and its

influence, see Myerson (1999) and Holt and Roth (2004).

But as is well known, it is not without its problems. Many solution concepts

have been developed in order to address these problems and others.

In one sense, Nash equilibrium is too weak: it may yield a multiplicity of

solutions and fail to exclude unreasonable ones. Selection criteria and refinements

of Nash equilibrium—such as the focal-point effect (Schelling, 1960); perfect equi-

librium (Selten, 1975); proper equilibrium (Myerson, 1978); sequential equilibrium

(Kreps and Wilson, 1982); persistent equilibrium (Kalai and Samet, 1984); stable

equilibrium (Kohlberg and Mertens, 1986); and payoff dominance and risk domi-

nance (Harsanyi and Selten, 1988)—introduce additional constraints in order to

exclude unreasonable equilibria and to guide equilibrium selection in games with

multiple equilibria.

In another sense, Nash equilibrium is too strong: it may exclude reasonable

outcomes, sometimes on the basis of implausible assumptions. For example, it

assumes very strong conditions on the players such as the condition that each

player have no mistaken beliefs about the strategies of the other players, even

when such expectations may be untenable. Generalizations of Nash equilibrium,

such as rationalizability (Bernheim, 1984; Pearce, 1984), weaken the conditions as-

sumed in order to include more reasonable outcomes and to obtain more accurate

characterizations of rationality.

As characterizations of human behavior, however, these solution concepts

have mixed records. For many games, such as those noted earlier, these solution

concepts fail to capture the observed behavior. A salient example is the finitely

repeated Prisoners’ Dilemma, in which cooperation is ruled out by the solution

concepts while being routinely confirmed by experiments (Smale, 1980; Axelrod,

1981).

One common approach to explain observed or so-called “anomalous” behavior

in a problematic game is to modify the game in a slight, but instrumental, way and

then to proceed as usual with some standard solution concept or another. Such

an approach minimizes the departure from standard game theory. For example,

Kreps, Milgrom, Roberts, and Wilson (1982) explain cooperation in the finitely

repeated Prisoners’ Dilemma by modeling the game as a Bayesian game that

includes an irrational or “cooperative” type.

Some more recent solution concepts are readier to depart from standard game

theory for the sake of better explanations of observed behavior. Many of these

solution concepts—such as quantal response equilibrium (McKelvey and Palfrey,
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1995; McKelvey and Palfrey, 1998), level-k thinking (Stahl and Wilson, 1994;

Nagel, 1995; Stahl and Wilson, 1995; Camerer, Ho, and Chong, 2004; Crawford,

Costa-Gomes, and Iriberri, 2013), and noisy introspection (Goeree and Holt, 1999;

Goeree and Holt, 2004)—can capture the observed behavior exceedingly well.

Their successes can be explained in part by their appeals to noise or bounded

reasoning capacity.

Other recent solution concepts employ sophisticated constructions and pro-

cedures in order to model how people reason and to explain observed behavior.

According to minimax weighted expected regret (Halpern and Leung, 2014), the

beliefs of a player about uncertain events are modeled by specifying a set of

weighted probability distributions, and a player chooses a strategy so as to mini-

mize the maximum weighted expected regret. According to common belief in utility

proportional beliefs (Bach and Perea, 2014), each player holds utility proportional

beliefs, according to which the differences of the probabilities of the strategies of

the other players are proportional to the differences of the utilities of the strategies,

believes that each player holds such utility proportional beliefs, and so on.

The solution concepts described above have their advantages and may be

appropriate for many games or situations. Nevertheless, as noted earlier, there

are reasons to be dissatisfied with certain aspects of these solution concepts and

thus reasons to seek an alternative solution concept.

As noted earlier, for many games of interest, many of the established solution

concepts yield solutions that are both unreasonable in theory and refuted by the

experimental evidence. The failure of the solution concepts to capture or explain

the expected or reasonable behavior in these games renders the solution concepts

inappropriate and less useful for characterizing reasoning and behavior. This

problem is particularly pointed when, as in the case of the Traveler’s Dilemma

discussed in Chapter 4, the discrepancies are striking and perplexing.

The trouble with the common approach of modifying a game to capture the

observed behavior is that the modifications are generally ad hoc or game-specific.

For example, the method of Kreps, Milgrom, Roberts, and Wilson (1982) to explain

cooperation in the finitely repeated Prisoners’ Dilemma turns on the pat definition

of an irrational or “cooperative” type, which is specific to the game. But the ad hoc

or game-specific nature of such modifications means that the common approach

of modifying a game cannot be applied to a game without some preparatory work,

for example, defining an irrational or “cooperative” type and what is entailed.

Furthermore, there is no guarantee that a certain modification, being specific to the

game for which it was developed, can be generalized to other games. For example,

for many games, it is not clear what an irrational or “cooperative” type would be

or whether such a type would have any sensible meaning. Thus, while modifying
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a game may yield the desired effect, such a method may not be appropriate in

general.

A solution concept may be game-specific in other unsatisfactory ways, such as

depending on particular specifications of a game that are decision-theoretically

negligible. For example, it is well known that quantal response equilibrium is not

scale invariant and thus depends on the particular utility functions specified in a

game (Wright and Leyton-Brown, 2010). But the dependence of a solution concept

on the particular specifications of a game that are decision-theoretically negligible,

such as the dependence of quantal response equilibrium on the particular utility

functions specified in a game, may render the solution concept inconsistent,

yielding different solutions for games that are considered decision-theoretically

equivalent.

Many of the more recent solution concepts involve specifying structures in

advance, for example, an error structure, as in quantal response equilibrium or

noisy introspection, or a typology of players, as in level-k thinking, and then

estimating free parameters, for example, a precision parameter or a population

distribution parameter. Such an approach can be problematic. The need to make

preliminary specifications, for example, the behavior of a level-0 type in level-k

thinking, and the ad hoc or game-specific nature of such specifications threaten

ease of application and generalizability. Furthermore, the flexibility allowed in

specifying a model, the focus on in-sample parameter estimation, and the freedom

to choose the best parameter estimates mean that, without suitable restrictions, a

model can often be adjusted to fit virtually any set of data, may be susceptible to

overfitting, and may fail to generalize to other games. For more on these issues,

see, for example, Goeree, Holt, and Palfrey (2005); Haile, Hortaçsu, and Kosenok

(2008); Wright and Leyton-Brown (2010); Burchardi and Penczynski (2012); and

Crawford, Costa-Gomes, and Iriberri (2013).

Finally, many of the established solution concepts are sufficiently complex so

as to be both nontrivial to apply and also dubious characterizations of typical

reasoning and behavior. For example, Nash equilibrium and related solution

concepts involve complex computations of fixed points and assume of the players

unbounded reasoning capacity. Even weaker solution concepts, such as rationaliz-

ability, may involve reasoning of the infinitely iterated or complex sort that is not

likely to be plausible. Furthermore, a solution concept that is simple in the one

sense may be complex in the other sense. For example, while level-k thinking in-

volves the simple and fairly plausible assumption of bounded reasoning capacity,

solving a game using level-k thinking involves nontrivial parameter estimations

and extensive testing.

Much more can be said, of course, about these solution concepts and others.
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For further discussions on various solution concepts and related issues, see, for

example, Kreps (1990); Myerson (1991); Fudenberg and Tirole (1991); van Damme

(1991); Osborne and Rubinstein (1994); Aumann (1997); Rubinstein (1998); Go-

eree and Holt (1999); Goeree and Holt (2001); van Damme (2002); Hillas and

Kohlberg (2002); Govindan and Wilson (2008); Halpern (2008); Wright and

Leyton-Brown (2010); Fudenberg (2010); Shubik (2012); Crawford, Costa-Gomes,

and Iriberri (2013); Crawford (2013); and Camerer and Ho (2015).

Whatever might be said about the various solution concepts that have been

developed, it is clear that interest in alternative solution concepts persists, and

new solution concepts continue to be proposed and discussed.

For our part, it is our dissatisfaction with certain aspects of the established

solution concepts that inspired our search for an alternative solution concept.

What we are after is simply a solution concept that is less susceptible to the

problems described above, that is, a solution concept that yields the expected or

reasonable solutions for the games of interest; that involves no ad hoc or game-

specific constructions and can be applied immediately and consistently to any

arbitrary game; that involves no exogenous structures or free parameters; that

is simple; that has nice properties; and that has some basis in actual human

reasoning.

It is worth emphasizing that what we are after is neither a refinement nor

a generalization of Nash equilibrium. And that is because, for many games of

interest, the set of solutions that seem reasonable and the set of equilibria may be

disjoint. The Traveler’s Dilemma, discussed in Chapter 4, is a notable example of

this point. Thus, what we are after is an alternative to Nash equilibrium.

1.2 Motivation

In this section, we explore the motivation behind least-squares regret as a way

to reason about an uncertain situation, such as a game, and thus as a solution

concept for noncooperative games.

Suppose that a player is faced with the following decision problem. Let

Θ = {θ1,θ2,θ3,θ4,θ5,θ6} be the set of states of the world, let X = {x,y} be the set of

strategies available to the player, and let the function u : Θ ×X→ R be the payoff

function for the player with the payoffs as shown in Table 1.1. Only one state

will obtain. The trouble is that the player does not know which state will obtain.

Suppose that the uniform distribution is applied to the set Θ of states of the world.

The question is how to reason about such a problem.

According to the traditional approach, the aim is to maximize the expected

payoff (Borel, 1921; von Neumann, 1928; von Neumann and Morgenstern, 1947;



Chapter 1. Introduction 14

Table 1.1 Payoffs in a decision problem

@
@@

X
Θ

x

y

θ1 θ2 θ3 θ4 θ5 θ6

1 2 3 4 5 5

2 3 4 5 6 0

Savage, 1954). Given the uniform distribution over the setΘ of states of the world,

the expected payoff from choosing x and the expected payoff from choosing y are

identical and equal to 10/3. Thus, neither strategy is better than the other provided

that the aim is to maximize the expected payoff.

Nevertheless, we propose that, despite the equality of the expected payoff from

choosing x and the expected payoff from choosing y, there is a sense in which x is

more reasonable than y. In every state apart from θ6, choosing x yields a payoff

that is only slightly less than the best-response payoff that is achieved by choosing

y, and in state θ6, choosing x yields the best-response payoff, which is significantly

greater than the payoff from choosing y. In every state apart from θ6, choosing

y yields the best-response payoff, which is only slightly greater than the payoff

from choosing x, and in state θ6, choosing y yields a payoff that is significantly

less than the best-response payoff that is achieved by choosing x.

Clearly, neither strategy is perfect with respect to every state. Each strategy

constitutes perfect play with respect to some state and diverges from perfect play

with respect to some other state. But by choosing x, the player minimizes the

divergence from perfect play overall: whatever state ultimately obtains, choosing x

ends up being, if not perfect play, then very close to it. By contrast, while choosing

y yields the best-response payoff in every state apart from θ6, if θ6 obtains, then

choosing y falls far short of perfect play.

We can make this reasoning explicit as follows. We suppose that the player

computes the sum

∑
θ∈Θ

max
z∈X

u(θ, z)−u(θ,x)

2

= 5,

which can be thought of as a measure of the extent to which x diverges from

perfect play overall, and the sum

∑
θ∈Θ

max
z∈X

u(θ, z)−u(θ, y)

2

= 25,
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which can be thought of as a measure of the extent to which y diverges from

perfect play overall. Furthermore, we suppose that the player chooses a strategy

so as to minimize the divergence from perfect play overall and thus chooses x.

More generally, we suppose that a player chooses a strategy so as to minimize

the sum, across all states of the world, of the squares of the regrets, where the

regret of a strategy with respect to a state is the difference of the best-response

payoff with respect to the state and the payoff from choosing the strategy with

respect to the state.

We extend this idea to noncooperative games in the natural way. In particular,

we suppose that a player views the strategies of the other players as uncertain

events, with each partial profile of strategies constituting a state of the world.

Furthermore, we suppose that a player chooses a strategy so as to minimize the

sum, across all partial profiles of strategies of the other players, of the squares of

the regrets, where the regret of a strategy with respect to a partial profile is the

difference of the best-response payoff with respect to the partial profile and the

payoff from choosing the strategy with respect to the partial profile—hence the

name least-squares regret.

Thus, least-squares regret can be seen as an extension of the decision-theoretic

approach to game theory advocated by Kadane and Larkey (1982) and Raiffa

(1982) and explored further by Roth and Schoumaker (1983). The decision-

theoretic approach to game theory involves viewing a game from the perspective

of each player considered individually, assessing a probability distribution to

characterize the beliefs of the player about the strategies of the other players, and

then identifying the strategies of the player that maximize his expected payoff

with respect to the assessed probability distribution. This approach to game

theory contrasts sharply with the standard approach, championed by Harsanyi

(1982) and others. The standard approach to game theory involves solving the

decision problems of the players considered altogether, as if the decision problems

constituted a system of equations in several unknowns.

Least-squares regret differs from the decision-theoretic approach to game the-

ory in two ways. Least-squares regret involves assigning the uniform distribution,

formalized in terms of unweighted summation, while the decision-theoretic ap-

proach involves assessing a probability distribution that need not be uniform.

Furthermore, least-squares regret supposes that a player chooses a strategy so as

to minimize the sum of the squares of the regrets while the decision-theoretic

approach supposes that a player chooses a strategy so as to maximize the expected

payoff with respect to the assessed probability distribution.

We recognize that assuming the uniform distribution may be too restrictive.

We discuss this assumption in Sections 1.4, 2.2, 2.5, and 7.4. In Chapter 8, we
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introduce a refinement of least-squares regret that involves assessing probabil-

ity distributions induced by the strategies of the other players and replacing

unweighted summation with weighted summation, where the weights are the

assessed probabilities. Refining least-squares regret in this way brings it even

closer to the decision-theoretic approach to game theory.

1.3 The Concept of Regret

Central to least-squares regret, as the name suggests and as discussed in Section

1.2, is the concept of regret. Intuitively, the regret of a strategy is a measure of the

extent to which the strategy falls short of perfect play.

The concept of regret has a long history, originating in decision theory with

Niehans (1948) and Savage (1951). Notably, Savage (1951) introduces the concept

of regret, explicitly distinguishing it from the concept of negative income, partly

in order to highlight the failure of Wald (1950) and others to distinguish the

two concepts and argues that the minimax principle is less pessimistic and more

reasonable when applied to regret than when applied to negative income.

Despite advocating the minimax principle as applied to regret, Savage (1951)

professes that no absolute justification for the minimax principle can be given

and concedes that an argument might well exist for preferring to minimize the

average regret or some other aggregate measure. One such alternative is precisely

least-squares regret, which can be thought of as involving the minimization of

the average of the squares of the regrets. In Section 3.2, we show that focusing

exclusively on the maximum regret, as the minimax principle specifies, may be

too restrictive and that it may be better to minimize the sum of the squares of the

regrets, as least-squares regret specifies.

While the concept of regret had since its introduction gained considerable

currency in decision theory, it is only recently that an interest has grown in

employing it in game theory. Many solution concepts and models now incorporate

the concept of regret, largely to obtain more accurate characterizations of observed

behavior. Linhart and Radner (1989) apply the concept of regret to the problem

of sealed-bid bargaining with multiple variables and show that an analysis based

on bidding so as to minimize the maximum regret has a number of advantages

over equilibrium analysis. The approach to learning known as learning direction

theory (Selten and Stoecker, 1986; Selten and Buchta, 1999; Selten, Abbink, and

Cox, 2005) considers learning via adjustments made on the basis of regrets and

not on the basis of experienced payoffs, as in standard reinforcement learning

theories. Filiz-Ozbay and Ozbay (2007) explain overbidding in first-price auctions

in terms of anticipation of loser regret. Renou and Schlag (2010) introduce a new
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solution concept called minimax regret equilibrium according to which each player

in a game chooses a belief about the behavior of the other players according to

a minimax regret criterion and then chooses a best response. Halpern and Pass

(2012) introduce a new solution concept called iterated regret minimization, which

we examine in Sections 3.2 and 6.8, that involves iteratively eliminating all of the

strategies that fail to minimize the maximum regret.

Furthermore, as studies in experimental economics show, regret appears to

play a significant role in human psychology. Ritov (1996) shows that preferences

can change depending on the extent to which uncertainty can be expected to be

resolved and that a principal component of this effect is the anticipated experience

of regret. Grosskopf, Erev, and Yechiam (2006) show that people tend to be

extremely sensitive to foregone payoffs and that foregone payoff information can

have significant effects on choice behavior depending on the environment.

Thus, there seems to be good reason to incorporate the concept of regret into

the analysis of noncooperative games. We propose least-squares regret as one

particular way to do so.

1.4 Nonstrategic, Partially Strategic, and Fully

Strategic Reasoning

As discussed in Section 1.1, solution concepts can differ in the degree of sophis-

tication assumed of a player, with some solution concepts supposing a more

sophisticated player and other solution concepts supposing a less sophisticated

player.

A player might be nonstrategic. In particular, a player might reason about the

other players to no appreciable degree, form no assumptions about them, and then,

without thinking and without any particular aim, choose a strategy randomly

according to some probability distribution, say, the uniform distribution.

Alternatively, a player might be partially strategic. In particular, a player

might reason about the other players to a limited degree, form only rudimentary

assumptions about them, and then, in some principled way, choose a strategy

accordingly.

Finally, a player might be fully strategic. In particular, a player might reason

about the other players to an unlimited degree, form very sophisticated assump-

tions about them, including assumptions about how they might reason about one

another, and then, in some principled way, choose a strategy accordingly.

This typology is fairly standard and fruitfully used. For example, it is central

to level-k thinking (Stahl and Wilson, 1994; Nagel, 1995; Stahl and Wilson, 1995;
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Camerer, Ho, and Chong, 2004; Crawford, Costa-Gomes, and Iriberri, 2013). In

level-k thinking, a level-0 type is assumed to be nonstrategic, forming no beliefs

about the other players and choosing a strategy randomly according to some

probability distribution, typically the uniform distribution, and, for any level k

such that k ≥ 1, a level-k type is assumed to be partially strategic, believing the

other players to constitute a population of types from levels 0 to k−1 and choosing

a strategy accordingly.

Most solution concepts suppose that a player is fully strategic. But as seen

in Section 1.1, such an assumption may be a dubious characterization of typical

reasoning and behavior and yield a solution concept that is nontrivial to apply

and fails to capture the expected or reasonable behavior, especially in games in

which a player is less likely to be fully strategic. As noted earlier, many solution

concepts, addressing these inadequacies, suppose instead that a player is partially

strategic.

In defining least-squares regret, we likewise suppose that a player is partially

strategic in order to address the inadequacies just noted. In particular, as discussed

in Section 1.2, we suppose that a player treats uniformly the partial profiles of

strategies of the other players and chooses a strategy so as to minimize the sum of

the squares of the regrets. Equivalently, to use the language of level-k thinking, we

suppose that a player is a level-1 type who believes that each of the other players

is a level-0 type randomizing according to the uniform distribution and chooses a

strategy accordingly.

Supposing complete ignorance as to which one of a set of mutually exclusive

events will obtain, it is not unjustifiable to regard them as all on a par.

One familiar justification of this position invokes the principle of maximum

entropy (Jaynes, 1957a; Jaynes, 1957b). This principle asserts that when inferences

are to be made on the basis of partial information, the proper distribution to use

is the one with the maximum entropy subject to whatever is known since such

a distribution yields the most unbiased representation of the knowledge of the

state of the system under consideration. Notably, where nothing is known, the

maximum-entropy distribution is the uniform distribution.

Another familiar justification invokes the principle of insufficient reason,

which goes back to Bernoulli (1713) and Laplace (1825). This principle asserts

that if there is no reason to judge any one of a set of mutually exclusive events to be

likelier than any other, then the distribution to assign is the uniform distribution.

Chernoff (1954) and Milnor (1954) provide formal justifications of the principle.

Sinn (1980) shows that two of the axioms necessary for expected utility theory,

the axiom of ordering and the axiom of independence, imply the principle.

Such a position seems particularly apt when it comes to characterizing a player
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who is partially strategic to a very limited degree. We suppose, as is standard, that

a player is completely ignorant of the strategy choices of the other players, has no

past experience with the other players, and thus has no special information about

which strategies the other players are choosing. Furthermore, we suppose that a

player is partially strategic to a very limited degree and thus makes no inferences

about how the other players might behave. Thus, it is natural to suppose that

a player treats uniformly the partial profiles of strategies of the other players.

Indeed, to suppose otherwise would be to ascribe to him strategic reasoning

capacity or information about the strategy choices of the other players that he

might not have.

Supposing a player to be partially strategic in this way has a number of ad-

vantages. Such an assumption may be a plausible characterization of typical

reasoning and behavior, especially since people are in general neither nonstrategic

nor fully strategic, but strategic to a very limited degree. Furthermore, as shown

in Chapters 3, 4, 5, and 6, such an assumption makes for a solution concept that

is mathematically and conceptually simple, exhibits nice properties, and yields

the expected or reasonable solutions for a number of games of interest.

Of course, such an assumption is also an obvious point of criticism. The

trouble is that a player characterized as above, while partially strategic, seems to

be insufficiently strategic. In particular, even under complete ignorance, a player

who is partially strategic, even to a limited degree, might be capable of reasoning

fairly competently about how the other players might behave and thus judge some

partial profiles of strategies of the other players to be likelier than other ones.

We review these concerns in Section 2.5, and in Section 7.4, we discuss some of

the problems that can arise from supposing that a player is partially strategic as

characterized above. In Chapter 8, we introduce a refinement of least-squares

regret that considers fully strategic players.

1.5 Contributions of this Dissertation

The primary contribution of this dissertation is a new solution concept for nonco-

operative games, one that yields the expected or reasonable solutions for games

that have so far proved problematic, such as the Traveler’s Dilemma, discussed

in Chapter 4, and for other games of interest, such as those in Chapter 6; that is

simple; that involves no ad hoc or game-specific constructions and can thus be

applied immediately and consistently to any arbitrary game; that exhibits nice

properties, such as those established in Chapter 5; and that is grounded in human

psychology. The greater part of this dissertation is concerned with defining and

developing least-squares regret; exploring its properties; assessing its performance
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with respect to various games of interest; determining its merits and demerits,

including the weaknesses discussed in Chapter 7; and introducing a refinement of

least-squares regret in Chapter 8 that addresses some of the weaknesses.

Early in this chapter and in Sections 1.2 and 1.4, we presented an informal

characterization of least-squares regret in order to motivate it and to fix ideas. As

noted earlier, the idea behind least-squares regret is to choose a strategy so as to

minimize the divergence from perfect play overall. But in order to proceed with

the development and assessment of least-squares regret, it is necessary first to

present a formal characterization of it. In Chapter 2, we formally define least-

squares regret, study an illustrative example to show how least-squares regret is

applied, consider briefly and set aside an alternative definition of least-squares

regret with respect to randomized strategies, and then discuss the assumptions

underlying least-squares regret and make some preliminary observations.

In certain ways, least-squares regret is not unlike some other solution concepts.

Two solution concepts in particular to which least-squares regret bears a resem-

blance are maximin, mentioned in Section 1.1, and iterated regret minimization,

mentioned in Section 1.3. Given the similarities, it is instructive to study least-

squares regret in relation to each of these solution concepts and to see what sets

least-squares regret apart. In Chapter 3, we compare least-squares regret with

each of these solution concepts and give some reasons for preferring least-squares

regret.

Early in this chapter and in Section 1.1, we mentioned as an illustration of some

of the inadequacies of the standard solution concepts the notorious Traveler’s

Dilemma. Given its status as a puzzle with no universally accepted resolution, it

is worthwhile to understand its recalcitrance. In Chapter 4, we describe and study

the Traveler’s Dilemma in detail. We consider the failure of the standard solution

concepts to yield the reasonable solution that is supported by both intuition and

the experimental evidence. After describing some alternative analyses, we show

how least-squares regret resolves the puzzle.

Part of evaluating a solution concept involves determining the properties that

it exhibits and the criteria that it satisfies. Ideally, a solution concept should

exhibit nice and desirable properties and satisfy the relevant criteria. In Chapter

5, we establish some notable mathematical and conceptual properties of least-

squares regret, including existence; invariance with respect to full equivalence; the

relationship between least-squares regret and dominated strategies; the differences

between least-squares regret and iterative elimination of dominated strategies;

the relationship between least-squares regret and uniformly dominant strategies;

invariance with respect to certain well-known transformations of the payoffs in

a game that leave unchanged the best-response correspondences of the players;
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the equivalence of least-squares regret and risk dominance when it comes to the

equilibria in pure strategies of a 2× 2 game; convexity of the set of solutions of a

game; and uniqueness of a solution under specific conditions.

Another part of evaluating a solution concept involves determining whether it

yields the expected or reasonable solutions for the games of interest. A solution

concept that failed to yield the expected or reasonable solutions would not be con-

sidered successful no matter how superior it might be in other respects. In Chapter

6, we apply least-squares regret to a number of well-known games, in particular,

the Dollar Auction; Bertrand competition; inspection games; Matching Pennies;

Chicken; coordination games; Battle of the Sexes; and the two-person bargaining

problem. We show how, with respect to many of these games, least-squares regret

yields reasonable solutions in line with intuition and the experimental evidence

and outperforms standard solution concepts such as Nash equilibrium and how,

with respect to some of these games, least-squares regret yields unsatisfactory

solutions.

All solution concepts have their weaknesses, and least-squares regret is no

different. As shown in Chapter 6, for some games, least-squares regret yields

unsatisfactory solutions. Furthermore, least-squares regret has some other weak-

nesses not unlike those afflicting the solution concepts discussed in Sections 1.1

and 1.3. In Chapter 7, we consider some of the weaknesses of least-squares re-

gret, including its failure to satisfy the principle of Independence of Irrelevant

Alternatives, its divergence from maximin and Nash equilibrium with respect to

two-person zero-sum games, its susceptibility to framing effects, and the problems

that arise from supposing that a player is partially strategic in the sense discussed

in Sections 1.2, 1.4, 2.2, and 2.5.

As noted throughout this dissertation, least-squares regret considers partially

strategic players. Supposing a player to be partially strategic has many advantages,

as the greater part of this dissertation illustrates. But as discussed in Sections 1.2,

1.4, 2.2, 2.5, and 7.4, such an assumption has its limitations. In particular, such

an assumption can yield unsatisfactory solutions and, being oversimple, may be

an implausible characterization of typical reasoning and behavior, which may be

more sophisticated. Recognizing the importance of relaxing this assumption and

addressing its limitations, we introduce in Chapter 8 a refinement of least-squares

regret, which we call mutual weighted least-squares regret, that considers fully

strategic players. This refinement may be a fruitful alternative to least-squares

regret, especially for games in which a player is likely to be significantly, if not

fully, strategic. Much of Chapter 8 is devoted to developing mutual weighted least-

squares regret, studying an illustrative example to show how mutual weighted

least-squares regret is applied, proving a general existence theorem, comparing
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mutual weighted least-squares regret with Nash equilibrium, and understanding

whether computation of a solution can be reduced to a recursive process.

We view this dissertation essentially as an exploration of least-squares regret

and its significance. But we recognize that room remains for further development.

In Chapter 9, we conclude the dissertation by proposing some questions for

further research. The proposed topics include a deeper defense of least-squares

regret; a refinement of least-squares regret that considers highly strategic, but not

fully strategic, players; extensions of least-squares regret to other classes of games,

such as games with infinite strategy sets, Bayesian games, and games in extensive

form; and applications of least-squares regret to applied areas such as mechanism

design.



2

Least-Squares Regret

In this chapter, we present a formal characterization of least-squares regret. Sec-

tion 2.1 presents the notation and basic concepts used throughout this dissertation.

Section 2.2 formally defines least-squares regret. Section 2.3 studies an illustrative

example. Section 2.4 considers briefly and sets aside an alternative definition of

least-squares regret with respect to randomized strategies. Section 2.5 discusses

the assumptions underlying least-squares regret and makes some preliminary

observations.

2.1 Notation and Basic Concepts

In this section, we present standard notation and the basic concepts of noncooper-

ative game theory. We follow for the most part the presentation of Myerson (1991)

and deviate where appropriate.

A game in strategic form is any Γ of the form

Γ = (N, (Ci)i∈N , (ui)i∈N ),

where N is the nonempty set of players and, for any player i in N , the nonempty

set Ci is the pure-strategy set for player i, a pure strategy for player i is any ci in Ci ,

and the function ui :
�

j∈N Cj → R is the utility function for player i.

A pure-strategy profile is any vector c = (cj)j∈N in
�

j∈N Cj .

For any game Γ in strategic form, the game Γ is finite if and only if the set N of

players is finite and, for every player i in N , the pure-strategy set Ci is finite. In

the interest of tractability, we restrict attention to finite games in strategic form.

For any player i in N , let N − i be the set such that

N − i = N \ {i},
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and let C−i be the set of partial profiles of pure strategies of the other players, that

is,

C−i =
�
j∈N−i

Cj .

For any player i in N , any partial profile c−i = (cj)j∈N−i in C−i , and any pure

strategy ci in Ci , let (c−i , ci) be the pure-strategy profile in
�

j∈N Cj such that the

i-component is ci and all other components are as in c−i .

For any finite set Z, let ∆(Z) be the set of probability distributions over the set

Z, that is,

∆(Z) = {q : Z→ R |
∑
y∈Z

q(y) = 1 and q(z) ≥ 0, ∀z ∈ Z}.

For any player i in N , the set ∆(Ci) is the randomized-strategy set for player i,

and a randomized strategy for player i is any σi = (σi(ci))ci∈Ci
in ∆(Ci).

A randomized-strategy profile is any vector σ = (σj)j∈N in
�

j∈N ∆(Cj).

For any player i in N , any partial profile σ−i = (σj)j∈N−i in
�

j∈N−i∆(Cj), and

any randomized strategy σi in ∆(Ci), let (σ−i ,σi) be the randomized-strategy profile

such that the i-component is σi and all other components are as in σ−i .

As is standard, we suppose that the players choose their pure strategies inde-

pendently. For any randomized-strategy profile σ = (σj)j∈N in
�

j∈N ∆(Cj) and any

pure-strategy profile c = (cj)j∈N in
�

j∈N Cj , the probability that c obtains in play

is just∏
j∈N

σj(cj).

For any player i in N , the utility function ui :
�

j∈N Cj → R is extended to the

domain
�

j∈N ∆(Cj) to yield the function ui :
�

j∈N ∆(Cj)→ R such that

ui(σ) =
∑

c∈
�

j∈N Cj

∏
j∈N

σj(cj)

ui(c).
For any player i in N and any pure strategy ci in Ci , let ci be also the ran-

domized strategy in ∆(Ci) such that the pure strategy ci is assigned probability

1.

Using standard linear algebra notation, for any player i in N and any random-

ized strategy σi in ∆(Ci), let

σi =
∑
ci∈Ci

σi(ci)ci .
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2.2 Formal Definition

When it comes to playing a game, the essential question is which strategy to

choose. One natural way to evaluate a strategy is to determine how grave an error

it would be to choose it. Intuitively, the less of an error it would be to play a

strategy, the better the strategy is. Thus, the idea is to choose a strategy with the

minimum degree of error. What follows is essentially a characterization of the

error associated with choosing a strategy.

In playing a game, a player faces other players, each of whom is likewise

choosing a strategy. How well a strategy ends up performing depends on the

strategies that the other players choose and, in particular, on the outcome that

obtains in play. Thus, we suppose that a player is concerned with the partial

profiles of strategies of the other players that can ultimately obtain in play.

Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. Consider any

player i in N . The set

C−i =
�
j∈N−i

Cj

is the set of partial profiles of pure strategies of the other players. In the end, after

the other players have settled on their pure strategies, exactly one partial profile

will obtain in play. The trouble for player i is that he does not know the strategy

choices of the other players.

The set C−i is the set of partial profiles that can ultimately obtain in play. Thus,

we suppose that player i is concerned with the partial profiles in C−i and chooses

a pure strategy accordingly.

Now, consider any pure strategy ci in Ci and any partial profile c−i in C−i . If

the other players play as in c−i , then the payoff to player i from choosing ci is

ui(c−i , ci).

But ci may or may not be a best response to c−i . Thus, ui(c−i , ci) may or may not

be the best-response payoff maxdi∈Ci
ui(c−i ,di) that could be achieved with respect

to c−i .

The best-response payoff maxdi∈Ci
ui(c−i ,di) is notable. Since it is impossible

to achieve a payoff greater than the best-response payoff, there is no use in being

concerned with payoffs beyond it. It is the maximum payoff that could be achieved

with perfect play with respect to c−i . Thus, it represents the ideal or target or

benchmark payoff with respect to c−i .

If ci is not a best response to c−i , then player i errs in choosing ci in the very

trivial sense that he is not playing as well as he possibly could have with respect

to c−i . By the informal notion of error here, we mean simply a divergence from

perfect play.
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We can quantify the extent to which a pure strategy diverges from perfect play

with respect to a partial profile. For any player i in N , any partial profile c−i in

C−i , and any pure strategy ci in Ci , the regret of the pure strategy ci with respect

to the partial profile c−i is

max
di∈Ci

ui(c−i ,di)−ui(c−i , ci).

Intuitively, this payoff difference is a measure of the extent to which ci falls short

of a best response with respect to c−i . It can be interpreted as the regret from

choosing ci with respect to c−i .

Just as the payoff of a pure strategy with respect to a partial profile can vary

depending on the partial profile, so can the regret of a pure strategy with respect

to a partial profile. Thus, it is necessary to compute the regret of a pure strategy

with respect to each partial profile.

What is of interest ultimately is a measure of the regret of a pure strategy

overall. But since the regret of a pure strategy with respect to a partial profile can

vary depending on the partial profile and since it is impossible to know which

partial profile will obtain in play, it is necessary to evaluate a pure strategy with

respect to all of the partial profiles considered at once.

We suppose the squaring of regret for technical reasons and for mathematical

convenience. But it is worth noting that the squaring of regret amounts to sup-

posing that a larger regret is far more significant in an economic or psychological

sense. We discuss the squaring of regret in Sections 2.5 and 3.2.

We suppose also that a player is partially strategic in the sense described in

Sections 1.2 and 1.4. In particular, we suppose that a player treats uniformly

the partial profiles of pure strategies of the other players. This assumption is an

obvious point of criticism. We discuss it in Sections 2.5 and 7.4, and in Chapter

8, we introduce a refinement of least-squares regret that considers fully strategic

players.

Furthermore, we suppose that a player computes the regret of a pure strategy

by taking the sum, across all partial profiles of pure strategies of the other players,

of the squares of the regrets.

For any player i in N , let ρi : Ci → R be the regret function in pure strategies for

player i such that

ρi(ci) =
∑

c−i∈C−i

max
di∈Ci

ui(c−i ,di)−ui(c−i , ci)


2

.

Intuitively, for any pure strategy ci in Ci , the value ρi(ci) is the regret from choosing

ci .
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It is straightforward to extend the definitions above to incorporate randomized

strategies. We proceed in the natural way.

Consider any player i in N . The set
�

j∈N−i∆(Cj) is the set of partial profiles

of randomized strategies of the other players. In the end, after the other players

have settled on their randomized strategies, exactly one partial profile will obtain

in play. The trouble for player i is that he does not know the strategy choices of

the other players.

But in a sense, the partial profiles in
�

j∈N−i∆(Cj) are not really the ones

that can ultimately obtain in play. While each of the other players may choose

a randomized strategy, each player will randomize and end up choosing a pure

strategy. Thus, the outcome that obtains after everything is settled will be some

partial profile in C−i .

The set C−i is the set of partial profiles that can ultimately obtain in play. Thus,

we suppose that player i is concerned with the partial profiles in C−i and chooses

a randomized strategy accordingly.

Now, consider any randomized strategy σi in ∆(Ci) and any partial profile c−i

in C−i . If the other players play as in c−i , then the payoff to player i from choosing

σi is ui(c−i ,σi). (Recall the definition from earlier: for any player i in N and any

pure strategy ci in Ci , let ci be also the randomized strategy in ∆(Ci) such that the

pure strategy ci is assigned probability 1.) Clearly,

ui(c−i ,σi) =
∑
ci∈Ci

σi(ci)ui(c−i , ci), ∀i ∈N, ∀σi ∈ ∆(Ci), ∀c−i ∈ C−i .

Intuitively, for any randomized strategy σi in ∆(Ci) and any partial profile c−i in

C−i , the payoff ui(c−i ,σi) is the expected payoff to player i from choosing σi with

respect to c−i .

But σi may or may not be a best response to c−i . Thus, ui(c−i ,σi) may or may

not be the best-response payoff maxτi∈∆(Ci )ui(c−i ,τi) that could be achieved with

respect to c−i .

We note in passing that, clearly,

max
τi∈∆(Ci )

ui(c−i ,τi) = max
di∈Ci

ui(c−i ,di), ∀i ∈N, ∀c−i ∈ C−i .

Still, we prefer in this context to specify randomized strategies as opposed to pure

strategies for the sake of symmetry and clarity and to make explicit, especially in

what follows, that randomized strategies are being considered.

The best-response payoff maxτi∈∆(Ci )ui(c−i ,τi) is notable. Since it is impossible

to achieve a payoff greater than the best-response payoff, there is no use in being

concerned with payoffs beyond it. It is the maximum payoff that could be achieved

with perfect play with respect to c−i . Thus, it represents the ideal or target or

benchmark payoff with respect to c−i .
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If σi is not a best response to c−i , then player i errs in choosing σi in the very

trivial sense that he is not playing as well as he possibly could have with respect

to c−i . Again, by the informal notion of error here, we mean simply a divergence

from perfect play.

We can quantify the extent to which a randomized strategy diverges from

perfect play with respect to a partial profile. For any player i in N , any partial

profile c−i in C−i , and any randomized strategy σi in ∆(Ci), the regret of the

randomized strategy σi with respect to the partial profile c−i is

max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi).

Intuitively, this payoff difference is a measure of the extent to which σi falls short

of a best response with respect to c−i . It can be interpreted as the regret from

choosing σi with respect to c−i .

Just as the payoff of a randomized strategy with respect to a partial profile can

vary depending on the partial profile, so can the regret of a randomized strategy

with respect to a partial profile. Thus, it is necessary to compute the regret of a

randomized strategy with respect to each partial profile.

What is of interest ultimately is a measure of the regret of a randomized

strategy overall. But since the regret of a randomized strategy with respect to a

partial profile can vary depending on the partial profile and since it is impossible

to know which partial profile will obtain in play, it is necessary to evaluate a

randomized strategy with respect to all of the partial profiles considered at once.

We appeal to the assumptions and constructions given in the case of pure

strategies and make adjustments as needed. In particular, we suppose the squaring

of regret; that a player is partially strategic in the sense described in Sections 1.2

and 1.4; that a player treats uniformly the partial profiles of pure strategies of the

other players; and that a player computes the regret of a randomized strategy by

taking the sum, across all partial profiles of pure strategies of the other players,

of the squares of the regrets. As noted earlier, we discuss these assumptions

in Sections 2.5, 3.2, and 7.4, and in Chapter 8, we introduce a refinement of

least-squares regret that considers fully strategic players.

For any player i in N , let ρi : ∆(Ci)→ R be the regret function in randomized

strategies for player i such that

ρi(σi) =
∑

c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)


2

.

Intuitively, for any randomized strategy σi in ∆(Ci), the value ρi(σi) is the regret

from choosing σi .
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The regret of a strategy is a measure of the divergence from the best-response

payoffs of the payoffs that the strategy could yield and is thus a measure of the

extent to which the strategy diverges from perfect play overall. By choosing a

strategy with the minimum regret, a player minimizes the divergence and gets

as close as possible to perfect play overall and thus to securing the best-response

payoff whatever the other players might do.

As discussed in Sections 1.2 and 1.4, we suppose that a player is partially

strategic in the sense that, given his rudimentary assumptions about the other

players, he responds accordingly. In particular, we suppose that a player chooses

a strategy so as to minimize the divergence from the best-response payoffs.

If pure strategies are considered, then a player chooses a pure strategy so as

to minimize the regret function in pure strategies. For any player i in N and any

pure strategy ci in Ci , the pure strategy ci is a pure least-squares regret strategy for

player i if and only if

ρi(ci) ≤ ρi(di), ∀di ∈ Ci .

For any pure-strategy profile c = (cj)j∈N in
�

j∈N Cj , the pure-strategy profile c is

a least-squares regret profile in pure strategies of Γ if and only if

ρi(ci) ≤ ρi(di), ∀i ∈N, ∀di ∈ Ci .

Thus, in a least-squares regret profile in pure strategies, each player chooses a

pure least-squares regret strategy.

If randomized strategies are considered, then a player chooses a randomized

strategy so as to minimize the regret function in randomized strategies. For any

player i in N and any randomized strategy σi in ∆(Ci), the randomized strategy σi
is a randomized least-squares regret strategy for player i if and only if

ρi(σi) ≤ ρi(τi), ∀τi ∈ ∆(Ci).

For any randomized-strategy profile σ = (σj)j∈N in
�

j∈N ∆(Cj), the randomized-

strategy profile σ is a least-squares regret profile in randomized strategies of Γ if and

only if

ρi(σi) ≤ ρi(τi), ∀i ∈N, ∀τi ∈ ∆(Ci).

Thus, in a least-squares regret profile in randomized strategies, each player chooses

a randomized least-squares regret strategy.

2.3 An Example

For an illustration of least-squares regret, consider the finite two-person game

Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 2.1.
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Table 2.1 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

0 2

0 1

1 0

Consider first least-squares regret with respect to pure strategies. As discussed

in Section 2.2, each player chooses a pure least-squares regret strategy.

Consider player 1. Notice that x1 is a best response if player 2 chooses x2 and

falls short if player 2 chooses y2 and that y1 falls short if player 2 chooses x2 and is

a best response if player 2 chooses y2. Whatever player 1 chooses, he risks playing

imperfectly depending on what player 2 chooses. Thus, player 1 chooses a pure

strategy so as to minimize the regret function ρ1 in pure strategies.

Consider x1. If player 2 chooses x2, then the payoff to player 1 is 3 while the

best-response payoff is 3, and so, the regret is 3−3 = 0. If player 2 chooses y2, then

the payoff to player 1 is 0 while the best-response payoff is 1, and so, the regret is

1− 0 = 1. The regret of x1 is

ρ1(x1) =

max
d1∈C1

u1(d1,x2)−u1(x1,x2)


2

+

max
d1∈C1

u1(d1, y2)−u1(x1, y2)


2

= (3− 3)2 + (1− 0)2

= 1.

Consider y1. If player 2 chooses x2, then the payoff to player 1 is 0 while the

best-response payoff is 3, and so, the regret is 3−0 = 3. If player 2 chooses y2, then

the payoff to player 1 is 1 while the best-response payoff is 1, and so, the regret is

1− 1 = 0. The regret of y1 is

ρ1(y1) =

max
d1∈C1

u1(d1,x2)−u1(y1,x2)


2

+

max
d1∈C1

u1(d1, y2)−u1(y1, y2)


2

= (3− 0)2 + (1− 1)2

= 9.

The regret of x1 is less than the regret of y1, and so, the unique pure least-

squares regret strategy for player 1 is x1.

Consider player 2. Notice that x2 falls short if player 1 chooses x1 and is a best

response if player 1 chooses y1 and that y2 is a best response if player 1 chooses x1

and falls short if player 1 chooses y1. Whatever player 2 chooses, he risks playing
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imperfectly depending on what player 1 chooses. Thus, player 2 chooses a pure

strategy so as to minimize the regret function ρ2 in pure strategies.

Consider x2. If player 1 chooses x1, then the payoff to player 2 is 0 while the

best-response payoff is 2, and so, the regret is 2−0 = 2. If player 1 chooses y1, then

the payoff to player 2 is 1 while the best-response payoff is 1, and so, the regret is

1− 1 = 0. The regret of x2 is

ρ2(x2) =

max
d2∈C2

u2(x1,d2)−u2(x1,x2)


2

+

max
d2∈C2

u2(y1,d2)−u2(y1,x2)


2

= (2− 0)2 + (1− 1)2

= 4.

Consider y2. If player 1 chooses x1, then the payoff to player 2 is 2 while the

best-response payoff is 2, and so, the regret is 2−2 = 0. If player 1 chooses y1, then

the payoff to player 2 is 0 while the best-response payoff is 1, and so, the regret is

1− 0 = 1. The regret of y2 is

ρ2(y2) =

max
d2∈C2

u2(x1,d2)−u2(x1, y2)


2

+

max
d2∈C2

u2(y1,d2)−u2(y1, y2)


2

= (2− 2)2 + (1− 0)2

= 1.

The regret of y2 is less than the regret of x2, and so, the unique pure least-

squares regret strategy for player 2 is y2.

Thus, the unique least-squares regret profile in pure strategies is (x1, y2), which

gives the payoff allocation (0,2).

Now, consider least-squares regret with respect to randomized strategies. As

discussed in Section 2.2, each player chooses a randomized least-squares regret

strategy.

Consider player 1. Notice that whatever player 1 chooses, he risks playing

imperfectly depending on what player 2 chooses. Thus, player 1 chooses a random-

ized strategy so as to minimize the regret function ρ1 in randomized strategies.

Consider any randomized strategy σ1 in ∆(C1). If player 2 chooses x2, then

the payoff to player 1 is 3σ1(x1) while the best-response payoff is 3, and so, the

regret is 3− 3σ1(x1). If player 2 chooses y2, then the payoff to player 1 is 1− σ1(x1)

while the best-response payoff is 1, and so, the regret is 1− (1− σ1(x1)). The regret



Chapter 2. Least-Squares Regret 32

function ρ1 : ∆(C1)→ R is

ρ1(σ1) =

 max
τ1∈∆(C1)

u1(τ1,x2)−u1(σ1,x2)


2

+

 max
τ1∈∆(C1)

u1(τ1, y2)−u1(σ1, y2)


2

= (3− 3σ1(x1))2 + (1− (1− σ1(x1)))2

= 10(σ1(x1))2 − 18σ1(x1) + 9,

and so,

d(ρ1(σ1))
dσ1(x1)

= 20σ1(x1)− 18.

The regret function ρ1 is minimized at the point σ1(x1) = 0.9, and so, the unique

randomized least-squares regret strategy for player 1 is 0.9x1 + 0.1y1.

Consider player 2. Notice that whatever player 2 chooses, he risks playing

imperfectly depending on what player 1 chooses. Thus, player 2 chooses a random-

ized strategy so as to minimize the regret function ρ2 in randomized strategies.

Consider any randomized strategy σ2 in ∆(C2). If player 1 chooses x1, then

the payoff to player 2 is 2(1− σ2(x2)) while the best-response payoff is 2, and so,

the regret is 2− 2(1− σ2(x2)). If player 1 chooses y1, then the payoff to player 2

is σ2(x2) while the best-response payoff is 1, and so, the regret is 1− σ2(x2). The

regret function ρ2 : ∆(C2)→ R is

ρ2(σ2) =

 max
τ2∈∆(C2)

u2(x1,τ2)−u2(x1,σ2)


2

+

 max
τ2∈∆(C2)

u2(y1,τ2)−u2(y1,σ2)


2

= (2− 2(1− σ2(x2)))2 + (1− σ2(x2))2

= 5(σ2(x2))2 − 2σ2(x2) + 1,

and so,

d(ρ2(σ2))
dσ2(x2)

= 10σ2(x2)− 2.

The regret function ρ2 is minimized at the point σ2(x2) = 0.2, and so, the unique

randomized least-squares regret strategy for player 2 is 0.2x2 + 0.8y2.

Thus, the unique least-squares regret profile in randomized strategies is

(0.9x1 + 0.1y1,0.2x2 + 0.8y2),

which gives the payoff allocation (0.62,1.46).

2.4 An Alternative Definition

In this section, in order to clarify and affirm the established definition of the regret

function in randomized strategies given in Section 2.2, we consider briefly and set

aside an alternative definition.
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Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. Now, recall the

established definition. For any player i in N , the regret function in randomized

strategies for player i is the function ρi : ∆(Ci)→ R such that

ρi(σi) =
∑

c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)


2

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−
∑
ci∈Ci

σi(ci)ui(c−i , ci)


2

.

Intuitively, for any randomized strategy σi in ∆(Ci), the value ρi(σi) is the sum,

across all partial profiles of pure strategies of the other players, of the squares of

the regrets, where the regret of σi with respect to a partial profile is the difference

of the best-response payoff with respect to the partial profile and the expected

payoff from choosing σi with respect to the partial profile.

According to the established definition, as discussed in Section 2.2, a player

chooses a randomized strategy so as to minimize the regret function in randomized

strategies.

Now, consider the following alternative definition. For any player i in N ,

let ζi : ∆(Ci)→ R be the alternative regret function in randomized strategies for

player i such that

ζi(σi) =
∑

c−i∈C−i

∑
ci∈Ci

σi(ci)

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , ci)


2

.

Intuitively, for any randomized strategy σi in ∆(Ci), the value ζi(σi) is the sum,

across all partial profiles of pure strategies of the other players, of the expected

values of the squares of the regrets, where the expected value induced by σi with

respect to a partial profile is the probability-weighted average with respect to σi
of the squares of all possible regrets with respect to the partial profile.

According to the alternative definition just described, a player chooses a ran-

domized strategy so as to minimize the alternative regret function in randomized

strategies.

For an illustration of some of the differences between the two definitions,

consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form

shown in Table 2.2.

Consider first the alternative definition. Consider player 1 and any randomized

strategy σ1 in ∆(C1). Given σ1, player 1 chooses x1 with probability σ1(x1) and y1

with probability σ1(y1) = 1− σ1(x1). If player 2 chooses x2, then the regret from

choosing x1 is 3 − 3 = 0, and the regret from choosing y1 is 3 − 0 = 3. If player

2 chooses y2, then the regret from choosing x1 is 1 − 0 = 1, and the regret from
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Table 2.2 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

0 1

choosing y1 is 1− 1 = 0. The alternative regret function ζ1 : ∆(C1)→ R is

ζ1(σ1) =
∑
c2∈C2

∑
c1∈C1

σ1(c1)

 max
τ1∈∆(C1)

u1(τ1, c2)−u1(c1, c2)


2

= σ1(x1)(3− 3)2 + (1− σ1(x1))(3− 0)2 + σ1(x1)(1− 0)2 + (1− σ1(x1))(1− 1)2

= 9− 8σ1(x1).

Thus, the unique randomized strategy that minimizes the alternative regret func-

tion ζ1 is x1, which assigns probability 1 to the pure strategy x1.

Notably, for many games, the alternative definition yields solutions that involve

no randomization at all, even when some randomization, which can be seen as a

method of hedging, might be expected or reasonable.

Now, consider the established definition. The unique randomized least-squares

regret strategy for player 1 is 0.9x1 + 0.1y1. Thus, minimizing the regret function

ρ1 involves randomizing between x1 and y1 and not playing either with probability

1.

Indeed, for many games, the established definition yields solutions that involve

some randomization, especially when randomization, interpreted as a method of

hedging, might be expected or reasonable.

For another illustration of some of the differences between the two definitions,

consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form

shown in Table 2.3.

Table 2.3 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

x2 y2

1 0

0 1
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Consider first the alternative definition. Consider player 1 and any randomized

strategy σ1 in ∆(C1). Given σ1, player 1 chooses x1 with probability σ1(x1) and y1

with probability σ1(y1) = 1− σ1(x1). If player 2 chooses x2, then the regret from

choosing x1 is 1 − 1 = 0, and the regret from choosing y1 is 1 − 0 = 1. If player

2 chooses y2, then the regret from choosing x1 is 1 − 0 = 1, and the regret from

choosing y1 is 1− 1 = 0. The alternative regret function ζ1 : ∆(C1)→ R is

ζ1(σ1) =
∑
c2∈C2

∑
c1∈C1

σ1(c1)

 max
τ1∈∆(C1)

u1(τ1, c2)−u1(c1, c2)


2

= σ1(x1)(1− 1)2 + (1− σ1(x1))(1− 0)2 + σ1(x1)(1− 0)2 + (1− σ1(x1))(1− 1)2

= 1.

Thus, any randomization between x1 and y1 minimizes the alternative regret

function ζ1.

Notably, for many games, the alternative definition yields infinitely many

solutions, even when uniqueness might be expected or reasonable.

Now, consider the established definition. The unique randomized least-squares

regret strategy for player 1 is 0.5x1 + 0.5y1. Thus, minimizing the regret function

ρ1 involves randomizing uniformly between x1 and y1.

Indeed, for many games, the established definition yields unique solutions,

especially when uniqueness might be expected or reasonable. For two theorems

that describe sufficient conditions for the uniqueness of a solution yielded by the

established definition, see Section 5.9.

For further illustrations of the established definition reflecting hedging via

randomization and yielding randomized or unique solutions in line with intuition

and the experimental evidence, see the examples in Sections 6.3, 6.4, 6.5, 6.6, and

6.7.

The alternative definition may well have its merits. Nevertheless, we note

several reasons to prefer the established definition.

Unlike the established definition, which involves convex combinations of the

payoffs in a game, the alternative definition involves convex combinations of the

squares of the regrets. Consequently, in contrast to the established definition, the

alternative definition is conceptually somewhat unnatural; structurally unlike the

definition of the regret function in pure strategies; mathematically inconvenient

in certain ways; deprived of the natural and intuitive interpretations discussed in

Section 2.5 and of certain of the nice properties established in Chapter 5; and, as

the examples illustrate, incapable of yielding the expected or reasonable solutions

for a number of games, such as those discussed in Chapter 6.
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2.5 Discussion

As discussed in Sections 1.2, 1.4, and 2.2, least-squares regret involves a number

of assumptions. In this section, we discuss these assumptions and make some

preliminary observations.

One preliminary observation is that whether or not randomized strategies are

considered can matter greatly. For an illustration of this point, consider again the

finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table

2.1 in Section 2.3 and reproduced in Table 2.4.

Table 2.4 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

0 2

0 1

1 0

As noted in Section 2.3, in this game, for player 1, the unique pure least-squares

regret strategy is x1, and the unique randomized least-squares regret strategy is

0.9x1 + 0.1y1, and for player 2, the unique pure least-squares regret strategy is y2,

and the unique randomized least-squares regret strategy is 0.2x2 + 0.8y2. Thus, for

a player, the set of pure least-squares regret strategies and the set of randomized

least-squares regret strategies need not coincide, and so, for a game, the set of

least-squares regret profiles in pure strategies and the set of least-squares regret

profiles in randomized strategies need not coincide.

Furthermore, as the example illustrates, the support of a randomized least-

squares regret strategy may contain pure strategies that are not pure least-squares

regret strategies. As just observed, the unique randomized least-squares regret

strategy for player 1 assigns positive probability to y1, which is not a pure least-

squares regret strategy for player 1, and the unique randomized least-squares

regret strategy for player 2 assigns positive probability to x2, which is not a pure

least-squares regret strategy for player 2.

In general, as will be evident throughout, it is important to be clear about

whether or not randomized strategies are considered.

As noted in Sections 1.2 and 2.2, we suppose the squaring of regret for technical

reasons and for mathematical convenience. Squaring the regret simplifies the

mathematics and yields nice mathematical properties. For example, as shown in

Section 5.8, one agreeable consequence of squaring the regret is that the regret

function in randomized strategies is convex. Convexity of the regret function
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in randomized strategies implies that computation of randomized least-squares

regret strategies is a convex optimization problem, which can be solved efficiently

using standard well-developed techniques. More generally, squaring the regret

allows for computations that are elementary, straightforward, and easily executed

using established techniques.

As mentioned in Section 2.2, the squaring of regret amounts to supposing that

a larger regret is far more significant in an economic or psychological sense. In this

way, the squaring of regret can be thought of as formalizing a cognitive pattern

along the lines of, say, loss aversion (Kahneman and Tversky, 1979; Kahneman and

Tversky, 1984; Tversky and Kahneman, 1991). In particular, what the squaring

of regret formalizes is an attitude toward regret. We discuss this attitude and

compare it with an alternative attitude with respect to particular games in Sections

3.2 and 6.8.

Furthermore, squaring the regret and assuming that partial profiles are treated

uniformly allow for a natural and intuitive geometric interpretation of least-

squares regret. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

Consider any player i in N . The best-response payoffs form a payoff vector

(maxdi∈Ci
ui(c−i ,di))c−i∈C−i = (maxτi∈∆(Ci )ui(c−i ,τi))c−i∈C−i in R|C−i |. Now, consider

any pure strategy ci in Ci and any randomized strategy σi in ∆(Ci). Notice that

ci yields the payoff vector (ui(c−i , ci))c−i∈C−i in R|C−i | and that σi yields the payoff

vector (ui(c−i ,σi))c−i∈C−i in R|C−i |. The regret function ρi : Ci → R can be interpreted

as a distance function that specifies, for any pure strategy ci in Ci , the squared

Euclidean distance from the payoff vector yielded by ci to the best-response

payoff vector. The regret function ρi : ∆(Ci)→ R can be interpreted as a distance

function that specifies, for any randomized strategy σi in ∆(Ci), the squared

Euclidean distance from the payoff vector yielded by σi to the best-response payoff

vector. Thus, there is a very natural and concrete sense in which minimizing

regret minimizes the divergence from the best-response payoffs.

Squaring the regret and assuming that partial profiles are treated uniformly

allow also for an interpretation of least-squares regret in terms of the standard

ordinary least-squares method of parameter estimation. For a fuller discussion on

this statistical method, see any standard econometrics text, for example, Greene

(2011) or Wooldridge (2013), on which the following discussion is based.

For an illustration, consider simple linear regression. Suppose that y and x are

two variables characterizing a population and that the aim is to determine how y

depends on x. A simple regression model is any equation of the form

y = β0 + β1x+u,

where the constant β0 is the intercept parameter, the constant β1 is the slope param-
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eter, and the variable u is the error term representing all explanatory factors other

than x that affect y.

The aim is to derive an estimate β̂0 of the intercept parameter β0 and an

estimate β̂1 of the slope parameter β1 using a sample drawn from the population.

Let N = {1, . . . ,n} be the nonempty set of observations, and let

{(xi , yi) ∈ R2 | i ∈N }

be a random sample drawn from the population. Since the sample is drawn from

the population, which is characterized by the simple regression model, it follows

that

yi = β0 + β1xi +ui , ∀i ∈N,

where, for any observation i in N , the variable ui is the error term for observation

i representing all explanatory factors other than xi that affect yi .

For any estimates β̂0 and β̂1 and any observation i in N , the fitted value ŷi for

observation i with respect to the estimates β̂0 and β̂1 is the number such that

ŷi = β̂0 + β̂1xi ,

and the residual ûi for observation i with respect to the estimates β̂0 and β̂1 is the

difference of the actual value yi and the fitted value ŷi , that is,

ûi = yi − ŷi = yi − β̂0 − β̂1xi .

For any estimates β̂0 and β̂1, the sum of the squared residuals with respect to the

estimates β̂0 and β̂1 is the sum

n∑
i=1

û2
i =

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

The ordinary least-squares method involves choosing the estimates β̂0 and

β̂1 so as to minimize the sum of the squared residuals. An ordinary least-squares

regression line is any equation of the form

ŷ = β̂0 + β̂1x,

where the estimates β̂0 and β̂1 minimize the sum of the squared residuals and

the variable ŷ is the fitted version of y. Intuitively, the ordinary least-squares

regression line is the line that best approximates the sample.

As the name suggests, least-squares regret is essentially an adaptation of

the ordinary least-squares method of parameter estimation. Just as the idea

behind simple linear regression is to choose estimates that define a line that
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best approximates the sample, the idea behind least-squares regret is to choose

a strategy that defines a payoff vector that best approximates the best-response

payoff vector. In the case of simple linear regression, divergence is defined in

terms of the residual, and the aim is to choose estimates so as to minimize the

sum of the squares of the residuals. In the case of least-squares regret, divergence

is defined in terms of regret, and the aim is to choose a strategy so as to minimize

the sum of the squares of the regrets. Thus, least-squares regret can be seen as a

special case of the problem of ordinary least-squares, which, as is well known, is

well studied and has a very complete theory, arises in a number of areas, and can

be solved very efficiently using established techniques.

While we assume the squaring of regret for the reasons just given, we recognize

that there may be other operations that are equally or more reasonable. And while

we consider the question of alternative formulations only briefly in Section 3.2, it

would be interesting and worthwhile to consider further reasons for squaring or

not squaring regret.

As discussed in Sections 1.2, 1.4, and 2.2, we suppose that a player is partially

strategic. In particular, we suppose that a player treats uniformly the partial

profiles of pure strategies of the other players; computes the regret of a strategy

by taking the sum, across all partial profiles of pure strategies of the other players,

of the squares of the regrets; and chooses a strategy so as to minimize the regret

function. These assumptions imply that fully strategic reasoning and information

that might determine how the other players might behave—such as the payoffs of

the other players—are disregarded.

As might be expected, these assumptions confer certain advantages. They

make for a solution concept that is mathematically and conceptually simple and

easy to apply. They imply that players can be considered separately, allowing

a game to be decomposed into independent parts and making the computation

of solutions trivial. They lead to reasonable solutions for a number of games, as

shown in Chapters 4 and 6. And they enable the capture of certain experimentally

robust effects, as shown in Sections 6.3, 6.4, and 6.6.

Of course, we recognize that the proposed assumptions can be problematic.

Such assumptions may be inappropriate or too restrictive, especially if the aim

is to characterize the behavior of fully strategic players capable of reasoning

about one another and responding accordingly. Also, such assumptions can lead

to unsatisfactory solutions for some games, as shown in Sections 6.4 and 6.7.

Furthermore, such assumptions imply that unlike in, say, a Nash equilibrium,

the strategies that the players choose may differ from the ones that the players

expect to be chosen. Finally, as Harsanyi (1982) argues in his criticism of the

decision-theoretic approach to game theory advocated by Kadane and Larkey
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(1982) and Raiffa (1982) and explored further by Roth and Schoumaker (1983),

disregarding fully strategic reasoning and information that might determine how

the other players might behave amounts to throwing away essential information

and deprives game theory of its substance and remit.

These problems merit consideration. We discuss them more fully in Chapter 7,

and in Chapter 8, we introduce a refinement of least-squares regret that addresses

them.



3

Alternative Solution Concepts

Two solution concepts to which least-squares regret bears a resemblance are

maximin, mentioned in Section 1.1, and iterated regret minimization, mentioned

in Section 1.3.

In this chapter, we study least-squares regret in relation to each of these solu-

tion concepts. Section 3.1 compares least-squares regret with maximin. Section

3.2 compares least-squares regret with iterated regret minimization.

3.1 Least-Squares Regret and Maximin

One solution concept that rivals least-squares regret is maximin (von Neumann,

1928; Wald, 1939; Wald, 1945; von Neumann and Morgenstern, 1947; Wald, 1950),

which involves choosing a strategy so as to maximize the minimum payoff. For an

illustration of some of the differences between least-squares regret and maximin,

consider again the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic

form shown in Table 2.1 in Section 2.3 and reproduced in Table 3.1.

Table 3.1 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

0 2

0 1

1 0

Consider first maximin with respect to pure strategies. For player 1, the

minimum payoff from choosing x1 is 0, and the minimum payoff from choosing

y1 is 0, and so, both x1 and y1 are pure maximin strategies. For player 2, the
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minimum payoff from choosing x2 is 0, and the minimum payoff from choosing

y2 is 0, and so, both x2 and y2 are pure maximin strategies. Thus, neither player

has a favored strategy, and all outcomes are possible.

Now, consider maximin with respect to randomized strategies. As Figure 3.1

shows, for player 1, the minimum expected payoff is maximized when

3σ1(x1) = 1− σ1(x1),

that is, at the point σ1(x1) = 0.25, and so, the unique randomized maximin strategy

is 0.25x1 +0.75y1. As Figure 3.2 shows, for player 2, the minimum expected payoff

Figure 3.1 Expected payoffs of player 1
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is maximized when

2(1− σ2(x2)) = σ2(x2),

that is, at the point σ2(x2) = 2/3, and so, the unique randomized maximin strategy

is (2/3)x2 + (1/3)y2. Thus, the unique profile of randomized maximin strategies is

Figure 3.2 Expected payoffs of player 2
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σ2(x2)

u2

(0.25x1 + 0.75y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (3/4,2/3). Notably, player 1 favors y1, and player 2

favors x2.
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Now, consider least-squares regret. Recall from Section 2.3 that the unique

least-squares regret profile in pure strategies is (x1, y2), which gives the payoff

allocation (0,2), and that the unique least-squares regret profile in randomized

strategies is

(0.9x1 + 0.1y1,0.2x2 + 0.8y2),

which gives the payoff allocation (0.62,1.46). Notably, player 1 favors x1, and

player 2 favors y2.

That least-squares regret and maximin should yield different solutions is

unsurprising. They represent different ways to reason about a game. Least-squares

regret involves assessing personal payoffs in the form of regrets and choosing a

strategy so as to minimize the divergence from the best-response payoffs. Maximin

involves assessing personal payoffs, but not regrets, and choosing a strategy so as

to maximize the minimum payoff. Notably, the exclusive focus of maximin on the

minimum payoff characterizes an attitude that can be described as pessimistic or

conservative.

The discrepancy between least-squares regret and maximin is particularly

significant when it comes to two-person zero-sum games, for which maximin is

the standard solution concept. We compare least-squares regret with maximin

with respect to two-person zero-sum games in Section 7.2.

3.2 Least-Squares Regret and Iterated Regret

Minimization

Least-squares regret is closely related to the solution concept of iterated regret

minimization (Halpern and Pass, 2012). In this section, we compare the two

solution concepts.

As the name suggests, iterated regret minimization is based on the concept

of regret. Just as with least-squares regret, the regret of a strategy with respect

to a partial profile of strategies of the other players is the difference of the best-

response payoff with respect to the partial profile and the payoff from choosing

the strategy with respect to the partial profile.

The idea behind iterated regret minimization is simple. Given any finite game

in strategic form, fix some initial set of strategy profiles, typically the set of pure-

strategy profiles or the set of randomized-strategy profiles. Given the initial set

of strategy profiles, each player eliminates all of the strategies available to him

that fail to minimize the maximum regret. The process is repeated ad infinitum,

each time on the set of strategy profiles that remain after the previous round of

elimination.
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Iterated regret minimization is defined formally as follows. We use our no-

tation where convenient to facilitate comparison and defer to Halpern and Pass

(2012) for the original formulations. For the sake of economy, we define iter-

ated regret minimization with respect to both pure strategies and randomized

strategies at once.

Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. For any player

i in N and any set S =
�

j∈N Sj such that

Si ⊆ Ci , ∀i ∈N

in the case of pure strategies or

Si ⊆ ∆(Ci), ∀i ∈N

in the case of randomized strategies, let regretSi : Si → R be the function such that

regretSi (si) = max
s−i∈S−i

max
ti∈Si

ui(s−i , ti)−ui(s−i , si)

 ,
where S−i =

�
j∈N−i Sj . Intuitively, for any strategy si in Si and any set S =

�
j∈N Sj

of strategy profiles, the value regretSi (si) is the maximum regret from choosing si

with respect to S.

For any player i in N , let RMi : P (
�

j∈N Cj) → P (Ci) in the case of pure

strategies orRMi : P (
�

j∈N ∆(Cj))→P (∆(Ci)) in the case of randomized strategies

be the function such that

RMi(S) = argmin
ti∈Si

regretSi (ti).

Intuitively, for any set S =
�

j∈N Sj of strategy profiles, the value RMi(S) is the

set of strategies in Si that minimize the maximum regret function regretSi with

respect to S. Clearly, RMi(S) ⊆ Si .

Now, let RM : P (
�

j∈N Cj) → P (
�

j∈N Cj) in the case of pure strategies or

RM : P (
�

j∈N ∆(Cj))→P (
�

j∈N ∆(Cj)) in the case of randomized strategies be the

function such that

RM(S) =
�
j∈N
RMj(S).

Clearly, RM(S) ⊆ S.

The process of iterative elimination is defined recursively as follows. For any

player i in N and any set S =
�

j∈N Sj such that

Si ⊆ Ci , ∀i ∈N
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in the case of pure strategies or

Si ⊆ ∆(Ci), ∀i ∈N

in the case of randomized strategies, let

RM1
i (S) =RMi(S),

RMk+1
i (S) =RMi(RMk(S)), ∀k ∈ {1,2,3, . . .}, and

RM∞i (S) =
∞⋂
k=1

RMk
i (S).

Intuitively, for any set S =
�

j∈N Sj of strategy profiles, the value RM∞i (S) is the

set of strategies in Si that survive iterated regret minimization with respect to S.

For any set S =
�

j∈N Sj such that

Si ⊆ Ci , ∀i ∈N

in the case of pure strategies or

Si ⊆ ∆(Ci), ∀i ∈N

in the case of randomized strategies, let

RM1(S) =RM(S),

RMk+1(S) =RM(RMk(S)), ∀k ∈ {1,2,3, . . .}, and

RM∞(S) =
∞⋂
k=1

RMk(S).

Intuitively, for any set S =
�

j∈N Sj of strategy profiles, the value RM∞(S) is the

set of strategy profiles in S that survive iterated regret minimization with respect

to S.

Halpern and Pass (2012) describe sufficient conditions for convergence to a

nonempty fixed point.

Theorem 3.2.1 (Halpern and Pass (2012)). Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any

finite game in strategic form. For any set S =
�

j∈N Sj such that

Si ⊆ Ci , ∀i ∈N

in the case of pure strategies or

Si ⊆ ∆(Ci), ∀i ∈N

in the case of randomized strategies, if the set S is nonempty and closed, then RM∞(S)

is nonempty and

RM(RM∞(S)) =RM∞(S).
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In particular, if S =
�

j∈N Cj or S =
�

j∈N ∆(Cj), then, by Theorem 3.2.1, the

set RM∞(S) is nonempty and

RM(RM∞(S)) =RM∞(S).

Thus, for any finite game in strategic form, a solution is guaranteed to exist.

For an illustration of iterated regret minimization, consider the finite two-

person game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 3.2. For the

sake of simplicity in what follows, let C be the set such that

C =
�
j∈N

Cj .

Table 3.2 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 0

0 2

0 1

1 0

Consider first iterated regret minimization with respect to pure strategies.

For player 1, with respect to C, the maximum regret from choosing x1 is 1,

and the maximum regret from choosing y1 is 2, and so, x1 is the unique pure

strategy that survives iterated regret minimization. For player 2, with respect

to C, the maximum regret from choosing x2 is 2, and the maximum regret from

choosing y2 is 1, and so, y2 is the unique pure strategy that survives iterated regret

minimization. Thus, the unique pure-strategy profile that survives iterated regret

minimization is (x1, y2), which gives the payoff allocation (0,2).

Now, consider iterated regret minimization with respect to randomized strate-

gies. To simplify the computations, we appeal to the following proposition, which

establishes that, at the first step, only pure-strategy partial profiles need be con-

sidered.

Proposition 3.2.1 (Halpern and Pass (2012)). Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any

finite game in strategic form. Let S =
�

j∈N ∆(Cj). Then

regretSi (σi) = max
c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)

 , ∀i ∈N, ∀σi ∈ ∆(Ci).

Now, let S =
�

j∈N ∆(Cj). Consider player 1. Notice that, by Proposition 3.2.1,

regretS1 (σ1) = max{2− 2σ1(x1),1− (1− σ1(x1))}, ∀σ1 ∈ ∆(C1).
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As Figure 3.3 shows, the maximum regret function regretS1 is minimized at the

point σ1(x1) = 2/3, and so, the unique randomized strategy that survives iterated

regret minimization for player 1 is (2/3)x1 + (1/3)y1. Consider player 2. Notice that,

Figure 3.3 Regret of player 1
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by Proposition 3.2.1,

regretS2 (σ2) = max{2− 2(1− σ2(x2)),1− σ2(x2)}, ∀σ2 ∈ ∆(C2).

As Figure 3.4 shows, the maximum regret function regretS2 is minimized at the

point σ2(x2) = 1/3, and so, the unique randomized strategy that survives iterated

regret minimization for player 2 is (1/3)x2 + (2/3)y2. Thus, the unique randomized-

Figure 3.4 Regret of player 2
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strategy profile that survives iterated regret minimization is

((2/3)x1 + (1/3)y1, (1/3)x2 + (2/3)y2),

which gives the payoff allocation (2/3,1).

Both least-squares regret and iterated regret minimization involve minimizing

regret in one way or another. But despite the similarities between the two solution

concepts, there are two differences that deserve mentioning.
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One difference concerns iterative processes. Least-squares regret involves no

iterative process while iterated regret minimization involves iterative elimination.

We exclude iterative elimination to forestall complications. Iterative elimi-

nation is an added complication and may be computationally and cognitively

demanding, especially in more complex games, and introduces other difficulties.

For example, the reason for eliminating a strategy might turn on the maximum

regret potentially induced by some partial profile of strategies of the other players

that is subsequently eliminated and assumed not to occur. Such difficulties recall

those afflicting iterative elimination of weakly dominated strategies (Samuelson,

1992; Mas-Colell, Whinston, and Green, 1995).

Halpern and Pass (2012) consider as a remedy lexicographic belief systems

reminiscent of the lexicographic probability systems of Blume, Brandenburger,

and Dekel (1991) and Brandenburger, Friedenberg, and Keisler (2008). But the

remedy itself is fairly involved.

In any case, whether iterative elimination is included or not is a minor differ-

ence between least-squares regret and iterated regret minimization, and we point

it out mainly for the sake of completeness. Indeed, iterative elimination could

easily be added to least-squares regret or removed from iterated regret minimiza-

tion. But we note that by eschewing iterative elimination, we skirt entirely the

complications noted above.

The more significant difference between least-squares regret and iterated regret

minimization concerns the assessment of regret. Least-squares regret involves

choosing a strategy so as to minimize the sum of the squares of the regrets while

iterated regret minimization involves choosing a strategy so as to minimize the

maximum regret. These different imperatives amount to quite different attitudes

toward regret.

It is easy to see how, ignoring iterative elimination, least-squares regret and

iterated regret minimization are related. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite

game in strategic form. Consider iterated regret minimization (without iterative

elimination) as applied to the initial set S =
�

j∈N Cj of pure-strategy profiles. For

any number p such that p ≥ 1 and any player i in N , let ρi : Ci → R be the function

such that

ρi(ci) =
∑

c−i∈C−i

max
di∈Ci

ui(c−i ,di)−ui(c−i , ci)


p

.

This function with the parameter p is a natural generalization of the regret func-

tion in pure strategies defined in Section 2.2. Notice that when the function is

raised to the power of 1/p, the result is an application of the p-norm. Intuitively,

the greater is the value of p, the more larger regrets matter.
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Now, notice that

lim
p→∞

(ρi(ci))
1/p = max

c−i∈C−i

max
di∈Ci

ui(c−i ,di)−ui(c−i , ci)

 , ∀ci ∈ Ci .

In the limit as p→∞, only the maximum regret matters. Thus, the natural gener-

alization of least-squares regret that involves minimizing the function (ρi(ci))
1/p

subsumes iterated regret minimization (without iterative elimination) as an ex-

treme case that is derived by letting p→∞.

Least-squares regret and iterated regret minimization can yield different solu-

tions. For certain games, studied below, least-squares regret yields more agreeable

solutions. The reason is that focusing exclusively on the maximum regret, as

iterated regret minimization requires, may be too restrictive.

For an example in which least-squares regret outperforms iterated regret

minimization, consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in

strategic form shown in Table 3.3.

Table 3.3 Payoffs of player 1 in a game in strategic form

@
@@

1
2

u1

v1

w1

x1

y1

z1

v2 w2 x2 y2 z2

1 1 1 0 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

Consider first iterated regret minimization. Notice that, for player 1,

regretC1 (c1) = max
c2∈C2

max
d1∈C1

u1(d1, c2)−u1(c1, c2)

 = 1, ∀c1 ∈ C1.

Each pure strategy in C1 yields a maximum regret of 1. Thus,

RM∞1 (C) = C1.
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Each pure strategy in C1 survives iterated regret minimization.

But this solution seems unreasonable. The pure strategies in C1 are not all on

a par. On the contrary: there seems to be a natural and reasonable ordering over

them. Notice that, for player 1, the pure strategy z1 is strongly dominated (for

example, by a randomization between u1 and v1) and weakly dominated by every

other strategy; that y1 is weakly dominated by x1; that x1 is weakly dominated by

w1; that each of w1 and x1 and y1 is weakly dominated by u1 and by v1; and that

neither u1 nor v1 is dominated. Thus, the most attractive strategies are u1 and v1,

followed in turn by w1, and then by x1, and then by y1, and then finally by z1.

Iterated regret minimization is here incapable of recognizing certain strategies

as more reasonable than others, and the reason is the exclusive focus on the

maximum regret. For example, z1 is regarded as just as reasonable as u1—even

though z1 can never yield a positive payoff and u1 yields the best-response payoff

with respect to all but one of the strategies of player 2—simply because z1 and u1

yield the same maximum regret of 1.

As the game shown in Table 3.3 illustrates, the exclusive focus on the maximum

regret can be problematic. In particular, such a focus means that domination

may go unrecognized, with the result that dominated strategies may be equated

with undominated strategies. In general, evaluating a strategy solely in terms of

the maximum regret that it might yield means that the enumeration of partial

profiles of strategies of the other players to which the strategy fails to be a best

response—whether it be just one partial profile or all of them—matters not at all.

By contrast, least-squares regret yields a more reasonable solution. Notice that,

for player 1,

ρ1(u1) = ρ1(v1) = 1,

ρ1(w1) = 2,

ρ1(x1) = 3,

ρ1(y1) = 4, and

ρ1(z1) = 5.

Thus, least-squares regret captures exactly the natural and reasonable ordering

described earlier and yields as the sole solutions precisely the two undominated

pure strategies u1 and v1. In general, least-squares regret rejects dominated strate-

gies; for more on this point, see Theorem 5.6.2 in Section 5.6 and the discussion in

Section 5.3.

For another example in which least-squares regret outperforms iterated regret

minimization, consider the two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic

form, where

C1 = C2 = {x ∈ R | 0 ≤ x ≤ 1},



Chapter 3. Alternative Solution Concepts 51

the utility function for player 1 is

u1(c1, c2) = 0− ε if c1 = c2 = 0,

= 1 if c1 = 0 and c2 > 0,

= 1 if c1 > 0 and c2 = 0,

= 0 if c1 > 0 and c2 > 0,

and ε is any small positive number.

Consider first iterated regret minimization. Notice that, for player 1,

regretC1 (0) = max
c2∈C2

max
d1∈C1

u1(d1, c2)−u1(0, c2)

 = 1 + ε and

regretC1 (c1) = max
c2∈C2

max
d1∈C1

u1(d1, c2)−u1(c1, c2)

 = 1, ∀c1 ∈ {x ∈ R | 0 < x ≤ 1}.

Thus,

RM∞1 (C) = C1 \ {0}.

The pure strategy 0 is eliminated, and every other pure strategy survives iterated

regret minimization.

But this solution seems unreasonable. With respect to almost all—that is,

except for a set of measure zero—of the pure strategies of player 2, the pure

strategy 0 yields the best-response payoff of 1, and every other pure strategy yields

the minimum payoff of 0. Furthermore, choosing the pure strategy 0 fails to be

a best response if and only if c2 = 0, and then the regret is 1 + ε, which is only

marginally greater than 1. Thus, it seems that the sole reasonable solution is the

pure strategy 0.

The trouble, again, is the exclusive focus on the maximum regret. The only

reason that the pure strategy 0 is eliminated and every other pure strategy is

preserved is that the maximum regret from choosing the pure strategy 0 is 1 + ε

while the maximum regret from choosing any other pure strategy is 1. But this is

not an overwhelming reason to eliminate the pure strategy 0 in favor of the other

pure strategies considering that the differences

regretC1 (0)− regretC1 (c1) = ε, ∀c1 ∈ {x ∈ R | 0 < x ≤ 1},

are essentially negligible—and are all the more so the smaller is ε—and that, as

noted earlier, the pure strategy 0 outperforms every other pure strategy with

respect to almost all of the pure strategies of player 2.

The exclusive focus on the maximum regret seems excessively strict and pes-

simistic. It entails favoring one strategy over another as long as the maximum
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regret from choosing the latter is greater than that from choosing the former, no

matter how negligible the difference and no matter how superior the unfavored

strategy might be in other respects.

By contrast, least-squares regret yields a more reasonable solution. Notice that,

for player 1,

ρ1(0) = 0 and

ρ1(c1) = 1, ∀c1 ∈ {x ∈ R | 0 < x ≤ 1}.

Thus, least-squares regret yields as the sole solution precisely the pure strategy 0.

For another example in which least-squares regret yields a more agreeable

solution than does iterated regret minimization, see the extended discussion on

the two-person bargaining problem in Section 6.8. Theorem 6.8.2 establishes

that in the two-person bargaining problem, if each player has a concave utility

function, then the final payoff allocation yielded by least-squares regret is at least

as great as that yielded by iterated regret minimization. Intuitively, the reason

is that the exclusive focus on the maximum regret required by iterated regret

minimization induces one to be more conservative than one would be if one were

instead to act in accordance with least-squares regret.



4

The Traveler’s Dilemma

As noted in Chapter 1, the puzzle of the Traveler’s Dilemma (Basu, 1994; Basu,

2007) is notoriously recalcitrant. What is most vexing about the game is that all

of the standard solution concepts converge upon a unique solution that is both

unreasonable in theory and refuted by the experimental evidence. Interest in

the game remains high, and to this date, no generally accepted resolution of the

puzzle exists.

In this chapter, we study the game in detail. Section 4.1 formally defines the

game. Section 4.2 considers the standard solution concepts and shows how all

yield the same unsatisfactory solution. Section 4.3 discusses the experimental

evidence, which refutes the standard analyses. Section 4.4 describes some alter-

native analyses of the game. Section 4.5 shows how least-squares regret resolves

the puzzle and yields solutions in line with both intuition and the experimental

evidence.

4.1 Definition of the Game

The Traveler’s Dilemma game is defined formally as follows. An airline loses

the identical belongings of two travelers and reimburses them according to the

following scheme. Each traveler must submit independently and privately to

the airline a quotation that can be any number between 2 and 100, representing

the value of the belongings. If the numbers match, each traveler is reimbursed

that amount; otherwise, the traveler quoting the lower number is reimbursed

the lower number plus some amount α such that α > 1 while the other traveler

is reimbursed the lower number less α. The number α can be thought of as the

reward for quoting the lower number and the penalty for quoting the higher

number. In this game, the set of players is N = {1,2}. Now, there are two versions

of the game: the discrete version and the continuous version. In the discrete
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version, the pure-strategy sets are

C1 = C2 = {x ∈ Z | 2 ≤ x ≤ 100}.

In the continuous version, the pure-strategy sets are

C1 = C2 = {x ∈ R | 2 ≤ x ≤ 100}.

In both versions, for any player i in N , the utility function is

ui(c1, c2) = min{c1, c2} −α if i < argmin
j∈{1,2}

cj ,

= min{c1, c2}+α if {i} = argmin
j∈{1,2}

cj ,

= ci if c1 = c2,

where α is any real number, specified in advance, such that α > 1.

4.2 Standard Analyses of the Game

There are many different ways to solve the game. In this section, we consider the

standard analyses. For simplicity in what follows, restrict analysis to the standard

discrete version where α = 2.

Consider first maximin. Notice that the minimum payoff from quoting 2 is

2 and that, for any quotation other than 2, the minimum payoff is 0. Thus, the

strategy of quoting 2 is the unique maximin strategy for each player.

Now, consider Nash equilibrium. At first glance, it may seem reasonable

to conclude that each player should quote 100—the maximum number—since

each will then be reimbursed that amount. But observe that there is always the

incentive for one player to undercut the other player by the slimmest margin

whenever possible. Assuming that the other player quotes 100, one would do

better to deviate and quote 99. But, anticipating this, the other player would

then do better to deviate and quote 98. And, anticipating this, one would then do

better to deviate and quote 97. Continuing thus leads to the conclusion that, in

the unique equilibrium of the game, each player quotes 2—the minimum number.

Seen in this light, the Traveler’s Dilemma turns out to be very much like a one-

shot simultaneous-move version of the famous Centipede Game (Rosenthal, 1981),

a game well known for embodying the paradox of rationality posed by backward

induction. This similarity is no accident. Indeed, the Traveler’s Dilemma was

devised to illustrate that the paradox is deeper than had been thought since

it can arise in a one-shot simultaneous-move game and cannot be resolved by

finding fault with structures relating to the extensive form. Thus, the Traveler’s
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Dilemma, involving backward induction at the level of introspection and purged

of supplementary elements such as play over time, can be seen as one of the purest

forms of the paradox of rationality.

Part of what makes the earlier equilibrium analysis so unreasonable is that

it presumes a kind of superrationality on the part of the players. Each player

must engage in a long chain of reasoning involving myriad assumptions of one

another’s extreme sophistication in order to reach the equilibrium solution.

The other standard solution concepts fare no better. Consider iterative elimi-

nation of weakly dominated strategies. Notice that, for each player, the strategy of

quoting 100 is weakly dominated by the strategy of quoting 99 and can thus be

eliminated. But then, for each player, the strategy of quoting 99 becomes weakly

dominated by the strategy of quoting 98 and can thus be eliminated. Continuing

thus leaves each player with the strategy of quoting 2 as the unique iteratively

undominated strategy in the weak sense. But as with equilibrium analysis, this

analysis presumes a kind of superrationality on the part of the players.

Iterative elimination of strongly dominated strategies is even more compli-

cated. Notice that, for each player i in N , the strategy of quoting 100 is strongly

dominated by the randomized strategy σi in ∆(Ci) such that

σi(100) = 0 and

σi(ci) =
ε100−ci∑98
k=1 ε

k
, ∀ci ∈ {x ∈ Z | 2 ≤ x ≤ 99},

where ε is any small positive number, and the strategy of quoting 100 can thus be

eliminated. But then, for each player i in N , the strategy of quoting 99 becomes

strongly dominated by the randomized strategy σi in ∆(Ci \ {100}) such that

σi(99) = 0 and

σi(ci) =
ε99−ci∑97
k=1 ε

k
, ∀ci ∈ {x ∈ Z | 2 ≤ x ≤ 98},

where ε is any small positive number, and the strategy of quoting 99 can thus be

eliminated. Continuing thus leaves each player with the strategy of quoting 2 as

the unique iteratively undominated strategy in the strong sense. Just as before, a

kind of superrationality on the part of the players is presumed.

Rationalizability (Bernheim, 1984; Pearce, 1984) is likewise unsatisfactory.

As is well known, in two-person games, the set of rationalizable strategies for a

player is just the set of strategies that survive iterative elimination of strongly

dominated strategies. Thus, given the foregoing analysis, the strategy of quoting

2 is also the unique rationalizable strategy for each player. But determining the

set of rationalizable strategies for a player requires an analysis just as involved as

the foregoing ones.
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It is natural to be dissatisfied with these solution concepts. All of them yield

the strategy of quoting 2 as the unique rational strategy, defying intuition, and,

moreover, all of them, with the exception of maximin, presume a kind of superra-

tionality on the part of the players.

4.3 Experimental Evidence

Notwithstanding the analyses described in Section 4.2, it seems that no reasonable

person would ever choose to quote 2 or to engage in the complicated reasoning

required. In fact, experimental research demonstrates that people consistently

reject the strategy of quoting 2 in favor of quoting a larger number and, moreover,

that those who do so generally win higher payoffs. For detailed results, see, for

example, Capra, Goeree, Gómez, and Holt (1999); Goeree and Holt (2001); Rubin-

stein (2006); Cabrera, Capra, and Gómez (2007); Rubinstein (2007); Chakravarty,

Dechenaux, and Roy (2010); and Basu, Becchetti, and Stanca (2011).

Even professional game theorists fail to play in accordance with standard game

theory. An experiment conducted on members of the Game Theory Society reveals

deviations from standard game theory just as marked as in other experiments

(Becker, Carter, and Naeve, 2005). In the experiment, members were asked to

submit a strategy, pure or randomized, for the one-shot Traveler’s Dilemma. Fifty-

one entries were received. Of the forty-five specifying a pure strategy, ten specified

the maximum quotation of 100; thirty-one specified a quotation of 96 or greater;

thirty-eight specified a quotation of 90 or greater; and only three specified the

prescribed quotation of 2. Just as in the other experiments noted above, there is a

salient concentration at the top of the scale—the very opposite of what standard

game theory suggests. Furthermore, the pure strategy that turns out to do best

against the average strategy is the strategy of quoting 97, with its expected payoff

of 85.09, and worst of all is the prescribed strategy of quoting 2, with its expected

payoff of 3.92. These results thus appear to confirm the suspicion noted earlier:

even knowing all that standard game theory has to say, there is something rational

about quoting a larger number. The confirmation lies in the payoff received.

Another study shows that, in general, the greater is the value of α, the lower is

the number that is quoted, as intuition suggests (Capra, Goeree, Gómez, and Holt,

1999). Importantly, however, none of the standard solution concepts is sensitive

to the value of α.

4.4 Alternative Analyses

Numerous alternative analyses have been proposed. Capra, Goeree, Gómez, and
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Holt (1999) and Anderson, Goree, and Holt (2002) show that logit equilibrium

models can fit the experimental data very well. Becker, Carter, and Naeve (2005)

adapt the approach of Kreps, Milgrom, Roberts, and Wilson (1982) used to explain

cooperation in the finitely repeated Prisoners’ Dilemma and model the Traveler’s

Dilemma as a Bayesian game that includes an irrational or “cooperative” type.

Rubinstein (2006) and Rubinstein (2007) analyze response times and suggest

that the distribution of observed strategy choices may be due at least in part to

variations in cognitive effort or sophistication. Cabrera, Capra, and Gómez (2007)

develop a noisy introspection model in which the reasoning process consists in

iteratively computing responses, with some error, until some specified stopping

rule is satisfied. Chakravarty, Dechenaux, and Roy (2010) consider the ability of

pre-play communication to induce coordination and show that while ill-defined

communication does little to foster cooperation, precise communication can lead

to higher numbers being chosen. Basu, Becchetti, and Stanca (2011) extend the

results of Capra, Goeree, Gómez, and Holt (1999) and show the dominance of

one’s own bonus-penalty amount, document heterogeneity of player types, find

evidence of inadequacy in strategic thinking, and show that strategy choice and

treatment effects are largely explained by risk aversion. Bavly (2012) considers the

effect of introducing uncertainty about the range of available strategies. Halpern

and Pass (2012) show how iterated regret minimization yields solutions consistent

with intuition and the experimental evidence. Baghestanian (2014) develops a

level-k model with heterogeneous types to explain the observed data.

4.5 Least-Squares Regret

In this section, we show how least-squares regret yields for the Traveler’s Dilemma

solutions in line with intuition and the experimental evidence, at once resolving

the puzzle and outperforming all of the standard solution concepts.

But before continuing, it is instructive to consider first the question of whether

people, in fact, reason in terms of regret in a game such as the Traveler’s Dilemma.

To answer this question, notice that there is a general intuition that quoting 2, as

standard game theory prescribes, is a poor strategy all things considered and that

one would do better to quote a higher number. Quoting 2 is a best response if and

only if the other player quotes either 2 or 3. But in any other circumstance, one

would do better—and potentially substantially better—to quote a higher number.

Furthermore, by quoting 2, one limits one’s maximum payoff to 4, a meager

amount considering the range of potential payoffs. Notice also that the greater

is the quotation of the other player, the more one loses out by quoting 2. These

observations suggest that regret may be an important strategic consideration,
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especially in a game such as the Traveler’s Dilemma.

Furthermore, as the studies of Ritov (1996) and Grosskopf, Erev, and Yechiam

(2006) described in Section 1.3 illustrate, there is evidence in experimental eco-

nomics that suggests that regret plays a significant role in decision-making. There

is thus reason to think that regret might well play a role also in reasoning about

the Traveler’s Dilemma.

It is easy to see how least-squares regret resolves the Traveler’s Dilemma puzzle.

For concreteness, consider the standard discrete version of the game where the

pure-strategy sets are

C1 = C2 = {x ∈ Z | 2 ≤ x ≤ 100}

and α = 2.

For an illustration, consider the strategy of quoting 2. Notice that, for any

player i in N , the regret from quoting 2 is

ρi(2) =
100∑
c−i=2

max
di∈Ci

ui(c−i ,di)−ui(c−i ,2)


2

= (2− 2)2 + (4− 4)2 + . . .+ (101− 4)2

= 308945.

The regret from quoting 2 is high. And the reasons are precisely those given

earlier. As the computation indicates, quoting 2 is a best response if and only if

the other player quotes either 2 or 3, but in any other circumstance, one would do

better to quote a higher number, and, moreover, the greater is the quotation of the

other player, the more one loses out by quoting 2.

For another illustration, consider the strategy of quoting 100. Notice that, for

any player i in N , the regret from quoting 100 is

ρi(100) =
100∑
c−i=2

max
di∈Ci

ui(c−i ,di)−ui(c−i ,100)


2

= (2− 0)2 + (4− 1)2 + . . .+ (101− 100)2

= 878.

The regret from quoting 100 is low. And the reason is what intuition suggests.

Notably, while in no circumstance would it be a best response to quote 100,

doing so guarantees in every conceivable circumstance a payoff very close to the

best-response payoff.

In general, quoting a low number is associated with high regret while quoting

a high number is associated with low regret, as intuition suggests and as Figure

4.1 shows.
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Figure 4.1 Regret of player i in the Traveler’s Dilemma
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In fact, for any player i in N , the pure strategies that minimize the regret

function ρi are the strategy of quoting 96 and the strategy of quoting 97, as Figure

4.2 shows.

Figure 4.2 Regret of player i in the Traveler’s Dilemma
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Thus, unlike the standard solution concepts, least-squares regret yields solu-

tions in line with the experimental evidence and with the intuition that quoting a

high number is a better strategy all things considered than quoting a low num-

ber. Notably, the solutions yielded by least-squares regret are consistent with the

experimental result discussed earlier that the strategy of quoting 97 is the pure

strategy that does best against the average strategy (Becker, Carter, and Naeve,

2005).

Furthermore, it is easy to see that least-squares regret captures the expected

sensitivity to the value of α. To see this, consider the continuous version of the

game where the pure-strategy sets are

C1 = C2 = {x ∈ R | 2 ≤ x ≤ 100}.

Consider any player i in N and any pure strategy ci in Ci . If the other player

chooses some pure strategy c−i in C−i that is less than ci , then the payoff to player
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i from choosing ci is c−i −α while the best-response payoff is c−i +α (since the best

response is to undercut the other player by the slimmest margin). If the other

player chooses some pure strategy c−i in C−i that is greater than ci , then the payoff

to player i from choosing ci is ci +α while the best-response payoff is again c−i +α.

Thus, for any player i in N ,

ρi(ci) =
∫ ci

2
((c−i +α)− (c−i −α))2dc−i +

∫ 100

ci

((c−i +α)− (ci +α))2dc−i

=
∫ ci

2
4α2dc−i +

∫ 100

ci

(c−i − ci)2dc−i

= (100− ci)3/3 + 4α2ci − 8α2,

and so,

d(ρi(ci))
dci

= 4α2 − (100− ci)2.

Setting the derivative equal to 0 and solving for ci yields

ci =
200±

√
(−200)2 − 4(1002 − 4α2)

2
= 100± 2α.

The regret function ρi is minimized at the smaller critical point, which is also the

only critical point in the domain

Ci = {x ∈ R | 2 ≤ x ≤ 100}.

Thus, the unique pure least-squares regret strategy for player i is ci = 100− 2α.

This strategy is a strictly decreasing function of α, and so, the greater is the value

of α, the lower is the number that is yielded by least-squares regret.

Thus, again, unlike the standard solution concepts, least-squares regret yields

solutions in line with the experimental evidence and with the intuition that

strategy choice is sensitive to the value of α. Notably, the sensitivity captured by

least-squares regret is consistent with the experimental result discussed earlier

that the greater is the value of α, the lower is the number that is quoted (Capra,

Goeree, Gómez, and Holt, 1999).
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Properties

In appraising a solution concept and assessing its performance, numerous ques-

tions arise, such as whether the solution concept satisfies a general existence

theorem; whether, for any game, the solution concept yields as solutions all in-

tuitively reasonable outcomes and rules out all intuitively unreasonable ones;

whether, for any game, the set of solutions yielded by the solution concept is

invariant when the game is transformed in a way that is considered irrelevant;

whether the fundamental logic of the solution concept is intuitive, credible, and

compelling as a characterization of typical reasoning and behavior.

In this chapter, we establish some notable mathematical and conceptual prop-

erties of least-squares regret. Section 5.1 presents a general existence theorem.

Section 5.2 presents a theorem that establishes that least-squares regret is in-

variant with respect to full equivalence. Section 5.3 examines the relationship

between least-squares regret and dominated strategies. Section 5.4 shows that

least-squares regret and iterative elimination of dominated strategies can yield

different solutions. Section 5.5 examines the relationship between least-squares

regret and uniformly dominant strategies. Section 5.6 presents two theorems that

establish that least-squares regret is invariant with respect to certain well-known

transformations of the payoffs in a game that leave unchanged the best-response

correspondences of the players. Section 5.7 presents a theorem that establishes

that when it comes to the equilibria in pure strategies of a 2× 2 game in strategic

form, least-squares regret is equivalent to risk dominance. Section 5.8 presents a

theorem that establishes that, for any finite game in strategic form, least-squares

regret yields a convex set of solutions. Section 5.9 presents two theorems that

describe sufficient conditions for the uniqueness of a solution yielded by least-

squares regret.
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5.1 Existence

The following general existence theorem establishes that every finite game in

strategic form has at least one least-squares regret profile in pure strategies and at

least one least-squares regret profile in randomized strategies. Thus, for any finite

game in strategic form, a solution is guaranteed to exist.

Theorem 5.1.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. Then

there exist some least-squares regret profile in pure strategies and some least-squares

regret profile in randomized strategies.

Proof. Consider any player i in N . Consider first pure strategies. Since the set Ci

is finite, the regret function ρi : Ci → R has a minimum. And so, the set

argmin
di∈Ci

ρi(di)

is nonempty.

Thus, the set�
i∈N

argmin
di∈Ci

ρi(di)

is nonempty since it is the Cartesian product of nonempty sets.

Now, consider randomized strategies. Since the set ∆(Ci) is a nonempty com-

pact set and since the regret function ρi : ∆(Ci)→ R is continuous, ρi has a mini-

mum. And so, the set

argmin
τi∈∆(Ci )

ρi(τi)

is nonempty.

Thus, the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is nonempty since it is the Cartesian product of nonempty sets. �

5.2 Full Equivalence

A utility function is simply a mathematical representation of the preferences of

an individual and is unique up to strictly increasing affine transformation. Thus,

replacing any number of the utility functions in a game with decision-theoretically

equivalent ones leaves unchanged the underlying preference structure of the

game. Since the original game and the transformed game represent the same

fundamental situation, they must be considered decision-theoretically equivalent.
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Myerson (1991) introduces the concept of full equivalence of finite games in

strategic form to characterize the equivalence just described. Full equivalence

might more illuminatingly be called cardinal equivalence.

Full equivalence of finite games in strategic form is defined formally as follows.

For any finite games Γ = (N, (Ci)i∈N , (ui)i∈N ) and Γ̂ = (N, (Ci)i∈N , (ûi)i∈N ) in strate-

gic form, the games Γ and Γ̂ are fully equivalent if and only if, for every player i in

N , there exist real numbers Ai and Bi such that Ai > 0 and

ûi(c−i , ci) = Aiui(c−i , ci) +Bi , ∀c−i ∈ C−i , ∀ci ∈ Ci .

As a matter of consistency, a solution concept should not yield different so-

lutions for fully equivalent games. Any solution concept that fails on this score

must be seen as being faulty in a significant way. For example, as noted in Section

1.1, quantal response equilibrium (McKelvey and Palfrey, 1995; McKelvey and

Palfrey, 1998) is not scale invariant and can thus be inconsistent, yielding different

solutions for fully equivalent games (Wright and Leyton-Brown, 2010).

The following theorem establishes that least-squares regret is invariant with

respect to full equivalence in the sense that fully equivalent games have the same

solutions.

Theorem 5.2.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) and Γ̂ = (N, (Ci)i∈N , (ûi)i∈N ) be any

finite games in strategic form such that Γ and Γ̂ are fully equivalent. For any player

i in N , let ρi : ∆(Ci)→ R be the regret function in randomized strategies for player

i in Γ , let ρ̂i : ∆(Ci)→ R be the regret function in randomized strategies for player i

in Γ̂ , let ρi : Ci → R be the regret function in pure strategies for player i in Γ , and let

ρ̂i : Ci → R be the regret function in pure strategies for player i in Γ̂ . Then�
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi)

and �
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di).

Proof. Consider any player i in N . By assumption, the games Γ and Γ̂ are fully

equivalent, and so, there exist real numbers Ai and Bi such that Ai > 0 and

ûi(c−i , ci) = Aiui(c−i , ci) +Bi , ∀c−i ∈ C−i , ∀ci ∈ Ci .

Clearly, it follows that

ûi(c−i ,σi) = Aiui(c−i ,σi) +Bi , ∀c−i ∈ C−i , ∀σi ∈ ∆(Ci).
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Thus,

ρ̂i(σi)

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

ûi(c−i ,τi)− ûi(c−i ,σi)


2

, ∀σi ∈ ∆(Ci)

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

(Aiui(c−i ,τi) +Bi)− (Aiui(c−i ,σi) +Bi)


2

, ∀σi ∈ ∆(Ci)

= A2
i

∑
c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)


2

, ∀σi ∈ ∆(Ci)

= A2
i ρi(σi), ∀σi ∈ ∆(Ci).

Since Ai > 0, the regret functions ρi and ρ̂i differ by a strictly increasing linear

transformation. And so,

argmin
τi∈∆(Ci )

ρi(τi) = argmin
τi∈∆(Ci )

ρ̂i(τi).

Thus,�
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi).

From the above, it follows that

ρ̂i(ci) = A2
i ρi(ci), ∀ci ∈ Ci .

Since Ai > 0, the regret functions ρi and ρ̂i differ by a strictly increasing linear

transformation. And so,

argmin
di∈Ci

ρi(di) = argmin
di∈Ci

ρ̂i(di).

Thus,�
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di). �

5.3 Dominated Strategies

It is instructive to examine the relationship between least-squares regret and dom-

inated strategies. Intuitively, if a pure strategy is weakly or strongly dominated for

a player, then, for any partial profile of strategies of the other players, the regret

of the dominated strategy with respect to the partial profile is at least as great as

the regret of the dominating strategy with respect to the partial profile, and there
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exists some partial profile such that the regret of the dominated strategy with

respect to the partial profile is strictly greater than the regret of the dominating

strategy with respect to the partial profile.

This intuition leads immediately to two conclusions. To begin, a pure strategy

that is weakly or strongly dominated for a player by some randomized strategy

cannot, when assigned probability 1, minimize the regret function in randomized

strategies. Furthermore, a pure strategy that is weakly or strongly dominated for

a player by some other pure strategy cannot minimize the regret function in pure

strategies. The following proposition establishes these facts.

Proposition 5.3.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

For any player i in N , any pure strategies ci and ĉi in Ci , and any randomized strategy

σi in ∆(Ci), if ci is weakly or strongly dominated for player i by σi , then

ρi(σi) < ρi(ci),

and if ci is weakly or strongly dominated for player i by ĉi , then

ρi(ĉi) < ρi(ci).

Proof. Consider any player i in N . Let ci be any pure strategy in Ci , and let σi be

any randomized strategy in ∆(Ci). Suppose that ci is weakly or strongly dominated

for player i by σi . Then

max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi) ≤ max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , ci), ∀c−i ∈ C−i ,

and there exists some partial profile ĉ−i in C−i such that

max
τi∈∆(Ci )

ui(ĉ−i ,τi)−ui(ĉ−i ,σi) < max
τi∈∆(Ci )

ui(ĉ−i ,τi)−ui(ĉ−i , ci).

Thus,

ρi(σi) < ρi(ci).

Let ci and ĉi be any pure strategies in Ci . Suppose that ci is weakly or strongly

dominated for player i by ĉi . From the above, it follows that

ρi(ĉi) < ρi(ci). �

Whether or not randomized strategies are considered can matter substan-

tially. For an illustration of this point, consider the finite two-person game

Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 5.1.

Consider the pure strategy z1. Notice that it is for player 1 weakly dominated,

for example, by the randomized strategy (2/3)x1 + (1/3)y1, and strongly dominated,
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Table 5.1 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

z1

x2 y2

0 3

3 0

1 1

for example, by the randomized strategy 0.5x1 + 0.5y1. Thus, by Proposition

5.3.1, the pure strategy z1 cannot, when assigned probability 1, be a randomized

least-squares regret strategy for player 1. But notice that if only pure strategies

are considered, then z1 is neither weakly nor strongly dominated for player 1 and,

moreover, since

ρ1(z1) = 8 < 9 = ρ1(x1) = ρ1(y1),

it is, in fact, the unique pure least-squares regret strategy for player 1.

It is clear that the support of a randomized least-squares regret strategy cannot

contain a weakly or strongly dominated strategy. The following proposition

establishes this fact.

Proposition 5.3.2. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

For any player i in N , any randomized strategy σi in ∆(Ci), and any pure strategy ci in

Ci , if σi is a randomized least-squares regret strategy for player i and ci is weakly or

strongly dominated for player i, then σi(ci) = 0.

Proof. Consider any player i in N . Let σi be any randomized strategy in ∆(Ci),

and let ci be any pure strategy in Ci . Suppose that σi is a randomized least-squares

regret strategy for player i and that ci is weakly or strongly dominated for player

i and that σi(ci) > 0. Since ci is weakly or strongly dominated for player i, there

exists some randomized strategy ξi in ∆(Ci) such that

ui(c−i ,ξi) ≥ ui(c−i , ci), ∀c−i ∈ C−i ,

and there exists some partial profile ĉ−i in C−i such that

ui(ĉ−i ,ξi) > ui(ĉ−i , ci).

Now, consider the randomized strategy σ̂i in ∆(Ci) that is exactly like σi except

that ci is assigned probability 0 and ξi is assigned probability σi(ci). That is, σ̂i is
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the randomized strategy in ∆(Ci) such that

σ̂i(ci) = 0 and

σ̂i(di) = σi(di) + σi(ci)ξi(di), ∀di ∈ Ci \ {ci}.
Clearly,

max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , σ̂i) ≤ max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi), ∀c−i ∈ C−i ,

and there exists some partial profile c̄−i in C−i such that

max
τi∈∆(Ci )

ui(c̄−i ,τi)−ui(c̄−i , σ̂i) < max
τi∈∆(Ci )

ui(c̄−i ,τi)−ui(c̄−i ,σi).

Thus,

ρi(σ̂i) < ρi(σi).

But this is a contradiction. Thus, σi(ci) = 0. �

Finally, it is instructive to consider the question of iterative elimination of

dominated strategies. Consider again the Traveler’s Dilemma discussed in Chapter

4. Recall from Section 4.2 that, for each player, the strategy of quoting 96 and

the strategy of quoting 97 each end up being eliminated following both iterative

elimination of weakly dominated strategies and iterative elimination of strongly

dominated strategies. Furthermore, recall from Section 4.5 that, for each player,

the pure least-squares regret strategies are the strategy of quoting 96 and the

strategy of quoting 97.

This discrepancy does not contradict Proposition 5.3.1, which ignores iterative

elimination of dominated strategies. Notice that the strategy of quoting 96 and

the strategy of quoting 97 become weakly or strongly dominated for a player

only after several rounds of elimination. Neither strategy is weakly or strongly

dominated prior to any elimination, and so, it is not contradictory that each is

a pure least-squares regret strategy. By contrast, the strategy of quoting 100 is

weakly and strongly dominated prior to any elimination and is also not a pure

least-squares regret strategy, precisely as Proposition 5.3.1 establishes.

The point is that whether or not iterative elimination of dominated strategies

is considered can matter greatly. In general, as discussed in Section 5.4, least-

squares regret and iterative elimination of dominated strategies can yield different

solutions.

5.4 Iterative Elimination of Dominated Strategies

Least-squares regret and iterative elimination of dominated strategies can yield

different solutions. For an illustration of this point, consider the finite two-person

game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 5.2.
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Table 5.2 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 1

0 1

1 2

0 1

This game is dominance solvable. Notice that x2 is strongly dominated for

player 2 by y2 and can thus be eliminated. But once x2 is eliminated, x1 becomes

strongly dominated for player 1 by y1 and can thus be eliminated. Thus, the

unique solution yielded by iterative elimination of dominated strategies is (y1, y2),

which gives the payoff allocation (2,1).

Least-squares regret yields a different solution. The unique least-squares regret

profile in pure strategies is (x1, y2), which gives the payoff allocation (1,1).

The discrepancy observed in this example is a consequence of supposing that

a player is partially strategic in the sense discussed in Sections 1.2, 1.4, 2.2, and

2.5. In Section 7.4, we consider more fully the problems, such as the discrepancy

above, that can arise from making such an assumption.

5.5 Uniformly Dominant Strategies

Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. For any player i

in N and any pure strategy ci in Ci , the pure strategy ci is uniformly dominant for

player i if and only if

ui(c−i , ci) ≥ ui(c−i ,di), ∀di ∈ Ci , ∀c−i ∈ C−i .

Intuitively, a uniformly dominant strategy for a player is at least as good as every

other pure strategy with respect to each partial profile of strategies of the other

players. Such a strategy is an obvious choice for playing the game. Notice that a

player may have more than one uniformly dominant strategy.

We note in passing that while the term weakly dominant is sometimes used to

mean what we call uniformly dominant, we prefer our term since the idea of a pure

strategy being weakly dominant for a player typically involves at least one strict

inequality with respect to some or another partial profile of strategies of the other

players. With the term uniformly dominant, there is no such ambiguity and thus

no risk of confusion.

The following proposition establishes that if a player has at least one uniformly

dominant strategy, then every uniformly dominant strategy is a pure least-squares
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regret strategy and, when assigned probability 1, is a randomized least-squares re-

gret strategy, and every pure least-squares regret strategy is a uniformly dominant

strategy. Thus, the following proposition formalizes the intuition that a uniformly

dominant strategy is an obvious choice for playing a game.

Proposition 5.5.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

For any player i in N , if there exists some pure strategy c̄i in Ci such that c̄i is uniformly

dominant for player i, then, for any pure strategy ci in Ci , if ci is uniformly dominant

for player i, then ci is a pure least-squares regret strategy for player i and, when assigned

probability 1, is a randomized least-squares regret strategy for player i, and if ci is a

pure least-squares regret strategy for player i, then ci is uniformly dominant for player

i.

Proof. Consider any player i in N . Suppose that there exists some pure strategy c̄i

in Ci such that c̄i is uniformly dominant for player i. Then ρi(c̄i) = 0.

Consider any pure strategy ci in Ci . If ci is uniformly dominant for player i,

then ρi(ci) = 0, and so, ci is a pure least-squares regret strategy for player i and,

when assigned probability 1, is a randomized least-squares regret strategy for

player i. If ci is not uniformly dominant for player i, then ρi(ci) > 0, and so, it is

not a pure least-squares regret strategy for player i. �

The following proposition concerns randomized strategies and establishes that

if a player has at least one uniformly dominant strategy, then the support of any

randomized least-squares regret strategy can contain only uniformly dominant

strategies. Intuitively, this proposition establishes that if one has at least one

uniformly dominant strategy, then one can randomize however one pleases as

long as one randomizes exclusively over uniformly dominant strategies.

Proposition 5.5.2. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

For any player i in N , if there exists some pure strategy c̄i in Ci such that c̄i is uniformly

dominant for player i, then, for any randomized strategy σi in ∆(Ci) and any pure

strategy ci in Ci , if σi is a randomized least-squares regret strategy for player i and

σi(ci) > 0, then ci is uniformly dominant for player i.

Proof. Consider any player i in N . Suppose that there exists some pure strategy c̄i

in Ci such that c̄i is uniformly dominant for player i. Then ρi(c̄i) = 0.

Consider any randomized strategy σi in ∆(Ci) and any pure strategy ci in Ci .

Suppose that σi is a randomized least-squares regret strategy for player i and that

σi(ci) > 0 and that ci is not uniformly dominant for player i. Then ρi(σi) > 0. But

then

σi < argmin
τi∈∆(Ci )

ρi(τi).
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But this is a contradiction. Thus, ci is uniformly dominant for player i. �

For an illustration of these two propositions, consider the finite two-person

game Γ = ({1,2},C1,C2,u1,u2) in strategic form known as the Prisoners’ Dilemma

shown in Table 5.3.

Table 5.3 Prisoners’ Dilemma game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 0

2 3

3 1

0 1

It is easy to see that Proposition 5.5.1 holds. Consider any player i in N .

Clearly, yi is for player i both the unique uniformly dominant strategy and the

unique pure least-squares regret strategy. Thus, for any player i in N , the set of

uniformly dominant strategies for player i and the set of pure least-squares regret

strategies for player i are identical. Furthermore, since ρi(yi) = 0, it follows that yi ,

when assigned probability 1, is also a randomized least-squares regret strategy for

player i.

It is likewise easy to see that Proposition 5.5.2 holds. Consider any player i in

N . The regret function ρi : ∆(Ci)→ R is

ρi(σi) =

 max
τi∈∆(Ci )

ui(x−i ,τi)−ui(x−i ,σi)


2

+

 max
τi∈∆(Ci )

ui(y−i ,τi)−ui(y−i ,σi)


2

= (3− (2σi(xi) + 3(1− σi(xi))))2 + (1− (1− σi(xi)))2

= 2(σi(xi))
2.

The regret function ρi is minimized at the point σi(xi) = 0, and so, the unique ran-

domized least-squares regret strategy for player i is yi , which assigns probability

1 to the pure strategy yi , the unique uniformly dominant strategy for player i.

In the absence of uniformly dominant strategies, randomizing over several

pure strategies may be better than playing any particular pure strategy with

probability 1. For an illustration of this point, consider the finite two-person game

Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 5.4.

In this game, the unique randomized least-squares regret strategy for player 1

is 0.5x1 + 0.5y1. Thus, minimizing the regret function ρ1 involves randomizing

between x1 and y1 and not playing either with probability 1.

But this is not to say that in the absence of uniformly dominant strategies, ran-

domizing over several pure strategies need be better than playing any particular
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Table 5.4 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

1 2

pure strategy with probability 1. Indeed, in the absence of uniformly dominant

strategies, it may be best to play some particular pure strategy for sure. For an illus-

tration of this point, consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2)

in strategic form shown in Table 5.5.

Table 5.5 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

z1

x2 y2

2 −9

1 0

0 1

Consider player 1. The regret function ρ1 : ∆(C1)→ R is

ρ1(σ1) =

 max
τ1∈∆(C1)

u1(τ1,x2)−u1(σ1,x2)


2

+

 max
τ1∈∆(C1)

u1(τ1, y2)−u1(σ1, y2)


2

= (2− (2σ1(x1) + σ1(y1)))2 + (1− (1− 10σ1(x1)− σ1(y1)))2

= 104(σ1(x1))2 + 2(σ1(y1))2 + 24σ1(x1)σ1(y1)− 8σ1(x1)− 4σ1(y1) + 4.

It is straightforward to verify that the regret function ρ1 is minimized when

σ1(x1) = 0 and σ1(y1) = 1.

Thus, the unique randomized least-squares regret strategy for player 1 is y1, which

assigns probability 1 to the pure strategy y1.

5.6 Strategic Equivalence

In Section 5.2, we considered the concept of full equivalence of finite games in

strategic form (Myerson, 1991). But other concepts of equivalence have been
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proposed. Of particular significance are certain well-known transformations of

the payoffs in a game—most notably, those transformations that characterize

the concept of strategic equivalence of finite games in strategic form—that leave

unchanged the best-response correspondences of the players. In this section, we

show that least-squares regret is invariant with respect to such transformations.

Strategic equivalence of finite games in strategic form is defined formally as

follows. For any finite games Γ = (N, (Ci)i∈N , (ui)i∈N ) and Γ̂ = (N, (Ci)i∈N , (ûi)i∈N )

in strategic form, the games Γ and Γ̂ are strategically equivalent if and only if,

for every player i in N , there exist some real number Ai and some function

Bi :
�

j∈N−iCj → R such that Ai > 0 and

ûi(c−i , ci) = Aiui(c−i , ci) +Bi(c−i), ∀c−i ∈ C−i , ∀ci ∈ Ci .

Such transformations are particularly notable. For example, Moulin and Vial

(1978) show that, for any two-person game, such transformations are the only

transformations that leave unchanged the best-response correspondences of the

players (setting aside the latitude to make a dominated strategy arbitrarily better

or worse as long as it remains dominated). Furthermore, Moulin and Vial (1978)

introduce the concept of a two-person strategically zero-sum game, which is defined

as any game that is strategically equivalent to some two-person zero-sum game,

and show that, with respect to a number of correlation schemes, including the

scheme characterized by the concept of a correlated strategy (Aumann, 1974;

Aumann, 1987), strategically zero-sum games are precisely those two-person

games whose completely randomized equilibria cannot be improved upon.

As a matter of consistency, a solution concept should not yield different solu-

tions for strategically equivalent games. Any solution concept that fails on this

score must be seen as being faulty in a significant way. For example, as noted

in Sections 1.1 and 5.2, quantal response equilibrium (McKelvey and Palfrey,

1995; McKelvey and Palfrey, 1998) is not scale invariant and can thus be inconsis-

tent, yielding different solutions for strategically equivalent games (Wright and

Leyton-Brown, 2010).

The following theorem establishes that least-squares regret is invariant with

respect to strategic equivalence in the sense that strategically equivalent games

have the same solutions.

Theorem 5.6.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) and Γ̂ = (N, (Ci)i∈N , (ûi)i∈N ) be any

finite games in strategic form such that Γ and Γ̂ are strategically equivalent. For any

player i in N , let ρi : ∆(Ci)→ R be the regret function in randomized strategies for

player i in Γ , let ρ̂i : ∆(Ci)→ R be the regret function in randomized strategies for

player i in Γ̂ , let ρi : Ci → R be the regret function in pure strategies for player i in Γ ,
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and let ρ̂i : Ci → R be the regret function in pure strategies for player i in Γ̂ . Then�
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi)

and �
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di).

Proof. Consider any player i in N . By assumption, the games Γ and Γ̂ are strate-

gically equivalent, and so, there exist some real number Ai and some function

Bi :
�

j∈N−iCj → R such that Ai > 0 and

ûi(c−i , ci) = Aiui(c−i , ci) +Bi(c−i), ∀c−i ∈ C−i , ∀ci ∈ Ci .

Clearly, it follows that

ûi(c−i ,σi) = Aiui(c−i ,σi) +Bi(c−i), ∀c−i ∈ C−i , ∀σi ∈ ∆(Ci).

Thus,

ρ̂i(σi)

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

ûi(c−i ,τi)− ûi(c−i ,σi)


2

, ∀σi ∈ ∆(Ci)

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

(Aiui(c−i ,τi) +Bi(c−i))− (Aiui(c−i ,σi) +Bi(c−i))


2

, ∀σi ∈ ∆(Ci)

= A2
i

∑
c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)


2

, ∀σi ∈ ∆(Ci)

= A2
i ρi(σi), ∀σi ∈ ∆(Ci).

Since Ai > 0, the regret functions ρi and ρ̂i differ by a strictly increasing linear

transformation. And so,

argmin
τi∈∆(Ci )

ρi(τi) = argmin
τi∈∆(Ci )

ρ̂i(τi).

Thus,�
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi).

From the above, it follows that

ρ̂i(ci) = A2
i ρi(ci), ∀ci ∈ Ci .
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Since Ai > 0, the regret functions ρi and ρ̂i differ by a strictly increasing linear

transformation. And so,

argmin
di∈Ci

ρi(di) = argmin
di∈Ci

ρ̂i(di).

Thus,�
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di). �

In some ways, a weakly or strongly dominated strategy for a player is strate-

gically irrelevant and negligible. Thus, it seems reasonable to suppose that, as

long as a weakly or strongly dominated strategy remains so, it can be made arbi-

trarily better or worse without affecting the behavior of the player. The following

theorem establishes that least-squares regret is invariant with respect to such

transformations of weakly or strongly dominated strategies.

Theorem 5.6.2. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) and Γ̂ = (N, (Ci)i∈N , (ûi)i∈N ) be any

finite games in strategic form. For any player i in N , let Di be the set of weakly or

strongly dominated strategies for player i in Γ , let D̂i be the set of weakly or strongly

dominated strategies for player i in Γ̂ , let ρi : ∆(Ci) → R be the regret function in

randomized strategies for player i in Γ , let ρ̂i : ∆(Ci)→ R be the regret function in

randomized strategies for player i in Γ̂ , let ρi : Ci → R be the regret function in pure

strategies for player i in Γ , and let ρ̂i : Ci → R be the regret function in pure strategies

for player i in Γ̂ . If, for every player i in N ,

Di = D̂i

and

ûi(c−i , ci) = ui(c−i , ci), ∀c−i ∈ C−i , ∀ci ∈ Ci \Di ,

then �
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi)

and �
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di).

Proof. Consider any player i in N . Consider first randomized strategies. Suppose

that

Di = D̂i = ∅.
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Since, by assumption,

ûi(c−i , ci) = ui(c−i , ci), ∀c−i ∈ C−i , ∀ci ∈ Ci \Di ,

it follows that Γ and Γ̂ are identical. Thus, it is trivially true that

argmin
τi∈∆(Ci )

ρi(τi) = argmin
τi∈∆(Ci )

ρ̂i(τi).

Now, suppose that

Di = D̂i , ∅.

By Proposition 5.3.2 in Section 5.3, the support of a randomized least-squares

regret strategy cannot contain a weakly or strongly dominated strategy. Thus, only

the undominated strategies in Ci can be included in the support of a randomized

least-squares regret strategy. But, by assumption,

ûi(c−i , ci) = ui(c−i , ci), ∀c−i ∈ C−i , ∀ci ∈ Ci \Di .

And so,

argmin
τi∈∆(Ci )

ρi(τi) = argmin
τi∈∆(Ci )

ρ̂i(τi).

Thus,�
i∈N

argmin
τi∈∆(Ci )

ρi(τi) =
�
i∈N

argmin
τi∈∆(Ci )

ρ̂i(τi).

Now, consider pure strategies. Suppose that

Di = D̂i = ∅.

Since, by assumption,

ûi(c−i , ci) = ui(c−i , ci), ∀c−i ∈ C−i , ∀ci ∈ Ci \Di ,

it follows that Γ and Γ̂ are identical. Thus, it is trivially true that

argmin
di∈Ci

ρi(di) = argmin
di∈Ci

ρ̂i(di).

Now, suppose that

Di = D̂i , ∅.

By Proposition 5.3.1 in Section 5.3, a pure strategy that is weakly or strongly

dominated for a player by some other pure strategy cannot minimize the regret
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function in pure strategies. Thus, only an undominated strategy in Ci can be a

pure least-squares regret strategy. But, by assumption,

ûi(c−i , ci) = ui(c−i , ci), ∀c−i ∈ C−i , ∀ci ∈ Ci \Di ,

And so,

argmin
di∈Ci

ρi(di) = argmin
di∈Ci

ρ̂i(di).

Thus,�
i∈N

argmin
di∈Ci

ρi(di) =
�
i∈N

argmin
di∈Ci

ρ̂i(di). �

5.7 Risk Dominance

When it comes to the equilibria in pure strategies of a 2×2 game in strategic form,

there is a strong relationship between least-squares regret and the concept of risk

dominance proposed by Harsanyi and Selten (1988). In this section, we examine

this relationship more closely.

Particularly significant here is the well-known fact that when it comes to the

equilibria in pure strategies of a 2× 2 game in strategic form, risk dominance is

equivalent to 1/2-dominance (Harsanyi and Selten, 1988; Morris, Rob, and Shin,

1995; Fudenberg and Levine, 1998). This equivalence is defined formally as

follows.

Let Γ = ({1,2},C1,C2,u1,u2) be any finite two-person game in strategic form

such that, for each player i in N , it is the case that |Ci | = 2. For any pure-strategy

profile (c1, c2) in C1 ×C2 such that (c1, c2) is an equilibrium of Γ , the pure-strategy

profile (c1, c2) is risk dominant if and only if∑
c−i∈C−i

0.5ui(c−i , ci) ≥
∑

c−i∈C−i

0.5ui(c−i ,di), ∀i ∈N, ∀di ∈ Ci

or, more simply,∑
c−i∈C−i

ui(c−i , ci) ≥
∑

c−i∈C−i

ui(c−i ,di), ∀i ∈N, ∀di ∈ Ci .

Intuitively, for any pure-strategy profile (c1, c2) in C1 × C2 such that (c1, c2) is

an equilibrium, the pure-strategy profile (c1, c2) is risk dominant if and only if,

for each player i in N , the pure strategy ci is a best response to the uniform

randomization between the two pure strategies of the other player.

The following theorem establishes that when it comes to the equilibria in pure

strategies of a 2× 2 game in strategic form, least-squares regret is equivalent to

risk dominance.
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Theorem 5.7.1. Let Γ = ({1,2},C1,C2,u1,u2) be any finite two-person game in strate-

gic form such that, for each player i in N , it is the case that |Ci | = 2. Then, for any

pure-strategy profile (c1, c2) in C1 ×C2 such that (c1, c2) is an equilibrium of Γ , the

pure-strategy profile (c1, c2) is risk dominant if and only if (c1, c2) is a least-squares

regret profile in pure strategies.

Proof. For concreteness, for any player i in N , let Ci = {xi , yi}. Consider any player

i in N . The game Γ can be shown as in Table 5.6.

Table 5.6 Payoffs of player i in a game in strategic form

@
@

@

i
−i

xi

yi

x−i y−i

ui(x−i ,xi) ui(y−i ,xi)

ui(x−i , yi) ui(y−i , yi)

Let (x−i ,xi) be an equilibrium of Γ . Notice that there may be more than one

equilibrium. Since (x−i ,xi) is an equilibrium, ui(x−i ,xi) is the best-response payoff

with respect to x−i .

Suppose that the equilibrium (x−i ,xi) is risk dominant. There are two cases to

consider depending on whether ui(y−i ,xi) or ui(y−i , yi) is the best-response payoff

with respect to y−i .

Suppose first that ui(y−i ,xi) is the best-response payoff with respect to y−i .

Clearly,

ui(x−i ,xi) +ui(y−i ,xi) ≥ ui(x−i , yi) +ui(y−i , yi)

and 0 = ρi(xi) ≤ ρi(yi). Indeed, this conclusion follows immediately also from the

fact that xi is uniformly dominant for player i and Proposition 5.5.1 in Section

5.5.

Now, suppose that ui(y−i , yi) is the best-response payoff with respect to y−i .

Then

ρi(xi) = (ui(y−i , yi)−ui(y−i ,xi))2 and

ρi(yi) = (ui(x−i ,xi)−ui(x−i , yi))2.

Since (x−i ,xi) is risk dominant,

ui(x−i ,xi) +ui(y−i ,xi) ≥ ui(x−i , yi) +ui(y−i , yi).

Thus,

ui(x−i ,xi)−ui(x−i , yi) ≥ ui(y−i , yi)−ui(y−i ,xi) ≥ 0,
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and so, ρi(xi) ≤ ρi(yi).
Thus, the equilibrium (x−i ,xi) is a least-squares regret profile in pure strategies.

Now, suppose that the equilibrium (x−i ,xi) is a least-squares regret profile in

pure strategies. There are two cases to consider depending on whether ui(y−i ,xi)

or ui(y−i , yi) is the best-response payoff with respect to y−i .

Suppose first that ui(y−i ,xi) is the best-response payoff with respect to y−i .

Clearly, 0 = ρi(xi) ≤ ρi(yi) and

ui(x−i ,xi) +ui(y−i ,xi) ≥ ui(x−i , yi) +ui(y−i , yi).

Now, suppose that ui(y−i , yi) is the best-response payoff with respect to y−i .

Then

ρi(xi) = (ui(y−i , yi)−ui(y−i ,xi))2 and

ρi(yi) = (ui(x−i ,xi)−ui(x−i , yi))2.

Since (x−i ,xi) is a least-squares regret profile in pure strategies, ρi(xi) ≤ ρi(yi).
Thus,

ui(x−i ,xi)−ui(x−i , yi) ≥ ui(y−i , yi)−ui(y−i ,xi) ≥ 0,

and so,

ui(x−i ,xi) +ui(y−i ,xi) ≥ ui(x−i , yi) +ui(y−i , yi).

Thus, the equilibrium (x−i ,xi) is risk dominant. �

For an illustration of Theorem 5.7.1 and the equivalence that it describes,

consider the 2×2 game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table

5.7.

Table 5.7 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

2 1

2 2

0 2

This game has three equilibria: (x1,x2), which gives the payoff allocation (3,2);

(y1, y2), which gives the payoff allocation (2,2); and

((2/3)x1 + (1/3)y1, (2/3)x2 + (1/3)y2),
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which gives the payoff allocation (2,4/3). Notably, the equilibrium (x1,x2) is payoff

dominant, and the equilibrium (y1, y2) is risk dominant.

Now, consider least-squares regret. The unique least-squares regret profile in

pure strategies is precisely the risk-dominant equilibrium (y1, y2).

Least-squares regret with respect to randomized strategies yields a similar

solution. The unique least-squares regret profile in randomized strategies is

(0.2x1 + 0.8y1,0.2x2 + 0.8y2),

which gives the payoff allocation (1.72,1.52).

This solution is quite reasonable. In particular, it comes quite close to being

the risk-dominant equilibrium. Still, this solution is somewhat unsatisfactory

in that it is worse for each player than the risk-dominant equilibrium that is

achieved by considering only pure strategies. But this is to be expected: hedging

via randomization comes at a price.

Of course, how well a least-squares regret profile in randomized strategies

fares relative to a risk-dominant equilibrium in pure strategies depends on the

other payoffs that can be achieved. For an illustration of this point, consider the

2 × 2 game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 5.8, which

differs from the game shown in Table 5.7 only in that u1(x1,x2) is increased from

3 to 10 and u1(y1,x2) is increased from 2 to 9.

Table 5.8 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

10 0

2 1

9 2

0 2

In this game, as Theorem 5.7.1 establishes, the unique least-squares regret

profile in pure strategies is again precisely the risk-dominant equilibrium (y1, y2),

which gives the payoff allocation (2,2), and the unique least-squares regret profile

in randomized strategies is

(0.2x1 + 0.8y1,0.2x2 + 0.8y2),

which gives the payoff allocation (3.12,1.52). Notably, this solution in randomized

strategies is better for player 1 than the risk-dominant equilibrium that is achieved

by considering only pure strategies.
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5.8 Convexity

As discussed in Sections 2.2, 2.5, and 3.2, we suppose the squaring of regret for

technical reasons and for mathematical convenience. As noted earlier, one agree-

able consequence of squaring the regret is that the regret function in randomized

strategies is convex. Thus, minimization of the regret function in randomized

strategies defines a convex set of randomized least-squares regret strategies. It

follows that, for any finite game in strategic form, the set of least-squares regret

profiles in randomized strategies is convex. The following theorem establishes

these facts.

Theorem 5.8.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

Then the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is convex.

Proof. Consider any player i in N . Let σi and σ̂i be any randomized strategies in

∆(Ci). Let λ be any real number such that 0 ≤ λ ≤ 1, and let λσi + (1−λ)σ̂i be the

randomized strategy in ∆(Ci) such that

(λσi + (1−λ)σ̂i)(ci) = λσi(ci) + (1−λ)σ̂i(ci), ∀ci ∈ Ci .

Then

ρi(λσi + (1−λ)σ̂i) =
∑

c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,λσi + (1−λ)σ̂i)


2

.

But notice that

ui(c−i ,λσi + (1−λ)σ̂i) = λui(c−i ,σi) + (1−λ)ui(c−i , σ̂i).

And so,

ρi(λσi + (1−λ)σ̂i)

=
∑

c−i∈C−i

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , σ̂i) +λ(ui(c−i , σ̂i)−ui(c−i ,σi))


2

.

Now, consider the function fi : [0,1]→ R such that

fi(λ) = ρi(λσi + (1−λ)σ̂i).

Notice that

d2(fi(λ))
dλ2 = 2

∑
c−i∈C−i

(ui(c−i , σ̂i)−ui(c−i ,σi))2.
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Clearly,

d2(fi(λ))
dλ2 ≥ 0, ∀λ ∈ [0,1],

and so, the function fi is convex.

Now, notice that

fi(0) = ρi(0σi + (1− 0)σ̂i) = ρi(σ̂i)

and

fi(1) = ρi(1σi + (1− 1)σ̂i) = ρi(σi).

Observe that the line connecting the points (0,ρi(σ̂i)) and (1,ρi(σi)) in R2 is just

the function gi : [0,1]→ R such that

gi(λ) = λρi(σi) + (1−λ)ρi(σ̂i).

But since the function fi is convex,

fi(λ) = ρi(λσi + (1−λ)σ̂i) ≤ gi(λ) = λρi(σi) + (1−λ)ρi(σ̂i), ∀λ ∈ [0,1].

Thus, the regret function ρi is convex. And so, the set

argmin
τi∈∆(Ci )

ρi(τi)

is convex.

Thus, the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is convex since it is the Cartesian product of convex sets. �

Convexity is appealing for several reasons. Convexity of the regret function

in randomized strategies implies that computation of randomized least-squares

regret strategies is a convex optimization problem, which can be solved efficiently

using standard well-developed techniques. Furthermore, convexity of the regret

function in randomized strategies implies that the player has a convex set of

randomized least-squares regret strategies, each of which is considered reasonable,

and can randomize over such strategies in any manner.
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5.9 Uniqueness

Theorem 5.8.1 in Section 5.8 establishes that, for any finite game in strategic form,

the set of least-squares regret profiles in randomized strategies is convex. But this

means that a finite game in strategic form may have infinitely many solutions.

The following theorem describes a sufficient condition for the uniqueness of a

least-squares regret profile in randomized strategies.

Theorem 5.9.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. If,

for every player i in N and for any randomized strategies σi and σ̂i in ∆(Ci) such that

σi , σ̂i , there exists some partial profile c−i in C−i such that

ui(c−i ,σi) , ui(c−i , σ̂i),

then the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton.

Proof. Consider any player i in N . Let σi and σ̂i be any randomized strategies

in ∆(Ci) such that σi , σ̂i . Let λ be any real number such that 0 ≤ λ ≤ 1, and let

λσi + (1−λ)σ̂i be the randomized strategy in ∆(Ci) such that

(λσi + (1−λ)σ̂i)(ci) = λσi(ci) + (1−λ)σ̂i(ci), ∀ci ∈ Ci .

Just as in the proof of Theorem 5.8.1 in Section 5.8, consider the function

fi : [0,1]→ R such that

fi(λ) = ρi(λσi + (1−λ)σ̂i).

Recall that

d2(fi(λ))
dλ2 = 2

∑
c−i∈C−i

(ui(c−i , σ̂i)−ui(c−i ,σi))2.

By assumption, there exists some partial profile c−i in C−i such that

ui(c−i ,σi) , ui(c−i , σ̂i).

Thus,

d2(fi(λ))
dλ2 > 0, ∀λ ∈ [0,1],

and so, the function fi is strictly convex.

Now, notice that

fi(0) = ρi(0σi + (1− 0)σ̂i) = ρi(σ̂i)
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and

fi(1) = ρi(1σi + (1− 1)σ̂i) = ρi(σi).

Observe that the line connecting the points (0,ρi(σ̂i)) and (1,ρi(σi)) in R2 is just

the function gi : [0,1]→ R such that

gi(λ) = λρi(σi) + (1−λ)ρi(σ̂i).

But since the function fi is strictly convex,

fi(λ) = ρi(λσi + (1−λ)σ̂i) < gi(λ) = λρi(σi) + (1−λ)ρi(σ̂i), ∀λ ∈ (0,1).

Thus, the regret function ρi is strictly convex. And so, the set

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton since, by Theorem 5.1.1 in Section 5.1, it is nonempty and since, as

just shown, the regret function ρi is strictly convex.

Thus, the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton since it is the Cartesian product of singleton sets. �

In the case of a small finite game in strategic form in which each player has at

most two pure strategies, the sufficient condition for uniqueness is far simpler.

Theorem 5.9.2. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form such

that, for every player i in N , it is the case that |Ci | ≤ 2. If, for every player i in N , it is

the case that |Ci | = 1 or, for any pure strategies ci and ĉi in Ci such that ci , ĉi , there

exists some partial profile c−i in C−i such that

ui(c−i , ci) , ui(c−i , ĉi),

then the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton.

Proof. Consider any player i in N . Suppose that |Ci | = 1. Then, clearly, |∆(Ci)| = 1.

And so, the set

argmin
τi∈∆(Ci )

ρi(τi)
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is a singleton.

Now, suppose that |Ci | = 2. Let ci and ĉi be any pure strategies in Ci such that

ci , ĉi . By assumption, there exists some partial profile c−i in C−i such that

ui(c−i , ci) , ui(c−i , ĉi).

Let σi and σ̂i be any randomized strategies in ∆(Ci) such that σi , σ̂i . Then

ui(c−i ,σi) = σi(ci)ui(c−i , ci) + σi(ĉi)ui(c−i , ĉi)

= σi(ci)ui(c−i , ci) + (1− σi(ci))ui(c−i , ĉi)

= σi(ci)(ui(c−i , ci)−ui(c−i , ĉi)) +ui(c−i , ĉi)

and

ui(c−i , σ̂i) = σ̂i(ci)ui(c−i , ci) + σ̂i(ĉi)ui(c−i , ĉi)

= σ̂i(ci)ui(c−i , ci) + (1− σ̂i(ci))ui(c−i , ĉi)

= σ̂i(ci)(ui(c−i , ci)−ui(c−i , ĉi)) +ui(c−i , ĉi).

But

σi(ci) , σ̂i(ci)

and

ui(c−i , ci)−ui(c−i , ĉi) , 0.

And so,

σi(ci)(ui(c−i , ci)−ui(c−i , ĉi)) +ui(c−i , ĉi) , σ̂i(ci)(ui(c−i , ci)−ui(c−i , ĉi)) +ui(c−i , ĉi).

Thus, there exists some partial profile c−i in C−i such that

ui(c−i ,σi) , ui(c−i , σ̂i).

And so, by Theorem 5.9.1, the set

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton.

Thus, the set�
i∈N

argmin
τi∈∆(Ci )

ρi(τi)

is a singleton since it is the Cartesian product of singleton sets. �

Intuition suggests that, for any generic finite game in strategic form, the set of

least-squares regret profiles in randomized strategies is a singleton. It would be

interesting to verify this conjecture.
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Further Examples

One significant question that arises when appraising a solution concept is whether

or not it yields the expected or reasonable solutions for the games to which it is

applied and, in particular, for games beyond those that inspired its development.

In this chapter, we move beyond the Traveler’s Dilemma and show that least-

squares regret yields reasonable solutions for many other well-known games—and,

for some, solutions that are even more reasonable than those yielded by standard

solution concepts—and unsatisfactory solutions for some. Section 6.1 studies

the Dollar Auction game and shows how least-squares regret yields a reason-

able solution and outperforms Nash equilibrium. Section 6.2 studies Bertrand

competition and shows how least-squares regret yields a reasonable solution in

line with the experimental evidence and outperforms Nash equilibrium. Section

6.3 studies inspection games and shows how least-squares regret, unlike Nash

equilibrium, captures certain intuitive and experimentally robust effects. Section

6.4 studies Matching Pennies games and evaluates the successes and failures of

least-squares regret and Nash equilibrium. Section 6.5 studies the Chicken game

and shows how least-squares regret yields reasonable solutions and outperforms

Nash equilibrium. Section 6.6 studies coordination games, for which least-squares

regret yields reasonable solutions. Section 6.7 studies the Battle of the Sexes game,

for which least-squares regret yields unsatisfactory solutions. Section 6.8 studies

the two-person bargaining problem and presents two new theorems.

6.1 Dollar Auction

Consider the Dollar Auction game (Raiffa, 1982). In this game, a single dollar is

up for auction. There are two risk-neutral players, and each must privately and

independently submit a bid that can be any real number between 0 and 1. The

high bidder wins the auction and pays the amount of his bid. The low bidder loses



Chapter 6. Further Examples 86

the auction and pays nothing. In the event of a tie, each player has a probability of

0.5 of winning the auction and paying the amount of his bid and a probability of

0.5 of losing the auction and paying nothing. Thus, in this game, the set of players

is N = {1,2}, the pure-strategy sets are

C1 = C2 = {x ∈ R | 0 ≤ x ≤ 1},

and, for any player i in N , the utility function is

ui(c1, c2) = 0 if i < argmax
j∈{1,2}

cj ,

= 1− ci if {i} = argmax
j∈{1,2}

cj ,

= (1− ci)/2 if c1 = c2.

In the unique equilibrium of this game, each player bids 1 for sure and receives

a net payoff of 0. For any other profile of bids, there is always an incentive for

one player to outbid the other player by the slimmest margin. In this way, the

Dollar Auction game models the dynamics of bidding up the price of an item in

an auction.

But this solution seems unreasonable. It seems that no player would ever bid

1. Indeed, for each player, bidding 1 is a weakly dominated strategy—one that is,

in fact, weakly dominated by every other strategy—since it is the only bid that

cannot yield a positive payoff and no bid can yield a negative payoff. Thus, it is

difficult to recommend playing the equilibrium strategy of bidding 1 for sure.

Any other bid would be better. If there is any chance at all of the other player, for

whatever reason, bidding strictly less than 1, it would be rational for one likewise

to bid some amount strictly less than 1. Here, the equilibrium strategy seems

wrongheaded.

By contrast, least-squares regret yields a more reasonable solution. Consider

any player i in N and any bid ci in Ci . If the other player chooses some bid c−i in

C−i that is less than ci , then the payoff to player i from choosing ci is 1− ci while

the best-response payoff is 1− c−i (since the best response is to outbid the other

player by the slimmest margin). If the other player chooses some bid c−i in C−i

that is greater than ci , then the payoff to player i from choosing ci is 0 while the

best-response payoff is again 1− c−i . Thus, for any player i in N ,

ρi(ci) =
∫ ci

0
((1− c−i)− (1− ci))2dc−i +

∫ 1

ci

((1− c−i)− 0)2dc−i

=
∫ ci

0
(ci − c−i)2dc−i +

∫ 1

ci

(1− c−i)2dc−i

= c2
i − ci + 1/3,
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and so,

d(ρi(ci))
dci

= 2ci − 1.

Setting the derivative equal to 0 and solving for ci yields the unique pure least-

squares regret strategy ci = 0.5. Such a bid, being strictly less than 1, is more

reasonable than the equilibrium strategy: it always does at least as well as the

equilibrium strategy, and with respect to half of the pure-strategy set of the other

player, it does strictly better. Such a bid makes intuitive sense also: it balances

the need to bid high enough to win the auction and the need to bid low enough to

avoid a costly victory.

Of course, the unique least-squares regret profile in pure strategies (0.5,0.5),

while reasonable, cannot be an equilibrium since each player, should he expect

the other player to choose 0.5, would prefer to outbid the other player by the

slimmest margin. As discussed in Sections 1.2, 1.4, 2.2, and 2.5, least-squares

regret disregards fully strategic reasoning, and this disregard is an obvious point

of criticism. We discuss this issue in Section 7.4 and address it in Chapter 8.

6.2 Bertrand Competition

Consider Bertrand competition, which models the price-setting behaviors of com-

petitors in a market (Bertrand, 1883). In this game, there are two risk-neutral

players competing in a market to sell 100 units of some homogeneous commodity,

and each must privately and independently set a price to publicize that can be

any real number between 0 and 200. Assume that the players have no costs and

that consumers choose on the basis of price alone. The player setting the lower

price wins the entire market and sells all 100 units at his chosen price. The player

setting the higher price loses the entire market and sells nothing. If the two

players set the same price, they split the market evenly. Thus, in this game, the

set of players is N = {1,2}, the pure-strategy sets are

C1 = C2 = {x ∈ R | 0 ≤ x ≤ 200},

and, for any player i in N , the utility function is

ui(c1, c2) = 0 if i < argmin
j∈{1,2}

cj ,

= 100ci if {i} = argmin
j∈{1,2}

cj ,

= 50ci if c1 = c2.

One may notice several striking similarities between Bertrand competition and

the Dollar Auction game in Section 6.1. This is not surprising. The two games are
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more or less structurally equivalent. More precisely, Bertrand competition, as it

has been described here, can be seen as a kind of reverse auction.

In the unique equilibrium of this game, each player sets a price of 0 for sure

and receives a net payoff of 0. For any other profile of prices, there is always an

incentive for one player to undercut the other player by the slimmest margin. In

this way, Bertrand competition models the dynamics of price wars or convergence

to a market equilibrium.

But this solution seems unreasonable. It seems that no player would ever set

a price of 0. Indeed, for each player, setting a price of 0 is a weakly dominated

strategy—one that is, in fact, weakly dominated by every other strategy—since

it is the only price that cannot yield a positive payoff and no price can yield a

negative payoff. Thus, it is difficult to recommend playing the equilibrium of

strategy of setting a price of 0 for sure. Any other price would be better. If there is

any chance at all of the other player, for whatever reason, setting a price strictly

greater than 0, it would be rational for one likewise to set a price strictly greater

than 0. Here, the equilibrium strategy seems wrongheaded.

By contrast, least-squares regret yields a more reasonable solution. Consider

any player i in N and any price ci in Ci . If the other player chooses some price c−i

in C−i that is less than ci , then the payoff to player i from choosing ci is 0 while

the best-response payoff is 100c−i (since the best response is to undercut the other

player by the slimmest margin). If the other player chooses some price c−i in C−i

that is greater than ci , then the payoff to player i from choosing ci is 100ci while

the best-response payoff is again 100c−i . Thus, for any player i in N ,

ρi(ci) =
∫ ci

0
(100c−i − 0)2dc−i +

∫ 200

ci

(100c−i − 100ci)
2dc−i

= 1002
∫ ci

0
c2
−i dc−i + 1002

∫ 200

ci

(c−i − ci)2dc−i

= 1002(200c2
i − 2002ci + 2003/3),

and so,

d(ρi(ci))
dci

= 1002(400ci − 2002).

Setting the derivative equal to 0 and solving for ci yields the unique pure least-

squares regret strategy ci = 100. Such a price, being strictly greater than 0, is more

reasonable than the equilibrium strategy: it always does at least as well as the

equilibrium strategy, and with respect to half of the pure-strategy set of the other

player, it does strictly better. Such a price makes intuitive sense also: it balances

the need to set a price low enough to capture the market and the need to set a

price high enough to avoid costly underpricing. Notably, the solution yielded
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by least-squares regret agrees with the experimental evidence, which shows that

people consistently choose prices well above that specified by the equilibrium

strategy (Dufwenberg and Gneezy, 2000).

Of course, the unique least-squares regret profile in pure strategies (100,100),

while reasonable, cannot be an equilibrium since each player, should he expect

the other player to choose 100, would prefer to undercut the other player by the

slimmest margin. As discussed in Sections 1.2, 1.4, 2.2, and 2.5, least-squares

regret disregards fully strategic reasoning, and this disregard is an obvious point

of criticism. We discuss this issue in Section 7.4 and address it in Chapter 8.

6.3 Inspection Games

Consider the finite two-person inspection game Γ = ({1,2},C1,C2,u1,u2) in strate-

gic form shown in Table 6.1 (Fudenberg and Tirole, 1991; von Stengel, 2011).

Table 6.1 An inspection game in strategic form

@
@@

1
2

x1

y1

x2 y2

0 −4

0 4

−1 −2

0 −10

This game models the dynamics of compliance inspection. In this game, player

1 is the inspector, and player 2 is the inspectee. Player 1 has two pure strategies:

the “abstain” strategy x1 and the “inspect” strategy y1. Player 2 has two pure

strategies: the “comply” strategy x2 and the “cheat” strategy y2. The aim of

player 1 is to ensure that player 2 complies with the regulations and to catch

any violations, but inspections are costly. Player 2 has an incentive to cheat, but

getting caught is very costly.

The unique equilibrium of this game is

((5/7)x1 + (2/7)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (−4/3,0). Notably, player 1 favors the “abstain”

strategy x1, and player 2 favors the “comply” strategy x2.

Least-squares regret yields a quite different solution. The unique least-squares

regret profile in randomized strategies is

(0.2x1 + 0.8y1, (25/29)x2 + (4/29)y2),
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which gives the payoff allocation (−148/145,−144/145) or roughly (−1.02,−0.99). No-

tably, player 1 favors the “inspect” strategy y1, and player 2 favors the “comply”

strategy x2.

Now, consider the two-person inspection game Γ = ({1,2},C1,C2,u1,u2) shown

in Table 6.2, which differs from the game shown in Table 6.1 only in that u2(y1, y2)

is decreased from −10 to −20. This change models an increase in the cost of getting

caught.

Table 6.2 An inspection game in strategic form

@
@@

1
2

x1

y1

x2 y2

0 −4

0 4

−1 −2

0 −20

The unique equilibrium of this game is

((5/6)x1 + (1/6)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (−4/3,0).

In equilibrium, each player randomizes so as to render the other player indif-

ferent between his strategies, and so, the behavior of a player depends not on his

own payoffs, but on the payoffs of the other player. Thus, increasing the cost of

getting caught reduces the probability of the “inspect” strategy y1 being chosen

while having no effect on the behavior of player 2.

But this is peculiar. The cost of getting caught is greater in this game than

in the game shown in Table 6.1. Thus, one would expect the probability of the

“cheat” strategy y2 being chosen to be lower in this game than in the game shown

in Table 6.1. More generally, one would expect a player to be sensitive to his own

payoffs in the natural way.

Such expectations are not only reasonable; they are well supported. Indeed,

own-payoff effects—and the failure of Nash equilibrium to capture them—are well

recognized and experimentally robust (Ochs, 1995; McKelvey, Palfrey, and Weber,

2000; Goeree and Holt, 2001; Goeree, Holt, and Palfrey, 2003). Furthermore, with

respect to inspection games of the sort considered here, own-payoff effects are

known to play a role in determining behavior (Nosenzo, Offerman, Sefton, and

van der Veen, 2014).

Now, consider least-squares regret. The unique least-squares regret profile in

randomized strategies is

(0.2x1 + 0.8y1, (25/26)x2 + (1/26)y2),
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which gives the payoff allocation (−56/65,−38/65) or roughly (−0.86,−0.58).

According to least-squares regret, the behavior of a player depends on his own

payoffs. Thus, increasing the cost of getting caught reduces the probability of the

“cheat” strategy y2 being chosen, as expected, while also having no effect on the

behavior of player 1.

Thus, least-squares regret is notable here for yielding solutions in line with

intuition and the experimental evidence, outperforming Nash equilibrium, and

capturing the experimentally robust own-payoff effects described earlier.

6.4 Matching Pennies

Consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form

known as Matching Pennies shown in Table 6.3.

Table 6.3 Matching Pennies game in strategic form

@
@@

1
2

x1

y1

x2 y2

80 40

40 80

40 80

80 40

The unique equilibrium of this game is

(0.5x1 + 0.5y1,0.5x2 + 0.5y2),

which gives the payoff allocation (60,60).

As might be expected, the experimental evidence confirms this solution (Go-

eree and Holt, 2001).

Least-squares regret agrees with both Nash equilibrium and the experimental

evidence. For each player i in N , the unique randomized least-squares regret

strategy for player i is 0.5xi + 0.5yi .

Now, consider the asymmetric Matching Pennies game Γ = ({1,2},C1,C2,u1,u2)

shown in Table 6.4, which differs from the game shown in Table 6.3 only in that

u1(x1,x2) is increased from 80 to 320.

The unique equilibrium of this game is

(0.5x1 + 0.5y1, (1/8)x2 + (7/8)y2),

which gives the payoff allocation (75,60).
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Table 6.4 An asymmetric Matching Pennies game in strategic form

@
@@

1
2

x1

y1

x2 y2

320 40

40 80

40 80

80 40

In equilibrium, each player randomizes so as to render the other player indif-

ferent between his strategies, and so, the behavior of a player depends not on his

own payoffs, but on the payoffs of the other player. Thus, increasing u1(x1,x2)

from 80 to 320 reduces the probability of x2 being chosen while having no effect

on the behavior of player 1.

But this is peculiar. The payoff u1(x1,x2) is greater in this game than in the

game shown in Table 6.3. Thus, one would expect the probability of x1 being

chosen to be greater in this game than in the game shown in Table 6.3. More

generally, one would expect a player to be sensitive to his own payoffs in the

natural way. In fact, the experimental evidence confirms these intuitions: in this

game, x1 is chosen with probability 0.96 (Goeree and Holt, 2001).

Now, consider least-squares regret. The unique least-squares regret profile in

randomized strategies is

(0.98x1 + 0.02y1,0.5x2 + 0.5y2),

which gives the payoff allocation (888/5,60) or (177.6,60).

According to least-squares regret, the behavior of a player depends on his

own payoffs. Thus, increasing u1(x1,x2) from 80 to 320 increases the probability

of x1 being chosen, as expected, while also having no effect on the behavior of

player 2. Notably, the unique randomized least-squares regret strategy for player

1 involves choosing x1 with probability 0.98, which very nearly matches the

observed probability of 0.96.

Now, consider the asymmetric Matching Pennies game Γ = ({1,2},C1,C2,u1,u2)

shown in Table 6.5, which differs from the game shown in Table 6.3 only in that

u1(x1,x2) is decreased from 80 to 44.

The unique equilibrium of this game is

(0.5x1 + 0.5y1, (10/11)x2 + (1/11)y2),

which gives the payoff allocation (480/11,60) or roughly (43.64,60).

Again, in equilibrium, each player randomizes so as to render the other player

indifferent between his strategies, and so, the behavior of a player depends not on



Chapter 6. Further Examples 93

Table 6.5 An asymmetric Matching Pennies game in strategic form

@
@@

1
2

x1

y1

x2 y2

44 40

40 80

40 80

80 40

his own payoffs, but on the payoffs of the other player. Thus, decreasing u1(x1,x2)

from 80 to 44 increases the probability of x2 being chosen while having no effect

on the behavior of player 1.

But again, this is peculiar. The payoff u1(x1,x2) is lower in this game than in

the game shown in Table 6.3. Thus, one would expect the probability of x1 being

chosen to be lower in this game than in the game shown in Table 6.3. And again,

more generally, one would expect a player to be sensitive to his own payoffs in the

natural way. In fact, the experimental evidence confirms these intuitions: in this

game, x1 is chosen with probability 0.08 (Goeree and Holt, 2001).

Now, consider least-squares regret. The unique least-squares regret profile in

randomized strategies is

((1/101)x1 + (100/101)y1,0.5x2 + 0.5y2),

which gives the payoff allocation (6042/101,60) or roughly (59.82,60).

Again, according to least-squares regret, the behavior of a player depends on

his own payoffs. Thus, decreasing u1(x1,x2) from 80 to 44 decreases the probability

of x1 being chosen, as expected, while also having no effect on the behavior of

player 2. Notably, the unique randomized least-squares regret strategy for player

1 involves choosing x1 with probability 1/101, which matches fairly closely the

observed probability of 0.08.

Thus, least-squares regret is notable here for yielding solutions in line with

intuition and the experimental evidence, outperforming Nash equilibrium, and

capturing the experimentally robust own-payoff effects (Ochs, 1995; McKelvey,

Palfrey, and Weber, 2000; Goeree and Holt, 2001; Goeree, Holt, and Palfrey, 2003).

But this is not to say that least-squares regret yields solutions that are wholly

consistent with the experimental evidence. Notice that in all three games above,

the unique randomized least-squares regret strategy for player 2 is 0.5x2 + 0.5y2.

But the experimental evidence shows y2 being chosen with probability 0.84 in the

game shown in Table 6.4 and x2 being chosen with probability 0.8 in the game

shown in Table 6.5 (Goeree and Holt, 2001). Player 2 thus appears to anticipate
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the strategy choices of player 1 and to respond accordingly in a manner consistent

with Nash equilibrium.

Least-squares regret fails to capture the observed behavior simply because, as

discussed in Sections 1.2, 1.4, 2.2, and 2.5, it disregards fully strategic reasoning.

This disregard is an obvious point of criticism, and we discuss it in Section

7.4. Interesting questions remain, however, for example, why the behavior of

player 1 is determined more by own-payoff effects than by considerations of what

player 2 might do and how considerations of the behavior of other players can be

incorporated into least-squares regret. We propose one remedy in Chapter 8.

6.5 Chicken

Consider the finite two-person anticoordination game Γ = ({1,2},C1,C2,u1,u2) in

strategic form known as Chicken shown in Table 6.6.

Table 6.6 Chicken game in strategic form

@
@@

1
2

x1

y1

x2 y2

4 1

4 6

6 −3

1 −3

In this game, each player i in N has two pure strategies: the “cautious” strategy

xi and the “bold” strategy yi . Each player would most prefer to be bold himself

and the other to be cautious, but for each player to be bold would be catastrophic.

The best symmetric outcome occurs when each player is cautious; importantly,

this outcome is also efficient.

This game has three equilibria: (y1,x2), which gives the payoff allocation (6,1);

(x1, y2), which gives the payoff allocation (1,6); and

((2/3)x1 + (1/3)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (3,3).

Notice that the best symmetric outcome (x1,x2), which gives the payoff allo-

cation (4,4), is, in fact, also a remarkably good outcome. For each player, this

outcome is only slightly worse than his most preferred outcome, notably better

than the equilibrium in which he is cautious and the other bold, better than the

unique symmetric equilibrium, and considerably better than the catastrophic
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outcome in which each player is bold. And yet, this outcome, though both good

and efficient, is unachievable by players who choose only equilibrium strategies.

Now, consider least-squares regret. The unique least-squares regret profile in

pure strategies is precisely the best symmetric outcome (x1,x2). Thus, least-squares

regret with respect to pure strategies yields as the unique solution precisely the

good and efficient outcome that is unachievable by players who choose only

equilibrium strategies.

Least-squares regret with respect to randomized strategies yields a similar

solution. The unique least-squares regret profile in randomized strategies is

(0.8x1 + 0.2y1,0.8x2 + 0.2y2),

which gives the payoff allocation (3.56,3.56).

This solution is quite reasonable. In particular, it comes quite close to being

the best symmetric outcome and is better for each player than the qualitatively

similar symmetric equilibrium described above. Still, this solution is somewhat

unsatisfactory in that it is worse for each player than the best symmetric outcome

that is achieved by considering only pure strategies. But this is to be expected:

hedging via randomization comes at a price.

6.6 Coordination Games

Consider the finite two-person coordination game Γ = ({1,2},C1,C2,u1,u2) in

strategic form shown in Table 6.7.

Table 6.7 A coordination game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

3 0

0 1

0 1

This game has three equilibria: (x1,x2), which gives the payoff allocation (3,3);

(y1, y2), which gives the payoff allocation (1,1); and

(0.25x1 + 0.75y1,0.25x2 + 0.75y2),

which gives the payoff allocation (0.75,0.75). Notably, in the unique equilibrium

in randomized strategies, each player i in N favors yi , making the outcome (y1, y2)

quite likely.



Chapter 6. Further Examples 96

But these are peculiar results. It seems that the sole reasonable outcome

is (x1,x2), which is clearly superior to the rest. Thus, one would expect the

outcome (x1,x2) to be the unique solution. And while it is possible to generate

it as the unique solution using standard solution concepts, doing so requires an

appeal to other principles such as the focal-point effect (Schelling, 1960) or payoff

dominance (Harsanyi and Selten, 1988).

Furthermore, the efficient outcome (x1,x2) is available and clearly better for

each player. Thus, one would expect each player i in N to favor xi .

Now, consider least-squares regret. The unique least-squares regret profile

in pure strategies is precisely the efficient outcome (x1,x2). Thus, least-squares

regret with respect to pure strategies yields as the unique solution precisely the

sole reasonable outcome (x1,x2), all without needing to appeal to other principles.

Least-squares regret with respect to randomized strategies yields a similar

solution. The unique least-squares regret profile in randomized strategies is

(0.9x1 + 0.1y1,0.9x2 + 0.1y2),

which gives the payoff allocation (2.44,2.44).

While this solution is not the efficient outcome (x1,x2), it is quite reasonable.

Each player i in N favors xi , as expected. Furthermore, since each player strongly

favors enacting the efficient outcome (x1,x2), making it very likely, the resulting

outcome is only marginally worse. Finally, choosing with positive probability

not to enact the efficient outcome can be seen as a sensible hedge to handle the

possibility that the other player chooses not to enact the efficient outcome; the

payoff reduction is simply the price of hedging via randomization.

Thus, least-squares regret is notable here for yielding solutions in line with

intuition, all without needing to appeal to other principles, and outperforming

Nash equilibrium.

Now, consider the finite two-person coordination game Γ = ({1,2},C1,C2,u1,u2)

in strategic form shown in Table 6.8, which differs from the game shown in Table

6.7 only in that, for each player i in N , the payoff ui(x1,x2) is increased from 3 to

10.

This game has three equilibria: (x1,x2), which gives the payoff allocation

(10,10); (y1, y2), which gives the payoff allocation (1,1); and

((1/11)x1 + (10/11)y1, (1/11)x2 + (10/11)y2),

which gives the payoff allocation (10/11,10/11) or roughly (0.91,0.91). Notably, in the

unique equilibrium in randomized strategies, each player i in N strongly favors

yi , making the outcome (y1, y2) very likely.

Furthermore, in equilibrium, each player randomizes so as to render the other

player indifferent between his strategies, and so, the behavior of a player depends
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Table 6.8 A coordination game in strategic form

@
@@

1
2

x1

y1

x2 y2

10 0

10 0

0 1

0 1

not on his own payoffs, but on the payoffs of the other player. Thus, for each

player i in N , increasing ui(x1,x2) from 3 to 10 reduces the probability of xi being

chosen.

But again, these are peculiar results. It seems that the sole reasonable outcome

is (x1,x2), which is clearly superior to the rest. In fact, it is even more outstanding

in this game than in the game shown in Table 6.7. Thus, again, one would expect

the outcome (x1,x2) to be the unique solution. But just as before, to generate it as

the unique solution using standard solution concepts requires an appeal to other

principles such as the focal-point effect (Schelling, 1960) or payoff dominance

(Harsanyi and Selten, 1988). And, perhaps disappointingly, this fact holds no

matter how outstanding the outcome (x1,x2) might be.

Furthermore, the efficient outcome (x1,x2) is available and clearly better for

each player. In fact, the extent of its superiority for each player is even greater in

this game than in the game shown in Table 6.7. Thus, again, one would expect

each player i in N to favor xi .

Finally, for each player i in N , the payoff ui(x1,x2) is greater in this game than

in the game shown in Table 6.7. Thus, one would expect, for each player i in N ,

the probability of xi being chosen to be greater in this game than in the game

shown in Table 6.7. More generally, one would expect a player to be sensitive to

his own payoffs in the natural way.

Now, consider least-squares regret. The unique least-squares regret profile

in pure strategies is precisely the efficient outcome (x1,x2). Thus, least-squares

regret with respect to pure strategies yields as the unique solution precisely the

sole reasonable outcome, all without needing to appeal to other principles.

Least-squares regret with respect to randomized strategies yields a similar

solution. The unique least-squares regret profile in randomized strategies is

((100/101)x1 + (1/101)y1, (100/101)x2 + (1/101)y2),

which gives the payoff allocation (100001/10201,100001/10201) or roughly (9.80,9.80).

While this solution is not the efficient outcome (x1,x2), it is quite reasonable.

Each player i in N favors xi , as expected. Furthermore, since each player very
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strongly favors enacting the efficient outcome (x1,x2), making it almost inevitable,

the resulting outcome is only marginally worse. Also, as noted earlier, choosing

with positive probability not to enact the efficient outcome can be seen as a

sensible hedge to handle the possibility that the other player chooses not to enact

the efficient outcome; the payoff reduction is simply the price of hedging via

randomization. Finally, for each player i in N , increasing ui(x1,x2) from 3 to 10

increases the probability of xi being chosen, as expected.

Thus, least-squares regret is notable here for yielding solutions in line with

intuition, all without needing to appeal to other principles, outperforming Nash

equilibrium, and capturing the experimentally robust own-payoff effects (Ochs,

1995; McKelvey, Palfrey, and Weber, 2000; Goeree and Holt, 2001; Goeree, Holt,

and Palfrey, 2003).

Needless to say, least-squares regret cannot guarantee efficiency. Consider

the finite two-person coordination game Γ = ({1,2},C1,C2,u1,u2) in strategic form

shown in Table 6.9.

Table 6.9 A coordination game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

3 2.5

2.5 1

0 1

The unique least-squares regret profile in pure strategies is the inefficient

outcome (y1, y2), which gives the payoff allocation (1,1), and the unique least-

squares regret profile in randomized strategies is

(0.2x1 + 0.8y1,0.2x2 + 0.8y2),

which gives the payoff allocation (1.16,1.16).

These solutions seem unsatisfactory. The efficient outcome (x1,x2) is available

and clearly better for each player. Thus, one would expect each player i in N to

favor xi .

Still, it seems reasonable for each player i in N to favor yi . If the other player

chooses x−i , then yi yields a payoff that is only marginally less than the best-

response payoff that is achieved by choosing xi , and if the other player chooses y−i ,

then yi yields the best-response payoff, which is notably greater than the payoff

from choosing xi . Thus, it seems reasonable, all things considered, to favor yi .

Indeed, this is the very idea behind least-squares regret. In a sense, the inefficient
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solutions yielded by least-squares regret are reasonable insofar as the logic just

described is.

These solutions are reasonable for yet another reason: the inefficient outcome

(y1, y2) is a risk-dominant equilibrium. Indeed, as Theorem 5.7.1 in Section 5.7

establishes, when it comes to the equilibria in pure strategies of a 2×2 game in

strategic form, least-squares regret is equivalent to risk dominance. Thus, the

convergence here of least-squares regret and risk dominance is precisely what one

would expect.

6.7 Battle of the Sexes

Consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form

known as Battle of the Sexes shown in Table 6.10.

Table 6.10 Battle of the Sexes game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

1 0

0 1

0 3

This game has three equilibria: (x1,x2), which gives the payoff allocation (3,1);

(y1, y2), which gives the payoff allocation (1,3); and

(0.75x1 + 0.25y1,0.25x2 + 0.75y2),

which gives the payoff allocation (0.75,0.75). The first equilibrium is the most

preferred outcome of player 1, and the second equilibrium is the most preferred

outcome of player 2, and so, the players prefer different outcomes. In the third

equilibrium, the players act in a random and uncoordinated manner, but each

favors enacting his most preferred outcome. This third equilibrium is notably

inefficient.

Now, consider least-squares regret. The unique least-squares regret profile in

pure strategies is the conflict outcome (x1, y2), which gives the payoff allocation

(0,0), and the unique least-squares regret profile in randomized strategies is

(0.9x1 + 0.1y1,0.1x2 + 0.9y2),

which gives the payoff allocation (0.36,0.36).
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These solutions are admittedly unsatisfactory. But it is worth noting that such

outcomes may well obtain in play, especially in the absence of any coordination,

learning, or other mechanisms.

Least-squares regret can sometimes yield surprisingly gratifying solutions.

Consider the modified finite Battle of the Sexes game Γ = ({1,2},C1,C2,u1,u2) in

strategic form shown in Table 6.11, which differs from the game shown in Table

6.10 only in that, for each player i in N , the payoff ui(y1,x2) is increased from 0 to

2.5.

Table 6.11 Modified Battle of the Sexes game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

1 0

2.5 1

2.5 3

This game has three equilibria: (x1,x2), which gives the payoff allocation (3,1);

(y1, y2), which gives the payoff allocation (1,3); and

((1/3)x1 + (2/3)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (2,2).

Notice that this third equilibrium is worse for each player than the nonequi-

librium compromise outcome (y1,x2), which gives the payoff allocation (2.5,2.5)

and is only slightly worse for each player than his most preferred outcome. In

fact, the compromise outcome (y1,x2) is a remarkably good outcome, and yet, it is

unachievable by players who choose only equilibrium strategies.

Least-squares regret yields a more satisfying solution. The unique least-squares

regret profile in pure strategies is precisely the compromise outcome (y1,x2). Thus,

least-squares regret with respect to pure strategies yields as the unique solution

the remarkably good outcome that is unachievable by players who choose only

equilibrium strategies.

Least-squares regret with respect to randomized strategies yields a similar

solution. The unique least-squares regret profile in randomized strategies is

(0.2x1 + 0.8y1,0.8x2 + 0.2y2),

which gives the payoff allocation (2.24,2.24).

This solution is quite reasonable. In particular, it comes close to being the

compromise outcome and is better for each player than the qualitatively similar
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third equilibrium described above. Still, this solution is somewhat unsatisfactory

in that it is worse for each player than the compromise outcome that is achieved

by considering only pure strategies. But this is to be expected: hedging via

randomization comes at a price.

6.8 The Two-Person Bargaining Problem

Consider the two-person bargaining problem (Nash, 1950b; Nash, 1953). In this

game, two players must divide some good between themselves, and each must

propose the proportion of the good that he himself will take. If the proportions

sum to no more than 1, each gets his demand; otherwise, each gets nothing. Thus,

in this game, the set of players is N = {1,2}, the pure-strategy sets are

C1 = C2 = {x ∈ R | 0 ≤ x ≤ 1},

and, for any player i in N , the utility function is

ui(c1, c2) = 0 if c1 + c2 > 1,

= fi(ci) if c1 + c2 ≤ 1,

where the function fi : Ci → R is increasing and twice differentiable. Without loss

of generality, for any player i in N , let the function fi be normalized so that

fi(0) = 0 and fi(1) = 1.

For any player i in N , let the function Fi : Ci → R be any antiderivative of fi .

For any allocation (c1, c2) in C1 ×C2, the allocation (c1, c2) is feasible if and only

if c1 + c2 ≤ 1.

It is easy to see that least-squares regret here yields reasonable solutions.

Consider any player i in N and any demand ci in Ci . If the other player chooses

some demand c−i in C−i that is less than 1 − ci , then the allocation is feasible,

but inefficient, and the payoff to player i from choosing ci is fi(ci) while the best-

response payoff is fi(1 − c−i) (since the best response is to choose 1 − c−i). If the

other player chooses some demand c−i in C−i that is greater than 1− ci , then the

allocation is not feasible, and the payoff to player i from choosing ci is 0 while the

best-response payoff is again fi(1− c−i). Thus, for any player i in N ,

ρi(ci) =
∫ 1−ci

0
(fi(1− c−i)− fi(ci))2dc−i +

∫ 1

1−ci
(fi(1− c−i)− 0)2dc−i

=
∫ 1−ci

0
(fi(ci))

2 − 2fi(ci)fi(1− c−i)dc−i +
∫ 1

0
(fi(1− c−i))2dc−i

= (fi(ci))
2(1− ci)− 2fi(ci)(Fi(1)−Fi(ci)) +

∫ 1

0
(fi(1− c−i))2dc−i ,
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and so,

d(ρi(ci))
dci

= (fi(ci))
2 − 2

d(fi(ci))
dci

[(Fi(1)−Fi(ci))− fi(ci)(1− ci)]

and

d2(ρi(ci))

dc2
i

=2fi(ci)
d(fi(ci))

dci
+ 2

(
d(fi(ci))

dci

)2

(1− ci)

− 2
d2(fi(ci))

dc2
i

[(Fi(1)−Fi(ci))− fi(ci)(1− ci)].

In the standard formulation of the two-person bargaining problem, each player

is risk neutral. It is easy to see that if, for each player i in N , the function fi is

linear, then least-squares regret yields precisely the Nash bargaining solution.

Consider any player i in N . If the function fi is linear, then

d(ρi(ci))
dci

= c2
i − 2[(1/2− c2

i /2)− ci(1− ci)]

= 2ci − 1.

Setting the derivative equal to 0 and solving for ci yields the unique pure least-

squares regret strategy ci = 0.5. Thus, the final allocation is (0.5,0.5), which is

precisely the Nash bargaining solution.

What is notable about least-squares regret is that it generates precisely the

Nash bargaining solution without requiring the axioms described in Nash (1950b)

and Nash (1953). Furthermore, it is trivial to apply, intuitive, and parsimonious.

It is natural to wonder whether, by acting in accordance with least-squares

regret, the players will end up with a feasible allocation. The following theorem

establishes that if, for each player i in N , the function fi is concave, then the final

allocation is feasible.

Theorem 6.8.1. Consider any two-person bargaining problem as defined above. If, for

each player i in N , the function fi is concave, then, for any allocation (c1, c2) in C1×C2,

if

ρ1(c1) ≤ ρ1(d1), ∀d1 ∈ C1

and

ρ2(c2) ≤ ρ2(d2), ∀d2 ∈ C2,

then (c1, c2) is feasible.

Proof. Consider any player i in N . Since the function fi is nonnegative, increasing,

and concave,

d2(ρi(ci))

dc2
i

=2fi(ci)
d(fi(ci))

dci
+ 2

(
d(fi(ci))

dci

)2

(1− ci)

− 2
d2(fi(ci))

dc2
i

[(Fi(1)−Fi(ci))− fi(ci)(1− ci)] ≥ 0, ∀ci ∈ Ci .
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Thus, the regret function ρi is convex.

Consider the point ci = 0.5. Notice that every concave function must lie

somewhere between the following two extreme cases. In the first extreme case (in

which the function fi is linear),

fi(0.5) = 0.5,
d(fi(0.5))

dci
= 1, Fi(1) = 0.5, and Fi(0.5) = 1/8,

and so,

d(ρi(0.5))
dci

= 0.

In the second extreme case,

fi(0.5) = 1 and
d(fi(0.5))

dci
= 0,

and so,

d(ρi(0.5))
dci

= 1.

Thus, for any concave function fi ,

0 ≤
d(ρi(0.5))

dci
≤ 1.

The point to note here is that the first derivative of the regret function ρi at the

point ci = 0.5 is nonnegative. If

d(ρi(0.5))
dci

= 0,

which holds if and only if the function fi is linear, then the point ci = 0.5 is the

unique point that minimizes the regret function ρi . But if

0 <
d(ρi(0.5))

dci
≤ 1,

so that the first derivative of the regret function ρi at the point ci = 0.5 is strictly

positive, then any point that minimizes the regret function ρi must be strictly less

than 0.5 since ρi is convex.

And so, for any point ci in Ci , if

ρi(ci) ≤ ρi(di), ∀di ∈ Ci ,

then ci ≤ 0.5. Thus, for any allocation (c1, c2) in C1 ×C2, if

ρ1(c1) ≤ ρ1(d1), ∀d1 ∈ C1

and

ρ2(c2) ≤ ρ2(d2), ∀d2 ∈ C2,

then c1 + c2 ≤ 1, and so, (c1, c2) is feasible. �
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Intuitively, a risk-averse player is conservative with his demands and unwilling

to risk demanding an amount that might lead to an allocation that is not feasible.

Risk aversion on the part of each player thus guarantees that the players will never

end up outside of the set of feasible allocations.

It is instructive to compare least-squares regret with iterated regret minimiza-

tion (Halpern and Pass, 2012) with respect to the two-person bargaining problem.

The following theorem establishes that if, for each player i in N , the function

fi is concave, then the final payoff allocation generated by least-squares regret

is at least as great as that generated by iterated regret minimization. Thus, the

two-person bargaining problem is another example in which least-squares regret

outperforms iterated regret minimization.

Theorem 6.8.2. Consider any two-person bargaining problem as defined above. For

each player i in N , let the function fi be concave. Let (c̄1, c̄2) be any allocation in

C1 ×C2 such that

ρ1(c̄1) ≤ ρ1(d1), ∀d1 ∈ C1

and

ρ2(c̄2) ≤ ρ2(d2), ∀d2 ∈ C2.

Let (ĉ1, ĉ2) be any allocation in C1 ×C2 such that

ĉ1 ∈ RM∞1 (C1 ×C2)

and

ĉ2 ∈ RM∞2 (C1 ×C2).

Then

(u1(c̄1, c̄2),u2(c̄1, c̄2)) ≥ (u1(ĉ1, ĉ2),u2(ĉ1, ĉ2)).

Proof. Consider any player i in N . Since the function fi is nonnegative, increasing,

and concave,

d2(ρi(ci))

dc2
i

=2fi(ci)
d(fi(ci))

dci
+ 2

(
d(fi(ci))

dci

)2

(1− ci)

− 2
d2(fi(ci))

dc2
i

[(Fi(1)−Fi(ci))− fi(ci)(1− ci)] ≥ 0, ∀ci ∈ Ci .

Thus, the regret function ρi is convex.

Let ĉi be any point in Ci such that

ĉi ∈ RM∞i (C1 ×C2).
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Notice that ĉi = f −1
i [{0.5}].

Now, consider the point ci = f −1
i [{0.5}]. Notice that since the function fi is

concave,

d(fi(f
−1
i [{0.5}]))
dci

≥ 1

and

(Fi(1)−Fi(f −1
i [{0.5}]))− fi(f −1

i [{0.5}])(1− f −1
i [{0.5}]) ≥ 1/8.

Thus, for any concave function fi ,

d(ρi(f
−1
i [{0.5}]))
dci

≤ 0.

If

d(ρi(f
−1
i [{0.5}]))
dci

= 0,

which holds if and only if the function fi is linear, then the point ci = f −1
i [{0.5}] is

the unique point that minimizes the regret function ρi . But if

d(ρi(f
−1
i [{0.5}]))
dci

< 0,

then any point that minimizes the regret function ρi must be strictly greater than

f −1
i [{0.5}] since ρi is convex.

And so, for any point ci in Ci , if

ρi(ci) ≤ ρi(di), ∀di ∈ Ci ,

then ci ≥ f −1
i [{0.5}].

Let c̄i be any point in Ci such that

ρi(c̄i) ≤ ρi(di), ∀di ∈ Ci .

By Theorem 6.8.1 above, the allocation (c̄1, c̄2) is feasible, and so, the allocation

(ĉ1, ĉ2) is likewise feasible. Thus,

ui(c̄1, c̄2) = fi(c̄i) and ui(ĉ1, ĉ2) = fi(ĉi).

And so, since c̄i ≥ ĉi and the function fi is increasing,

ui(c̄1, c̄2) = fi(c̄i) ≥ fi(ĉi) = ui(ĉ1, ĉ2).

Thus,

(u1(c̄1, c̄2),u2(c̄1, c̄2)) ≥ (u1(ĉ1, ĉ2),u2(ĉ1, ĉ2)). �
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Intuitively, given risk aversion on the part of each player, choosing any pure

least-squares regret strategy yields a payoff that is at least as great as that generated

by choosing any pure strategy that survives iterated regret minimization. Iterated

regret minimization is, relative to least-squares regret, characterized by a greater

degree of conservatism and pessimism. This is unsurprising since, as discussed in

Section 3.2, iterated regret minimization (without iterative elimination) can be

seen as an extreme case of a natural generalization of least-squares regret.



7

Weaknesses of Least-Squares Regret

In this chapter, we consider some of the weaknesses of least-squares regret. Section

7.1 discusses the failure of least-squares regret to satisfy the principle of Indepen-

dence of Irrelevant Alternatives. Section 7.2 compares least-squares regret with

maximin with respect to two-person zero-sum games. Section 7.3 examines the

sensitivity of least-squares regret to framing. Section 7.4 considers some of the

problems that can arise from defining least-squares regret in a way that disregards

fully strategic reasoning.

7.1 Independence of Irrelevant Alternatives

The principle of Independence of Irrelevant Alternatives appears throughout game

theory and economics and is defined formally as follows. Let X be any nonempty

set of alternatives. The principle of Independence of Irrelevant Alternatives

asserts that, for any set S ⊆ X of alternatives and any alternatives x and y in S, if

the alternative x is preferred to the alternative y with respect to the set S, then,

for any alternative z in X such that z < S, the alternative x is preferred to the

alternative y with respect to the set S ∪ {z}. Intuitively, the principle asserts that

the ordering over two alternatives depends only on those alternatives and not on

any others, which are deemed irrelevant to the comparison at hand.

As might be expected, least-squares regret fails to satisfy Independence of

Irrelevant Alternatives. For an illustration of this point, consider the finite two-

person game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 7.1.

Notice that, for player 1,

ρ1(x1) = 1 and ρ1(y1) = 4.

Thus, in this game, x1 is preferred to y1.
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Table 7.1 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

x2 y2

1 4

2 2

Now, consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic

form shown in Table 7.2, which differs from the game shown in Table 7.1 only in

the addition of the pure strategy z1 and the payoffs that it yields.

Table 7.2 Payoffs of player 1 in a game in strategic form

@
@@

1
2

x1

y1

z1

x2 y2

1 4

2 2

4 1

Notice that, for player 1,

ρ1(x1) = 9, ρ1(y1) = 8, and ρ1(z1) = 9.

Thus, in this game, y1 is preferred to x1.

Adding z1—which, moreover, is ultimately not recommended since ρ1(z1) = 9—

changes the ordering over x1 and y1. Thus, Independence of Irrelevant Alterna-

tives is violated.

But Independence of Irrelevant Alternatives is a notoriously controversial

principle. It states that the ordering over two alternatives should be independent

of the context in which they are presented. In practice, however, choice is often

context-sensitive, and such context effects are experimentally robust; see, for

example, Simonson and Tversky (1992) and Tversky and Simonson (1993). Thus,

it is not clear that the failure of least-squares regret to satisfy the principle of

Independence of Irrelevant Alternatives should be considered a real or significant

weakness. Indeed, it seems natural to suppose, as the foregoing example illustrates,

that the reasonableness of a strategy should depend on the alternatives that are
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available. Intuitively, it is important to consider the entire context when making a

decision, and should that context change, a re-evaluation would be advisable.

7.2 Maximin and Two-Person Zero-Sum Games

The standard solution concept for two-person zero-sum games is maximin (von

Neumann, 1928; Wald, 1939; Wald, 1945; von Neumann and Morgenstern, 1947;

Wald, 1950), which, when randomization is allowed, also coincides exactly with

Nash equilibrium. Least-squares regret represents a significant departure from

both of these solution concepts.

For an illustration of some of the differences, consider the finite two-person

zero-sum game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 7.3.

Table 7.3 A two-person zero-sum game in strategic form

@
@@

1
2

x1

y1

x2 y2

4 0

−4 0

1 2

−1 −2

Consider first maximin with respect to pure strategies. For player 1, the

minimum payoff from choosing x1 is 0, and the minimum payoff from choosing

y1 is 1, and so, y1 is the unique pure maximin strategy. For player 2, the minimum

payoff from choosing x2 is −4, and the minimum payoff from choosing y2 is −2,

and so, y2 is the unique pure maximin strategy. Thus, the unique profile of pure

maximin strategies is (y1, y2), which gives the payoff allocation (2,−2).

Now, consider maximin with respect to randomized strategies. As Figure 7.1

shows, for player 1, the minimum expected payoff is maximized when

4σ1(x1) + (1− σ1(x1)) = 2(1− σ1(x1)),

that is, at the point σ1(x1) = 0.2, and so, the unique randomized maximin strategy

is 0.2x1 + 0.8y1. As Figure 7.2 shows, for player 2, the minimum expected payoff

is maximized when

−4σ2(x2) = −σ2(x2)− 2(1− σ2(x2)),

that is, at the point σ2(x2) = 0.4, and so, the unique randomized maximin strategy

is 0.4x2 + 0.6y2. Thus, the unique profile of randomized maximin strategies is

(0.2x1 + 0.8y1,0.4x2 + 0.6y2),
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Figure 7.1 Expected payoffs of player 1

0.2 0.4 0.6 0.8 1

2

4

σ1(x1)

u1

Figure 7.2 Expected payoffs of player 2

0.2 0.4 0.6 0.8 1

−4

−2

σ2(x2)

u2

which gives the payoff allocation (1.6,−1.6). Notably, player 1 favors y1, and player

2 favors y2.

Now, consider least-squares regret. The unique least-squares regret profile in

pure strategies is (x1, y2), which gives the payoff allocation (0,0), and the unique

least-squares regret profile in randomized strategies is

((9/13)x1 + (4/13)y1, (1/17)x2 + (16/17)y2),

which gives the payoff allocation (168/221,−168/221) or roughly (0.76,−0.76). Notably,

player 1 favors x1, and player 2 favors y2.

Thus, when it comes to two-person zero-sum games, least-squares regret can

yield solutions that are different from those yielded by maximin and thus also

by Nash equilibrium. This discrepancy is unfortunate in light of the standard

arguments for the latter two solution concepts with respect to two-person zero-

sum games. From the perspective of maximin, by playing a maximin strategy, one

maximizes the minimum payoff and thus assures oneself of a certain minimum

payoff no matter what the other player might do. Furthermore, supposing that

the other player plays his maximin strategy, one cannot do better by deviating

since a maximin strategy is also an equilibrium strategy. Alternatively, from the

perspective of Nash equilibrium, by playing an equilibrium strategy, one also

maximizes the minimum payoff. These are rather compelling considerations.



Chapter 7. Weaknesses of Least-Squares Regret 111

Least-squares regret, maximin, and Nash equilibrium represent different ways

to reason about a game. Least-squares regret involves partially strategic reasoning

and assessing personal payoffs in the form of regrets and choosing a strategy so

as to minimize the divergence from the best-response payoffs. Maximin involves

assessing personal payoffs, but not regrets, and choosing a strategy so as to maxi-

mize the minimum payoff. Nash equilibrium involves fully strategic reasoning

and choosing a strategy so as to maximize the expected payoff with respect to the

strategy of the other player.

Which way to reason is the most reasonable depends on a number of consid-

erations, for example, whether partially strategic or fully strategic reasoning is

more appropriate; whether regrets or payoffs are more significant; and whether it

is most important to minimize the divergence from the best-response payoffs, to

maximize the minimum payoff, or to maximize the expected payoff with respect

to the strategy of the other player.

7.3 Framing Effects

It has long been known that how a decision problem is presented can affect what

choice is made (Kahneman and Tversky, 1979; Tversky and Kahneman, 1981;

Levin, Schneider, and Gaeth, 1998). Unsurprisingly, framing effects can arise

also in games, raising questions about how to take such effects into account; see,

for example, Eliaz and Rubinstein (2011); Dufwenberg, Gächter, and Hennig-

Schmidt (2011); Ellingsen, Johannesson, Mollerstrom, and Munkhammar (2012),

and Dreber, Ellingsen, Johannesson, and Rand (2013).

In this section, we show that least-squares regret is susceptible to certain

framing effects. Consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in

strategic form shown in Table 7.4.

Table 7.4 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

0 1

0 1

10 0

0 1

Notice that, for player 1,

ρ1(x1) = 100 and ρ1(y1) = 1.
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Thus, the unique pure least-squares regret strategy for player 1 is y1.

Since u1(y1,x2) is so great and u1(x1,x2) is so low by comparison, the regret

that y1 could induce is significant. Thus, given how the game is presented, y1

appears to be extremely attractive from the perspective of least-squares regret and

has a dominating effect.

This effect is akin to the distortionary effect of an extreme value on the mean of

a set of numbers. Just as an extreme value can pull the mean of a set of numbers in

its direction, a strategy that could induce significant regret can pull least-squares

regret in its direction.

But this can be problematic, as the game above shows. Notice that x2 is strongly

dominated for player 2 by y2. Given this fact, y1 is, in reality, not as attractive

as least-squares regret would suggest: the significant payoff that it could yield—

and thus the significant regret that it could induce—turns on player 2 acting

imperfectly. Thus, y1 can be seen as a naïve strategy whose sensibility depends on

imperfect or irrational play. It can be likened to a naïve chess tactic that sets up

a rudimentary trap and would yield a significant gain should the opponent fall

prey to the trap. But if player 2 can be expected to play sensibly, choosing y2 and

not x2, then y1 is unattractive and should thus be seen as negligible.

Thus, how a game is framed can matter a great deal for least-squares regret.

This sensitivity to framing is to be expected given the basic idea behind least-

squares regret. As discussed in Sections 1.2, 1.3, 2.2, and 2.5, the regret of a

strategy with respect to a partial profile of strategies of the other players can be

seen as a measure of error. The greater is the degree to which a strategy falls short

of a best response, the graver a mistake it is to choose it. Accepting this idea means

accepting that the magnitude of regret is significant and that it is important to

be sensitive to it. Thus, least-squares regret should depend on the magnitudes

of the regrets in one way or another. But this means also that the distortionary

framing effects described above are inescapable and must be accepted as the price

of defining the reasonableness of a strategy in terms of regret.

Still, we readily admit that there is something unreasonable about assigning

undue significance to regret that could conceivably be considered negligible, say,

because the partial profile that would generate it can be discounted. We consider

this weakness in Section 7.4, and in Chapter 8, we introduce a refinement of

least-squares regret that addresses this weakness and others.

7.4 Fully Strategic Reasoning

As discussed in Sections 1.2, 1.4, 2.2, and 2.5, least-squares regret considers

partially strategic players and disregards fully strategic reasoning. In this section,
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we consider some of the problems that can arise from defining least-squares regret

in this way.

Consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form

shown in Table 7.5.

Table 7.5 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 1

1 0

0 2

1 0

The unique least-squares regret profile in pure strategies is (x1,x2), which

gives the payoff allocation (2,1), and the unique least-squares regret profile in

randomized strategies is

(0.8x1 + 0.2y1,x2),

which gives the payoff allocation (1.6,1).

Now, consider the finite two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic

form shown in Table 7.6, which differs from the game shown in Table 7.5 only in

the payoffs of player 2.

Table 7.6 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 1

0 1

0 2

0 1

The unique least-squares regret profile in pure strategies is (x1, y2), which

gives the payoff allocation (1,1), and the unique least-squares regret profile in

randomized strategies is

(0.8x1 + 0.2y1, y2),

which gives the payoff allocation (1.2,1).

Notice that the pure and randomized least-squares regret strategies for player

1 in the one game are identical to the pure and randomized least-squares regret
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strategies for player 1 in the other game. Indeed, they must be identical since

the utility functions for player 1 in the two games are identical. Thus, as the

two games illustrate, the payoffs of player 2 are irrelevant to player 1 and can be

varied arbitrarily without affecting the behavior of player 1. In general, according

to least-squares regret, the behavior of a player is completely independent of the

payoffs of the other players.

But this independence is too strong and perhaps unrealistic. Just as the be-

havior of a player depends on his own payoffs, the payoffs of the other players

can be expected to influence how those players behave. And if a player can rea-

son about how the other players might behave and to respond accordingly, it is

reasonable to expect his behavior to vary depending on the payoffs of the other

players. But least-squares regret, which disregards fully strategic reasoning, is

unable to capture this variation and this intuition.

Furthermore, the most natural or reasonable way to solve a game may involve

recognizing fully strategic reasoning. For example, the game shown in Table 7.6

can be solved by recognizing that player 2 can be expected to play y2 for sure

(since x2 is strongly dominated for player 2 by y2) and that player 1, considering

this, can be expected to play y1 for sure. In general, fully strategic reasoning may

be indispensable for solving a game.

But since least-squares regret disregards fully strategic reasoning, it can fail

to capture the most natural or reasonable way to solve a game and may yield an

unreasonable solution. For example, the disregard of fully strategic reasoning

explains why least-squares regret fails to yield for the game shown in Table 7.6

the solution (y1, y2) just described.

Finally, least-squares regret can yield solutions that would be unreasonable or

unstable if they were to be anticipated by fully strategic players. For an illustration

of this point, recall that, in the game shown in Table 7.6, the unique least-squares

regret profile in pure strategies is (x1, y2). But if the players are fully strategic, then

this profile is unreasonable and unstable. In particular, it is not an equilibrium

since player 1, should he expect player 2 to choose y2, would prefer to deviate and

choose y1. Furthermore, it is unreasonable and unstable in the sense that player 1,

should he expect player 2 to choose y2, could reduce his regret to 0 by deviating

and choosing the best response y1. Thus, while least-squares regret may be adept

at characterizing the behavior of partially strategic players, it may be less adept at

characterizing the behavior of fully strategic players.

It is worth noting that these problems are not unique to least-squares regret.

Indeed, it is easy to see that all of these problems plague iterated regret minimiza-

tion also. Halpern and Pass (2012) consider a number of treatments, including

introducing lexicographic belief systems reminiscent of the lexicographic proba-
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bility systems of Blume, Brandenburger, and Dekel (1991) and Brandenburger,

Friedenberg, and Keisler (2008) and restricting analysis to proper subsets of the

set of partial profiles of strategies of the other players.

It may be important to refine least-squares regret to incorporate fully strategic

reasoning. One approach might involve, following Halpern and Pass (2012),

restricting analysis to proper subsets of the set of partial profiles, for example,

those resulting from the sets of undominated strategies. An alternative approach

might involve assigning weights to partial profiles; we consider this particular

refinement of least-squares regret in Chapter 8. The question of how best to

incorporate fully strategic reasoning remains to be determined.



8

Mutual Weighted Least-Squares

Regret

As discussed in Sections 1.2, 1.4, 2.2, 2.5, and 7.4, least-squares regret considers

partially strategic players and is defined accordingly. While the assumption that

a player is partially strategic may be convenient and a realistic characterization

of typical reasoning and behavior, it may also be too restrictive, as information

about the behavior and beliefs of the other players is discarded. Furthermore,

as discussed in Section 2.5, least-squares regret assumes no mutuality condition,

with the result that in a least-squares regret profile, the strategies that the players

choose may differ from the ones that the players expect to be chosen.

In this chapter, we introduce a refinement of least-squares regret, which we

call mutual weighted least-squares regret, that addresses these concerns. The idea

is to modify the regret function in randomized strategies defined in Section 2.2

by assigning probability weights to the partial profiles of strategies of the other

players, where the distribution is just the probability distribution induced by the

randomized strategies of the other players, and then to introduce a mutuality

condition that requires that the randomized strategies that the players choose be

precisely the ones that the players expect to be chosen.

Thus, mutual weighted least-squares regret considers fully strategic players

capable of reasoning about one another. Section 8.1 formally defines mutual

weighted least-squares regret. Section 8.2 studies an illustrative example. Section

8.3 presents a general existence theorem. Section 8.4 examines the relationship

between mutual weighted least-squares regret and Nash equilibrium. Section

8.5 examines whether recursively updating the probability distributions by itera-

tively minimizing the respective weighted regret functions of the players yields

convergence to a fixed point.
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8.1 Formal Definition

Mutual weighted least-squares regret is defined formally as follows. Let Γ =

(N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. For any player i in N , the

set

C−i =
�
j∈N−i

Cj

is the set of partial profiles that can ultimately obtain in play. But the partial

profiles in C−i need not be all on a par; some may be likelier than others depending

on how the other players choose their strategies. More precisely, the randomized

strategies of the other players induce a probability distribution over the set C−i .

For any player i in N , any partial profile σ−i = (σj)j∈N−i in
�

j∈N−i∆(Cj), and any

partial profile c−i in C−i , the probability that c−i obtains in play is just∏
j∈N−i

σj(cj)

since the players choose their pure strategies independently.

The induced probabilities can be used as weights in the following way. For any

player i in N , let ρi :
�

j∈N ∆(Cj)→ R be the weighted regret function in randomized

strategies for player i such that

ρi(σ−i ,σi) =
∑

c−i∈C−i

 ∏
j∈N−i

σj(cj)


 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,σi)


2

.

This weighted regret function differs from the regret function in randomized

strategies defined in Section 2.2 only in that each squared regret term is multiplied

by its corresponding weight. Intuitively, for any randomized-strategy profile

σ = (σj)j∈N in
�

j∈N ∆(Cj), the value ρi(σ−i ,σi) is the weighted regret from choosing

σi with respect to σ−i .

As with least-squares regret as defined in Section 2.2, we suppose that a player

chooses a strategy so as to minimize the divergence from the best-response payoffs.

But here, unlike with least-squares regret, the minimum is computed with respect

to a partial profile, which induces the weights to be used in the computation. For

any player i in N , any partial profile σ−i in
�

j∈N−i∆(Cj), and any randomized

strategy σi in ∆(Ci), the randomized strategy σi is a randomized weighted least-

squares regret strategy for player i with respect to σ−i if and only if

ρi(σ−i ,σi) ≤ ρi(σ−i ,τi), ∀τi ∈ ∆(Ci).

Intuitively, player i expects the other players to choose their strategies according

to σ−i , computes the probability distribution induced by σ−i over the set C−i , and
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then chooses a randomized strategy so as to minimize the weighted regret function

ρi with respect to σ−i . Notice that the randomized strategies that the players end

up choosing need not coincide with the ones that the players expect to be chosen.

Now, we introduce a mutuality condition. In particular, we suppose that a

player chooses a randomized weighted least-squares regret strategy and, more-

over, has no mistaken beliefs about the strategies of the other players. For any

randomized-strategy profile σ = (σj)j∈N in
�

j∈N ∆(Cj), the randomized-strategy

profile σ is a mutual weighted least-squares regret profile in randomized strategies of

Γ if and only if

ρi(σ−i ,σi) ≤ ρi(σ−i ,τi), ∀i ∈N, ∀τi ∈ ∆(Ci).

Intuitively, in a mutual weighted least-squares regret profile in randomized strate-

gies, the randomized strategies that minimize the respective weighted regret

functions of the players are precisely the ones that the players expect to be chosen.

Notably, a mutual weighted least-squares regret profile in randomized strategies

is stable in the sense that no player could reduce his weighted regret by deviating

given the randomized strategies of the other players.

8.2 An Example

For an illustration of mutual weighted least-squares regret, consider the finite

two-person game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 8.1.

Table 8.1 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 3

1 0

3 1

0 1

For any randomized-strategy profile (σ1,σ2) in ∆(C1)×∆(C2), the randomized-

strategy profile (σ1,σ2) is a mutual weighted least-squares regret profile in ran-

domized strategies of the game shown in Table 8.1 if and only if σ1 is a randomized

weighted least-squares regret strategy for player 1 with respect to σ2 and σ2 is a

randomized weighted least-squares regret strategy for player 2 with respect to σ1.

Consider player 1. Notice that whatever player 1 chooses, he risks playing

imperfectly depending on what player 2 chooses. Thus, player 1 chooses a ran-

domized strategy so as to minimize the weighted regret function ρ1 with respect

to the randomized strategy of player 2.
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Consider any randomized strategy σ1 in ∆(C1) and any randomized strategy σ2

in ∆(C2). If player 2 ends up choosing x2, which obtains with probability σ2(x2),

then the payoff to player 1 is 2σ1(x1) + 3(1− σ1(x1)) while the best-response payoff

is 3, and so, the regret is 3− (2σ1(x1) + 3(1− σ1(x1))). If player 2 ends up choosing

y2, which obtains with probability σ2(y2) = 1− σ2(x2), then the payoff to player 1

is 3σ1(x1) + (1 − σ1(x1)) while the best-response payoff is 3, and so, the regret is

3− (3σ1(x1) + (1− σ1(x1))). The weighted regret function ρ1 :
�

j∈N ∆(Cj)→ R is

ρ1(σ1,σ2)

= σ2(x2)

 max
τ1∈∆(C1)

u1(τ1,x2)−u1(σ1,x2)


2

+ σ2(y2)

 max
τ1∈∆(C1)

u1(τ1, y2)−u1(σ1, y2)


2

= σ2(x2)(3− (2σ1(x1) + 3(1− σ1(x1))))2 + (1− σ2(x2))(3− (3σ1(x1) + (1− σ1(x1))))2,

and so,

∂(ρ1(σ1,σ2))
∂σ1(x1)

= 8σ1(x1) + 8σ2(x2)− 6σ1(x1)σ2(x2)− 8.

Consider player 2. Notice that whatever player 2 chooses, he risks playing

imperfectly depending on what player 1 chooses. Thus, player 2 chooses a ran-

domized strategy so as to minimize the weighted regret function ρ2 with respect

to the randomized strategy of player 1.

Consider any randomized strategy σ2 in ∆(C2) and any randomized strategy σ1

in ∆(C1). If player 1 ends up choosing x1, which obtains with probability σ1(x1),

then the payoff to player 2 is σ2(x2) while the best-response payoff is 1, and so, the

regret is 1−σ2(x2). If player 1 ends up choosing y1, which obtains with probability

σ1(y1) = 1− σ1(x1), then the payoff to player 2 is 1− σ2(x2) while the best-response

payoff is 1, and so, the regret is 1 − (1 − σ2(x2)). The weighted regret function

ρ2 :
�

j∈N ∆(Cj)→ R is

ρ2(σ1,σ2)

= σ1(x1)

 max
τ2∈∆(C2)

u2(x1,τ2)−u2(x1,σ2)


2

+ σ1(y1)

 max
τ2∈∆(C2)

u2(y1,τ2)−u2(y1,σ2)


2

= σ1(x1)(1− σ2(x2))2 + (1− σ1(x1))(1− (1− σ2(x2)))2,

and so,

∂(ρ2(σ1,σ2))
∂σ2(x2)

= 2σ2(x2)− 2σ1(x1).

Setting each of the partial derivatives above equal to 0 and solving the resulting

system of equations yield

σ1(x1) = σ2(x2) = 2/3.
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Thus, the unique mutual weighted least-squares regret profile in randomized

strategies is

((2/3)x1 + (1/3)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (7/3,5/9).

8.3 Existence

In this section, we show that mutual weighted least-squares regret satisfies a

general existence theorem. The proof of the theorem relies on the following

fixed-point theorem due to Kakutani (1941).

Kakutani Fixed-Point Theorem (Kakutani (1941)). Let S be any nonempty, con-

vex, bounded, and closed subset of a finite-dimensional vector space. Let F : S→→ S

be any upper-hemicontinuous point-to-set correspondence such that, for every x in S,

the set F(x) is a nonempty convex subset of S. Then there exists some x̄ in S such that

x̄ ∈ F(x̄).

The following general existence theorem establishes that every finite game

in strategic form has at least one mutual weighted least-squares regret profile in

randomized strategies. Thus, for any finite game in strategic form, a solution is

guaranteed to exist.

Theorem 8.3.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

Then there exists some mutual weighted least-squares regret profile in randomized

strategies.

Proof. The set
�

j∈N ∆(Cj) of randomized-strategy profiles is a nonempty, convex,

bounded, and closed subset of a finite-dimensional vector space.

For any player i in N , let Ri :
�

j∈N−i∆(Cj) →→ ∆(Ci) be the point-to-set

correspondence such that

Ri(σ−i) = argmin
τi∈∆(Ci )

ρi(σ−i ,τi).

Intuitively, for any partial profile σ−i in
�

j∈N−i∆(Cj), the set Ri(σ−i) is the set of

randomized weighted least-squares regret strategies for player i with respect to

σ−i .

Consider any player i in N . Let σ−i be any partial profile in
�

j∈N−i∆(Cj). Since

the set ∆(Ci) is a nonempty compact set and since the weighted regret function

ρi :
�

j∈N ∆(Cj)→ R is continuous, ρi has a minimum with respect to σ−i . Thus,

for any partial profile σ−i in
�

j∈N−i∆(Cj), the set Ri(σ−i) is nonempty.
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Now, let σ−i be any partial profile in
�

j∈N−i∆(Cj), and let σi and σ̂i be any

randomized strategies in ∆(Ci). Let λ be any real number such that 0 ≤ λ ≤ 1, and

let λσi + (1−λ)σ̂i be the randomized strategy in ∆(Ci) such that

(λσi + (1−λ)σ̂i)(ci) = λσi(ci) + (1−λ)σ̂i(ci), ∀ci ∈ Ci .

Then

ρi(σ−i ,λσi + (1−λ)σ̂i) =∑
c−i∈C−i

 ∏
j∈N−i

σj(cj)


 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,λσi + (1−λ)σ̂i)


2

.

But notice that

ui(c−i ,λσi + (1−λ)σ̂i) = λui(c−i ,σi) + (1−λ)ui(c−i , σ̂i).

And so,

ρi(σ−i ,λσi + (1−λ)σ̂i) =∑
c−i∈C−i

 ∏
j∈N−i

σj(cj)


 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , σ̂i) +λ(ui(c−i , σ̂i)−ui(c−i ,σi))


2

.

Now, consider the function fi : [0,1]→ R such that

fi(λ) = ρi(σ−i ,λσi + (1−λ)σ̂i).

Notice that

d2(fi(λ))
dλ2 = 2

∑
c−i∈C−i

 ∏
j∈N−i

σj(cj)

 (ui(c−i , σ̂i)−ui(c−i ,σi))2.

Clearly,

d2(fi(λ))
dλ2 ≥ 0, ∀λ ∈ [0,1],

and so, the function fi is convex.

Now, notice that

fi(0) = ρi(σ−i ,0σi + (1− 0)σ̂i) = ρi(σ−i , σ̂i)

and

fi(1) = ρi(σ−i ,1σi + (1− 1)σ̂i) = ρi(σ−i ,σi).

Observe that the line connecting the points (0,ρi(σ−i , σ̂i)) and (1,ρi(σ−i ,σi)) in R2

is just the function gi : [0,1]→ R such that

gi(λ) = λρi(σ−i ,σi) + (1−λ)ρi(σ−i , σ̂i).
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But since the function fi is convex,

fi(λ) = ρi(σ−i ,λσi +(1−λ)σ̂i) ≤ gi(λ) = λρi(σ−i ,σi)+(1−λ)ρi(σ−i , σ̂i), ∀λ ∈ [0,1].

Thus, for any partial profile σ−i in
�

j∈N−i∆(Cj), the weighted regret function ρi
is convex. And so, for any partial profile σ−i in

�
j∈N−i∆(Cj), the set Ri(σ−i) is

convex.

Let R :
�

j∈N ∆(Cj)→→
�

j∈N ∆(Cj) be the point-to-set correspondence such

that

R(σ) =
�
i∈N

Ri(σ−i).

To understand this point-to-set correspondence, consider any randomized-

strategy profiles σ and τ in
�

j∈N ∆(Cj). Then τ ∈ R(σ) if and only if

τi ∈ Ri(σ−i), ∀i ∈N.

For any randomized-strategy profile σ in
�

j∈N ∆(Cj), the set R(σ) is a nonempty

convex subset of
�

j∈N ∆(Cj) since it is the Cartesian product of nonempty convex

sets.

Now, let (σk)∞k=1 and (τk)∞k=1 be any convergent sequences, and suppose that

σk ∈
�
j∈N

∆(Cj), ∀k ∈ {1,2,3, . . .},

τk ∈ R(σk), ∀k ∈ {1,2,3, . . .},

σ̄ = lim
k→∞

σk , and

τ̄ = lim
k→∞

τk .

These conditions imply that

ρi(σ
k
−i ,τ

k
i ) ≤ ρi(σk−i ,ξi), ∀i ∈N, ∀ξi ∈ ∆(Ci), ∀k ∈ {1,2,3, . . .}.

By continuity of the weighted regret function ρi , this in turn implies that

ρi(σ̄−i , τ̄i) ≤ ρi(σ̄−i ,ξi), ∀i ∈N, ∀ξi ∈ ∆(Ci).

So,

τ̄i ∈ Ri(σ̄−i), ∀i ∈N,

and so, τ̄ ∈ R(σ̄). Thus, the correspondence R :
�

j∈N ∆(Cj) →→
�

j∈N ∆(Cj) is

upper-hemicontinuous.

Thus, by the Kakutani fixed-point theorem (Kakutani, 1941), there exists some

randomized-strategy profile σ in
�

j∈N ∆(Cj) such that σ ∈ R(σ). That is, σ is a

mutual weighted least-squares regret profile in randomized strategies. �
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8.4 Mutual Weighted Least-Squares Regret and

Nash Equilibrium

It is natural to ask whether there is any connection between mutual weighted

least-squares regret and Nash equilibrium. The following theorem answers this

question simply. While the theorem is straightforward to state and to prove,

we make it explicit in order to emphasize the effect of considering randomized

strategies.

Theorem 8.4.1. Let Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form.

Then, for any pure-strategy profile c in
�

j∈N Cj , the pure-strategy profile c is an

equilibrium of Γ if and only if c is a mutual weighted least-squares regret profile in

randomized strategies.

Proof. Let c be any pure-strategy profile in
�

j∈N Cj . Suppose that c is an equilib-

rium. Then

ui(c−i , ci) ≥ ui(c−i ,di), ∀i ∈N, ∀di ∈ Ci .

And so,

ui(c−i , ci) = max
τi∈∆(Ci )

ui(c−i ,τi), ∀i ∈N.

Clearly,

ρi(c−i , ci) =

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i , ci)


2

= 0, ∀i ∈N.

Thus,

ρi(c−i , ci) ≤ ρi(c−i ,τi), ∀i ∈N, ∀τi ∈ ∆(Ci).

That is, c is a mutual weighted least-squares regret profile in randomized strate-

gies.

Now, let c be any pure-strategy profile in
�

j∈N Cj . Suppose that c is a mutual

weighted least-squares regret profile in randomized strategies. Then

ρi(c−i , ci) ≤ ρi(c−i ,τi), ∀i ∈N, ∀τi ∈ ∆(Ci).

Notice that

ρi(c−i ,ξi) =

 max
τi∈∆(Ci )

ui(c−i ,τi)−ui(c−i ,ξi)


2

, ∀i ∈N, ∀ξi ∈ ∆(Ci).
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Since

ci ∈ argmin
τi∈∆(Ci )

ρi(c−i ,τi) and min
τi∈∆(Ci )

ρi(c−i ,τi) = 0, ∀i ∈N,

it follows that

ui(c−i , ci) = max
τi∈∆(Ci )

ui(c−i ,τi), ∀i ∈N.

Thus,

ui(c−i , ci) ≥ ui(c−i ,di), ∀i ∈N, ∀di ∈ Ci .

That is, c is an equilibrium. �

For an illustration of Theorem 8.4.1, consider the finite two-person game

Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 8.2.

Table 8.2 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

2 1

0 2

1 2

This game has two equilibria in pure strategies: (x1,x2), which gives the payoff

allocation (3,2), and (y1, y2), which gives the payoff allocation (2,2).

It is straightforward to verify that these two equilibria are also the only two

mutual weighted least-squares regret profiles in randomized strategies of this

game. The weighted regret function ρ1 :
�

j∈N ∆(Cj)→ R is

ρ1(σ1,σ2)

= σ2(x2)

 max
τ1∈∆(C1)

u1(τ1,x2)−u1(σ1,x2)


2

+ σ2(y2)

 max
τ1∈∆(C1)

u1(τ1, y2)−u1(σ1, y2)


2

= σ2(x2)(3− 3σ1(x1))2 + (1− σ2(x2))(2− 2(1− σ1(x1)))2,

and so,

∂(ρ1(σ1,σ2))
∂σ1(x1)

= 5σ1(x1)σ2(x2) + 4σ1(x1)− 9σ2(x2).
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The weighted regret function ρ2 :
�

j∈N ∆(Cj)→ R is

ρ2(σ1,σ2)

= σ1(x1)

 max
τ2∈∆(C2)

u2(x1,τ2)−u2(x1,σ2)


2

+ σ1(y1)

 max
τ2∈∆(C2)

u2(y1,τ2)−u2(y1,σ2)


2

= σ1(x1)(2− (2σ2(x2) + (1− σ2(x2))))2 + (1− σ1(x1))(2− (σ2(x2) + 2(1− σ2(x2))))2,

and so,

∂(ρ2(σ1,σ2))
∂σ2(x2)

= σ2(x2)− σ1(x1).

Setting each of the partial derivatives above equal to 0 and solving the resulting

system of equations yield

σ1(x1) = 1 and σ2(x2) = 1

and

σ1(x1) = 0 and σ2(x2) = 0,

which are precisely the equilibria (x1,x2) and (y1, y2), respectively.

When randomized strategies are considered, the set of mutual weighted least-

squares regret profiles in randomized strategies and the set of equilibria need

not coincide. Notice that the game shown in Table 8.2 has one equilibrium in

randomized strategies, namely,

(0.5x1 + 0.5y1,0.4x2 + 0.6y2),

which gives the payoff allocation (1.2,1.5). But, as just shown, the game has just

two mutual weighted least-squares regret profiles in randomized strategies, and

in each such profile, each player plays some pure strategy with probability 1.

For another illustration of the foregoing point, consider again the finite two-

person game Γ = ({1,2},C1,C2,u1,u2) in strategic form shown in Table 8.1 in

Section 8.2 and reproduced in Table 8.3.

The unique equilibrium of this game is

(0.5x1 + 0.5y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (7/3,0.5), and, as noted in Section 8.2, the unique

mutual weighted least-squares regret profile in randomized strategies is

((2/3)x1 + (1/3)y1, (2/3)x2 + (1/3)y2),

which gives the payoff allocation (7/3,5/9).
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Table 8.3 A game in strategic form

@
@@

1
2

x1

y1

x2 y2

2 3

1 0

3 1

0 1

Thus, the set of mutual weighted least-squares regret profiles in randomized

strategies and the set of equilibria are disjoint. Notably, while the payoff to

player 1 under mutual weighted least-squares regret is the same as that under

equilibrium, the payoff to player 2 under mutual weighted least-squares regret is

strictly greater than that under equilibrium.

That mutual weighted least-squares regret and Nash equilibrium should di-

verge when randomized strategies are considered is unsurprising. They represent

different ways to reason about a game. Mutual weighted least-squares regret in-

volves choosing a strategy so as to minimize the divergence from the best-response

payoffs. Nash equilibrium involves choosing a strategy so as to maximize the

expected payoff.

8.5 Recursion and Convergence

As discussed in Section 8.3, Theorem 8.3.1 establishes that every finite game in

strategic form has at least one mutual weighted least-squares regret profile in

randomized strategies. One natural question that arises is the following. Let

Γ = (N, (Ci)i∈N , (ui)i∈N ) be any finite game in strategic form. Let (σk)∞k=1 be any

sequence defined recursively thus:

σ1 ∈
�
j∈N

∆(Cj) and

σk+1 ∈ R(σk), ∀k ∈ {1,2,3, . . .}.

The question is whether, for any sequence (σk)∞k=1 defined recursively as above,

there exists some randomized-strategy profile σ̄ in
�

j∈N ∆(Cj) such that

lim
k→∞

σk = σ̄ and σ̄ ∈ R(σ̄).

Intuitively, the question is whether recursively updating the probability distribu-

tions by iteratively minimizing the respective weighted regret functions of the

players yields convergence to a mutual weighted least-squares regret profile in

randomized strategies.
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As might be expected, the answer is no. For an illustration of this point,

consider again the Battles of the Sexes game Γ = ({1,2},C1,C2,u1,u2) shown in

Table 6.10 in Section 6.7 and reproduced in Table 8.4.

Table 8.4 Battle of the Sexes game in strategic form

@
@@

1
2

x1

y1

x2 y2

3 0

1 0

0 1

0 3

Consider the sequence (σk)∞k=1, recursively defined as above, such that

σ1 = (0.5x1 + 0.5y1,0.5x2 + 0.5y2).

It is straightforward to verify that

σk = (0.5x1 + 0.5y1,0.5x2 + 0.5y2) if k is odd,

= (0.9x1 + 0.1y1,0.1x2 + 0.9y2) if k is even.

That is, the sequence (σk)∞k=1 oscillates between

(0.5x1 + 0.5y1,0.5x2 + 0.5y2)

and

(0.9x1 + 0.1y1,0.1x2 + 0.9y2)

and so does not converge. Thus, even though, by Theorem 8.3.1 in Section

8.3, a mutual weighted least-squares regret profile in randomized strategies is

guaranteed to exist, it cannot be attained via the recursive process defined above

if

σ1 = (0.5x1 + 0.5y1,0.5x2 + 0.5y2),

as specified.
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Conclusion

As we have seen with games such as the Traveler’s Dilemma in Chapter 4 and those

in Chapter 6, the established solution concepts can sometimes yield solutions

that seem in some ways unsatisfactory. The need to develop solution concepts

that reflect more accurately and effectively how people actually reason about and

play games has long been recognized, and new solution concepts continue to be

developed.

The question of how people actually reason about and play games is partic-

ularly significant and not simply a matter of description or practice since it is

impossible to get far in game theory without attending to it. And this is because

the question of how one ought to act in a given situation depends significantly on

how others can be expected actually to act. Thus, the project of developing a good

normative theory is inseparable from that of developing a good descriptive theory.

We have endeavored to develop a new solution concept that seeks to provide

an intuitive characterization of reasonable or observed behavior in a wide range

of games, including some that have proved problematic for standard game theory.

The essence of this dissertation consists in showing that our proposed solution

concept of least-squares regret satisfies the relevant criteria, exhibits the desired

properties, and yields the expected or reasonable solutions. Of course, work

remains to be done, and Section 9.1 proposes some questions for further research.

9.1 Further Questions

While we have endeavored to develop and to defend least-squares regret, we

view this dissertation essentially as an exploration of a new approach to solving

noncooperative games. But a number of questions remain to be answered.

One important question to be answered more fully is whether people, in fact,

act in accordance with least-squares regret in particular or with some form or
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another of regret minimization in general.

One way to answer this question would be to develop further games and

experiments and to test specifically for reasoning based on regret. The results

relating to the Traveler’s Dilemma in Chapter 4 and to the various games in

Chapter 6 as well as the experimental results in psychology noted in Section 1.3

are promising and suggest that regret may figure importantly in reasoning about

a game. Furthermore, the results relating to the games proposed in Section 3.2,

games that could form the basis of further experiments, suggest that reasoning

about a game is characterized more by something like least-squares regret than by

some minimax regret approach such as iterated regret minimization.

Another way to determine whether people, in fact, act in accordance with

least-squares regret would be to axiomatize least-squares regret in the manner of

Stoye (2011) in the case of minimax regret or of von Neumann and Morgenstern

(1947) in the case of expected utility maximization. An analysis of the axioms

underlying least-squares regret might then help us to determine how intuitive,

credible, and compelling least-squares regret might be as a characterization of

typical reasoning and behavior.

As discussed in Sections 1.2, 1.4, 2.2, 2.5, and 7.4, least-squares regret considers

partially strategic players. In Chapter 8, we introduced mutual weighted least-

squares regret, which, as noted, considers fully strategic players. It would be

worthwhile and very natural to explore the intermediate case of weighted least-

squares regret, which can be understood as least-squares regret with the admission

of nonuniform probability distributions or, equivalently, as mutual weighted

least-squares regret without the mutuality condition. Intuitively, the idea is

that a player might be significantly strategic and devise fairly reasonable beliefs

about the strategies of the other players without being fully strategic and having

perfect beliefs. The aim, then, would be to model the formation of the probability

distributions to be used as weights, perhaps by appealing to least-squares regret

or mutual weighted least-squares regret as benchmark models.

In the interest of tractability, we have restricted attention to finite games in

strategic form and, where tractable, to simple games with infinite strategy sets. It

would be worthwhile to extend least-squares regret to other classes of games.

Least-squares regret could be extended to Bayesian games. Perhaps the most

straightforward approach would be simply to consider, for any Bayesian game,

least-squares regret with respect to each type of each player, but there may be

alternative approaches that are more flexible or fruitful.

Least-squares regret could be extended also to games in extensive form. While

a game in extensive form can be reduced in the usual way to a game in strategic

form and thereby made amenable to least-squares regret, there is good reason to
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develop a version of least-squares regret that can be applied directly to games in

extensive form. To begin, the reduction of a game in extensive form to a game in

strategic form may involve the loss of significant information so that a full analysis

of the initial game in extensive form may differ in important ways from that of

the resulting game in strategic form. Furthermore, extending least-squares regret

to games in extensive form may involve considering important and interesting

intricacies and subtleties that do not arise in games in strategic form and can thus

lead to a better understanding of the nature of regret and regret minimization

more generally. Least-squares regret applied directly to a game in extensive form

may yield solutions and insights very different from those that emerge when it is

applied to the corresponding game in strategic form.

One further area to which least-squares regret can be extended is mechanism

design. Just as a number of important mechanisms have been developed on the

basis of Nash equilibrium, there remains the prospect of developing alternative

mechanisms on the basis of least-squares regret instead. Particularly attractive ar-

eas include auction theory and bargaining theory given their practical significance

and the usefulness of least-squares regret, as illustrated in Sections 6.1, 6.2, and

6.8, in reasoning about auctions and auction-like games and bargaining games,

situations in which considerations of regret appear to be especially forceful.

While this dissertation is essentially an exploration of an alternative approach

to solving games and while numerous questions remain, it is our hope that least-

squares regret can be developed further and become a valuable supplement to the

canon of solution concepts for noncooperative games.
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