
U.S.S.R. Comput.Maths.Math.Phys.,Vo1.28,No.5,pp.85-91,1988 

Printed in Great Britain 

CYCLIC GAMES AND AN ALGORITHM TO FIND MINIMAX 
IN DIRECTED GRAPHS* 

0041-5553/88 $lO.OO+O.OO 

01990 Pergamon Press plc 

CYCLE MEANS 

V.A. GURVICH, A.V. KARZANOV and L-G. K~CHIVAN 

An algorithm is described that finds optimal stationary strategies in 
dynamic two-person conflicts with perfect information, deterministic 

transitions, finite sets of positions, and time-averaged limiting 

integral payoff. 

1. Introduction. 
We describe an algorithm that finds optimal stationary strategies in dynamic two-person 

conflicts with perfect information, antagonistic interests, and time-averaged limiting integral 
payoff. We call the problem described in this paper a cyclic game, and it includes as a 
special case the standard combinatorial optimization problem which finds a cycle of maximum 
average edge cost in a diagraph. Other special cases of cyclic games are ergodic extensions 
of matrix games and finite position games with perfect information. Cyclic games themselves 
are a special case of stochastic games with perfect information. 

A cyclic game may be given the following interpretation. A dynamic system with a finite 

state set V occupies one of the states v(t)=V at each instant of time t=O, 1,.... The 
system dynamics is described by the transition digraph G-_(V,E), where the edge e=vu=E 
signifies that a transition is allowed from state v=v(t)to statelu=v(t+l) at theinstantt, We 
assumethatthereareno multipleedgesinthegraph G, but loops e=vv are allowed. The graph G 
is leafless, i.e., for each vertex v=v the set E(v) of outgoing edges is non-empty. 
A payoff function c: E+IR is defined on the edges of the graph, and the control problem is 
to maximize this payoff function in the mean 

along the path '(v(O)...v(t)...}. Denote by V(u) the set of states reachable by the system 
in one step from the state v i.e., the set of end vertices of the edges in E(u). If at 
each instant the choice of a new state v(t~~)~v(v(t)) is in our power, i.e., the system is 
completely controllable in any state, then the problem obviously reduces to finding a maximum 
average cost cycle reachable from the initial state v(0). (Effective strongly polynomial 
algorithms are available for finding such cycles /l, 2/). For each state v=v, there exists 
a choice s of a transition u='v(v), independent of time and the initial state v(O), which 
optimizes the path payoff as t-m. The mapping .s : v-V(v) is naturally interpreted as an 
optimal stationary control strategy of the system over an infinite time interval. 

Now let the state set V of the system of partitioned into two non-intersecting subsets 

A and B (AUB=~,AfiB=@), so that the choice of the transition u=V(u) is in our power only 
when the state v(t) is contained in the set A of controllable states. Following the guaran- 
teed payoff concept, we assume that in the states v(t)&3 the choice of the transition 
u=V(v) is left to the opponent; the states usA and mB are respectively called White 
and Black positions (in a White position, White makes the next move, and in a Black position, 
Black makes the next move). Consider the pair of mappings 

sn: 2++T~(d')for u&. sg: v-V(v) fox v=B, 

which are called stationary strategies of White and Black. If we fix a pair of stationary 
strategies Sn. 88 of both players, then for a given initial position v=v(O), the path- 
average limiting payoff will be equal to the mean payoff Z(sn,sg,v) on the cycle that the 
system reaches in the limit. The function i-(sh,ss,v) defined on the direct product of the 
finite sets of White and Black stationary strategies specifies a cyclic game in normal form. 
The same game in extensive form is defined by specifying the game network (G,A,B,c) and the 
initial position u. 

We will see from what follows that, for any initial position v=Vv, we have the discrete 
minimax identity 

md"," rn;:~ T (s.,, sll, I')=: min max a(~.+ sIj, u)= p(v), 
$I! 8.1 

(1) 

which indicates the existence of optimal White and Black stationary strategies in the cyclic 
game. AS in the case of finding the maximum cycle mean V--A, the optimal stationary 

strategies of both players may be chosen as uniform strategies, i.e., strategies independent 

*Zh.vychisl.Mat.mat.Fiz.,28,9,1406-1417,1988 
8.5 



86 

of the initial position u (although naturally different initial positions may have a dif- 
ferent price p(u)). We can thus speak of optimal stationary strategies for the game network 
(G,A,B,c), which for brevity we sometimes call simply a network. Now, if we factorize the 
set of positions V by all possible values p,'... <pm of the price p(u), then the resulting 
partition (Vi,..., V,,) of the transition graph vertices has the following properties: 

1) for each i, the subgraph in G generated by V, is leafless: 
2) for any l<i<j<m, the sets of edges E{V,nA,V,) and E(V,nB,V,) are empty, i.e., 

among the edges of G, White has no transitions from the classes Vf with lower indices to the 
classes Vj with higher indices, while Black conversely has no transitions from the classes 

V, with higher indices to the classes v, with lower indices. 
A vertex partitioning of a two-colour leafless graph (G,A,B) having these properties 

will be called ergodic (and non-trivial for m>2). Thus, price factorization of positions 
produces an ergodic partitioning with each ergodic class V, characterized by one price for 
all positions, and the optimal behaviour of White and Black is such that, starting in a class 
Vi, the player will never leave this class. If this partitioning is trivial., i.e., the prices 
of all the positions u=V are equal, the game network (G,A,B,c) is called ergodic. Finally 
note that if White follows an optimal stationary strategy, then Black cannot reduce his 
average limiting loss per step below P(V) even by switching to non-stationary strategies, 
and conversely, so that the equilibrium (11 is maintained with non-stationary strategies also. 

In order to prove the assertions stated above and to describe an algorithm that finds 
optimal stationary strategies in game networks, let us consider potential transformations 
c'(vlL)~c(v~)+e(~)-e(u) of payoffs on network edges, where B:V-G? is an arbitrary real 
function defined on the network vertices, called the potential. Since the potential trans- 

formations C~C' do not change the (average) cycle cost, they preserve the normal form of the 
cyclic game, and therefore the prices and the optimal strategy sets are the same in the net- 
works (G,A,B,c) and (G,A,B,c'). Therefore, the payoff functions c' obtained by potential 
transformations will be called equivalent to the functions c. 

There exists a function c' equivalent to c for which price determination and the search 
for optimal strategies in the network are trivial: in each move, White (Black) may choose a 
maximum (minimum) cost edge among the edge leaving the current position, and this cost will 
be preserved along the path. For the function c: E-*tF! and the vertex DEAUB, define 

ext(c, v)= 
I 

max{c(uu):u~ V(u)}, if VE A, 

min(c(vu):u E V(u)), if vizB, 

and the vertex set 

VEXT(c, u)==(s~V(v) : c(uu)=ext(c,v)}. 

The edge vu such that c(vn)=ext(c,n) is called extremal (relative to c). We denote by 

/I%% the componentwise maximum absolute value norm. 

Theorem. Let (G,A,B,c) be an arbitrary game network. 
1. There exist numbers P(V), =v. and a function c' equivalent to c such that the 

following holds: 
a) p(u)-ext(c',u) for all v=v. 

b) P(v)==P(~) for u=AUB and u=VEXT(c',v), 

c) P(U)3P(U) for lJ=A and u=V(u), 
d) P(V)9P(U) for v&? and a=V(v), 
@) llc’il..,G2nll4.., where n=jV(. 

2. The numbers i?(v) satisfying the conditions a)-d) are uniquely defined for a given 
network. 

The function c' and the network (G,A,B,c') satisfying conditions a)-d) of the theorem 
will be called canonical. Since all the assertions preceding the theorem are obviously true 
for a canonical network, part 2 of the theorem does not require a separate proof. We also 
clearly have the following corollary. 

~orollar~~. Any mappings sa: A-V and ~~:B-+I'suchthats~(v) and &J(U) belong to VEXT(c',u) 
are optimal stationary (uniform) strategies of White and Black (possibly not all the optimal 
stationary strategies are generated in this way). 

Note that the existence of prices and optimal stationary strategies in cyclic games can 
be deducted from the general theorem on stationary optimal strategies in stochastic games 
/3/, which is proved non-constructively using the fixed-point theorem. A cyclic game for the 
case of a complete bipartite graph G with parts A and B (ergodic extensions of matrix games) 

I 
is considered in /4/ and the existence of a potential transformation c--c' such that ext(c', 
u)-const is shown. This last constant is called the ergodic price of the matrix game c(A,B). 
The proof in /4/ also relies on the fixed point theorem. 

The purpose of this paper is to describe an algorithm which reduces to canonical form 
an arbitrary network (G,k,B,cJ with an integer-valued payoff function c:.!?-+?!. We thusobtain 
a constructive proof of Theorem 1 for the integer case. The general (real-valued) case will 
follow by an appropriate passage to the limit in the payoffs. 

Before describingthealgorithm, let us consider three additional points. 
1. A two-colour leafless transition graph (G,A,B) will be called ergodic if the game 
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network (G,A,B,c) is ergodic for any payoffs c on the edges. It is easy to see that a graph 

is non-ergodic if and only if it admits of a non-trivial ergodic partitioning (V,,...,V,f, 

and without loss of generality this partitioning may be regarded as a cut m=2. An example 
of an ergodic graph is the complete bipartite graph with the parts A and B which corresponds 
to ergodic extensions of matrix games. V.N. Lebedev (graduate thesis, Moscow Physical-Tech- 

nical Institute, 1987) has shown that the problem of deciding non-ergodicity of arbitrary 
two-colour leafless graphs is NP-complete. 

2. Optimal stationary strategies in a cyclic game which attain the equilibrium (1) are 
called pure: they are deterministic and the transitions s.,(u) and SB(V) are chosen without 
tossing a coin. If the players in the game are not antagonists, then a Nash equilibrium does 
not necessarily exist in pure stationary strategies S* and sB. A minimal example of this 

kind is supplied by a cyclic game on a complete bipartite graph with three White positions 
at, az, a, and three Black positions b,, b,,b,, in which the White and Black payoff's on moving 
along the edge (ai,bj) in any direction are given by the matrices 

for sufficiently small s. e.g., e=o.1, and the initial position u is, say, v=a,. White 
and Black have 27 stationary strategies each, and we can show by direct enumeration that the 
corresponding (27x27) bimatrix game with the payoff matrices Er(sr. s8. u) and Cs(s.4, Se, U) 
has no Nash equilibria. Thus, ergodic extension of the 3x3 bimatrix game does not necessarily 
have equilibria in pure stationary strategies. Using IS/, we can show that ergodic extensions 
of 2Xn bimatrix games always have an equilibrium in pure stationary strategies. This 
example reveals a fundamental difference between cyclic and position games with perfect 
information. It also shows that the existence of equilibrium in pure stationary strategies 
is not a direct consequence of perfect information and the integral payoff function averaged 
over t+m. 

3. Let us return to antagonistic (zero-sum) payoffs and assume that the game network, 
in addition to white positions UEA and black positions v=B, 
V-Z, 

also has change positions 
each assigned its own probability distribution n(va) on the set V(U) of allowed 

transitions: 

n(VU)>O, u=V(li), X{JI(UU) :LEV(u)}=l. 

Special cases of this model of a stochastic game with perfect information are Markov 
chains with reward V=C, controllable Markov chains V=AUC, cyclic games V=BUB, and the 
maximum cycle mean problem V=A. Consider a pair of pure stationary strategies s., and se 
of White and Black players and assume that the prescribed moves are made with probability 1. 
As a result, we obtain a Markov chain with reward, in which, as we know, for any initial 
position L*EV=,~UBUC there exists a limit, as t-m, of the expected payoff per move. 
This limit is preserved under potential transformations and we denote it as before by 

C(Sa, $8, u). The discrete minimax identity (1) remains valid for the function i;(sr, Ss. 0) 
because the theorem on the reduction of a network to canonical form is extended to stochastic 
games in the following way: in chance positions VEC, the value of 

est(c,u)=T:{n(uu)c(un) :u=V(v)) 

is defined as the mean payoff over all allowed one-step transitions according to the assigned 
probability distributions ("expected direct reward" /6/), condition b) of the theorem is 
supplemented by the requirement 

~(u)=r,(n(vu)p(u):u~~'(u)), I’&, 

of price conservation in the mean in chance positions, and finally the bound e) on the 
absolute value of payoffs in a canonical network is rewritten in the form ilr'j~,c2nllcjl,!y. 
where y is the smallest among the non-zero transition probabilities Jt(ua) assigned to 
chance positions. In particular, the corollary of the theorem remains valid, and given the 
canonical form of a stochastic game with perfect information, we can find the optimal pure 
stationary strategies for this game. The "three-colour" version of the theorem can be further 
generalized to discounted payoffs (see /3/) if we use potential transformations of the form 

C'(VU)=r(uUf~E(U)--S(F(lt). where ce[O, 1) is the discounting factor, so that the average 
limiting payoff corresponds to discounting as a-l. However, the combinatorial algorithms 
described below cannot be extended to these cases, and in what follows we will accordingly 
consider only cyclic games. 

2. An auxiliary algorithm. 
'%e algorithm that reduces the network (G,A,B,cf to canonical form incorporates a 

procedure using the auxiliary algorithm described below, which is first applied to the original 
network, and then to some of its subnetworks with transformed edge costs. The auxiliary 
algorithm is finite for an arbitrary input real payoff function c. We describe it using the 
same notation as above. The input of the auxiliary algorithm is some network (G,A,B,ci. Let 

IM=M(C, A,B, c)=ma\(e+t(e, u) :vsV}, 

m=m(G,A, B, e)=rnjn{~~~(~.~) :u~V}, 



and 
p:= (M-f-m)/Z. 

p keeps the assigned value during the entire execution of the auxiliary algorithm. Note that 
if M-m-0, then the network is canonical (and ergodic), and therefore in what follows we 
assume that M-m>O. 

The auxiliary algorithm produces the function c' equivalent to c such that on all the 
network vertices 

m<ext(c', v)+W (2) 
and one of the following three assertions is true: 

A) ext(c',v)>p Vv=v; 

B) ext(c', v)<p vu=v; 

C) a regular partitioning (v', V”) of the vertices of the network (G,A,B,c') has been 
found; this means that (r,Ii") is an ergodic partitioning of (G,A,B),ext(c',u)<p for 
VEV' and ext(c', v)ap for u~v", VEXT(c;v)~ V’=W for DEV and VEXT(e',v)nY"#0 for 
VGV” 

In cases A) or B), the auxiliary algorithm dichotomizes the range [m, Ml of ext on 
the network. In case C), when a regular partitioning has been found, the network (G,A,B,c’) 

can be reduced to canonical form by reducing to canonical form, independently of each other, 
the two game subnetworks generated by the ergodic blocks V' and V", again cutting in each 
subnetwork the range of ext by one half compared with the initial range. After further 
recursive application of the auxiliary algorithm, the blocks V' and Cf" may in turn again 
split, and so on, until ergodic classes are obtained. 

The auxiliary algorithm runs in iterations, subjecting the function c to potential 
transformations. Let c be the current function in the execution of the algorithm. The 
vertex veeli' is called critical, insufficient, or redundant if e&c,@) is equal to, less 
than, or greater than p respectively. The sets of critical, insufficient, and redundant 
vertices will be denoted by K(c), S(c), and T(c), and the set of white (black) positions 
among them will be denoted by K*(P), ,Sa(,Se), TA(TB). Similarly, the edge VU is called 
critical, insufficient, or redundant if c(uu) is equal to, less than, or greater than p 

respectively. Note that an edge leaving a critical vertex is critical if and only if it is 

extremal. 
The iterations of the algorithm apply potential transformations of a special kind. The 

function c‘:E-IT? is called a shift of the function c:E+W by an amount 6 relative to 
the vertex set L if 

c(vu)?- 6 for VU -5 E(L, E), 

c(uu)--6 for VUEE(-& L), 

c(su) for other edges, 

where ,? denotes the set V\L; clearly, the shift transformation is a potential transform- 
ation with potential e(v)=& for u=L and E(v)=O for V4. 

The algorithm preserves the property of monotonicity: for each vertex v, lext(c, vf-~l 
is non-increasing and the sign of ext(c, v)-p is conserved. In particular, if a vertex 
becomes critical at some instant of time, it will remain critical until the algorithm stops 
(although the set of outgoing critical edges may change). Clearly, the monotonicity property 
ensures that inequality (2) holds. From the monotonicity property it also follows that the 
sets of insufficient vertices S and redundant vertices T are non-increasing by inclusion 

from iteration to iteration. If one of them becomes empty, then we have case A) or B) and 
the auxiliary algorithm stops. Therefore, in describing an iteration of the auxiliary 
algorithm, we assume that for the current function c, the sets s=S(c) and T=T(c) are 
non-empty. 

Step 1. Construct a labelled vertex set .L such that: 
1) ScLcl/-T; 

2) every edge leading from L"=LIIA to E is insufficient and every edge leading from 
E"=LllB to L is redundant, which is equivalent to the conditions 

VEXT(c> U)EL F'WmKAfK, VEXT(c, u)c=E Vv=KTL; 

3) for every labelled critical Black vertex, there is at least one outgoing critical 
edge that leads to a labelled vertex, and similarly for each unlabelled critical White vertex 
there is at least one outgoing critical edge leading to an unlabelled vertex: 

The set L is constructed as follows. Put r>,,=s and successively find sets of white and 
black critical vertices X,, Y,. X,,Yr,... by the following rule: assume that all these sets 
have already been determined up to X, and Y, inclusive and let L,=SUX,UY,U...UX,UY~; then 

x,,,=(v~K.'-L, : VEXT(c, II)%)! 

Y,+,=(U~K"-I,,:VEXl'(c,u)nf,,#jtw). 
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Continue the process until the next sets X,,, and Y,+I! are both empty. Finally, put 

L=L,. 

Remark. ff we assume that all the non-critical edges originating from critical vertices 
have been removed from the network, then the set L is obtained by adjoining to S those 

critical vertices from which Black forces a move to S. 

Step 2. Check whether the partition (L,z) is regular for the network (G,A,B,c) with 
the current function c. To this end, identify the sets of edges 

E,=E(LA,L) and E,=E(t', Z), 

and also the vertex sets 

rs(={u~P : VEXT(c, u)d), Ip=(u=T* : VEXT(c, v)G,}. 

If all these four sets are empty, the auxiliary algorithm stops on case B) and (I;, E) is the 
sought regular partitioning of the network vertices. 

Step 3. Shift the current function c relative to the labelled set L by a positive 6. 
Choose the maximum shift 6 without violating the monotonicity property. It is defined as 
&=min(&, &, 63, 6~)~ where 

&=min{p--c(Vn) : VUdi), b,=min{c(uu)-p : u2EEz), 

&=min{p-ext(C, V) :uES.), &=min{ext(C, U)-p Zuf!?}, 

and, as usual, the minimum over the empty set is taken equal to $_a. Note that properties 
A)-C) of the labelled set guarantee strict positivity of the shift 6. 

This ends the iteration. If for the new function we have m(G,A, B,c')>p and M(G,A, 
B, c')=zp (by monotonicity, these inequalities may be satisfied only as equalities), the 
auxiliary algorithm stops on cases A) or B). Otherwise go to the next iteration, and so on. 
When the algorithm stops, the current function c is the c' delivered on the output of the 
auxiliary algorithm. 

Let us prove that the number of iterations of the auxiliary algorithm is finite. Suppose 
that in iteration j we had the sets S and T of insufficient and redundant vertices and con- 
structed in Step 1 the sets of critical vertices X,, Y,,...,X,, Y,, where r is the smallest 
index for which both sets X,,, and Y,,,, are empty. With this iteration we associate a 
sequence of integers q(j)=y,a%, b,,.._,cr,, &, where y=iSl+lZ'l and a,=iX,{, fii=-_IY,I for i=l, 
2, . . . , r. The finiteness of the number of iterations follows from the next lemma. 

Lemma. Let pfj)=y, a,, pi,. . , a,, BP and q(j+f)=y’, ccl’, PI’ ,... ,a,!‘, Brv’ be the sequence 
associated with two successive iterations j and jtl. Then q(j+l) is lexicographically 
less than q(j). 

Proof. Objects in the (j-H)-th iteration will be denoted by primes, and objects in the 
j-th iteration will be unprimed. Consider the ordered families of sets ~=(sUr, x,, Y,,..., 
X,, Yr) and S'=(s'N", X,', Y,',. . ,X,,', Y,.') in iterations j and (i+l). 

1. We will show that r is not identical with F. Assume that this is not so. For the 
function c' in iteration (j+i), from the definition of the shift 6, we have at least one 
of the following cases: 

a) c'(uu)=p for some UELA and u=E, 
b) c'(uu)=p for some u&? and u=L, 
c) ext(c', u)=p for some u%s', 
d) ext(c', u)=p for some VEX'. 
This leads to a contradiction with F=B'. Indeed, from $-=5' follows L=L', but then 

in cases a) and c) the vertex v may not be in L’, and in cases b) and d) it may not be in L', 
2. Take the set Z in y closest to the beginning which is different from the set 2' 

with the same serial number in 9' (if F and F2- contain a different number of sets, pad the 
smaller of the two with f /F/-IF’/ 1 empty sets). Three cases are possible. 

Case 1. Z=SUT. By the monotonicity property, the sets S and X may only decrease as we 
pass to the next iteration. Therefore, y'<y and the lemma is true. 

Case 2. 2=X,, i>i. We will show that in this case we have strong inclusion x;txi, 
whence follows the assertion of the lemma a,'<~,. Assume the contrary, i.e., there is a 
vertex u=X,'-x,. First, &SW, since otherwise we would have S'UT'ZSUT, contrary to 
the choice of X.. Thus, VdC”. Let L,_,=Sux,uY,u...ux,_,uYi-I, and let L,-,' be the corre- 
sponding set in the (ii-l)-th iteration; by the choice of Xt, we have Z+,=L;_,. From v$X,UL+, 
and v=.X,' it follows that VEXT(c. v)$Li-, and VEXT(c , v)9L,. Then there shauld be an 
edge VU which is critical for the function c and non-critical for c': 

c(vu)=ext(c, v)=p and c'(un)<est(c',v)=p. 

Since c' is a shift of c relative to L by a positive 6, we have from the last conditions 

UEL and UEL. By property 3) (see Step 11, membership of v in the set KARL implies the 
existence of a critical edge vu' with an end u' in z. But if u=Z and u'EL. then c'(vu')== 
c(vu')--p and so u’=VEXT(c’, V) which contradicts VEXT(c’, LI)EL+,EL. 

Case 3. Z=Y,. i&l. We will show that Y,cY,' and pa>&'. Indeed, from YEY, it 
follows that VEXT(c, v)nL,,,=@' and VExT(c,, v)fl(X,_,UY,_,)#ia. By the choice of Y, we have 
L,-,FL;._,, and also Xi+[J Yi_D=Xl_2:J Y&. Since for a critical vertex v~Y,cK~flL, the 

USSR 28:5-C 
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positive shift 6 will not convert non-critical edges into critical edges, we obtain that 

VEXT(c', u)nL;_? =a. Moreover, since edges with both ends in L do not change their cost under 

a shift, we have as before VEXT(c’,v) n(X~_rUY~-,)#@, which implies that u=Y,'. 
This completes the proof of the lemma, and hence the proof of the finiteness of the 

number of iterations of the auxiliary algorithm. Note that each iteration of the auxiliary 

algorithm may be completed in time O(n2). 

3. Proof of the theorem and the algorithm reducing the network to canonical 
form. 

As we have-noted above, if the auxiliary algorithm reaches case C), i.e, finds a regular 
partitioning (L,L)=(V', V”) of the game network then in order to prove Theorem 1 it suffices 
to establish its truth separately for each of the ergodic blocksV' and V". We therefore 
assume that case C) is not realized. Repeated application of the auxiliary algorithm will 

E 
then generate a potential transformation c+c' of the payoff function of the game network, 

and the range [m', M'] of ext(c', u) on the network will be made arbitrarily small. We 
will show that this can always be achieved by a bounded potential transformation 

Ilall~~2(n-~)IICll-~ (3) 

where c is the edge cost function in the original network. Indeed, the condition ext(c', u)E 

[m', M’l for known vertex sets VEXT(c', u) may be rewritten as a consistent system of linear 

inequalities 

d<C(VU)+E(U)-+(U)<i,! for u=V and u=VEXT(c',u), (4) 

c(uu)+e(u)-e(u)G4 for u=A and n=V(n), 

n'<c(uu)+E(u)-e(u) for u=B and u=V(u) 

in n=IV( unknown potentials, one of which may be set equal to zero. This system has a 

completely unimodular constraint matrix and the right-hand sides do not exceed 2llcll~ in 
absolute value. Hence it follows that it has a solution e(u), v=v, whose components do not 

exceed 2(n-1)Ilc(l, in absolute value. Part 1 of the theorem now follows from the passage 

to the limit M'-m'+O and compactness of the cube (3). This completes the proof of the 

theorem. 
If the payoff function c of the original network is integer-valued, then in order to 

find a potential transformation e:V+!R reducing the network to canonical form, it is 

sufficient to apply the auxiliary algorithm until the difference W-m’ in the ergodic 

blocks does not exceed 1/(2n’). Indeed, each of the numbers p(u) is equal to the average 
cost c over the edges of some simple cycle, and it is therefore a rational number with 

denominator not greater than n. Therefore, if M’-m’<l/(2n*), p(u) can be obtained using 

continued fractions. NOW, consistency of the system (4) in each block implies consistency 
of the system 

C(UU)+E(U)-E(u)=p(U) for u=v and u=VEXT(c',u), 

C(UU)+E(U)-e(U)<p(U) for u=A and u~V(u), 

p(u)dc(uu)+e(u)-e(u) for u=B and UEV(V), 

and its solution can be obtained in a time n3 (see, e.g., /7/J from the solution of system 

(4) generated by the auxiliary algorithm, although it does not necessarily belong to the cube 

(3). Thus, in the integer-valued case, the time to reduce the game network to canonical form 
does not exceed in order of magnitude ~nZ)og(nllC(l,)ft13, where I is the number of auxiliary 

algorithm iterations. 
An experimental study of the auxiliary algorithm carried out by V.N. Lebedev has shown 

that in most cases the number of iterations I is not more than a few times greater than the 
number of network vertices n, so that this algorithm can be successfully applied in game net- 

works with hundreds of positions. This practical behaviour, however, clashes with Lebedev's 
example of a game network in which the number of iterations of the auxiliary algorithm is 
2*,2-*+1 - a situation which is similar, to a certain extent, to the behaviour of the simplex 
method. This naturally raises the question of the existence of an algorithm polynomial in R 

and log IIcII* for reducing a game network with integer-valued payoff function to canonical 

form. Such a polynomial algorithm can indeed be constructed using the dynamic programming 
solution of "trimmed" games in finite time intervals and the technique of "digit-wise reduction 
of errors". Its description, however, is outside the scope of this paper. 
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SHORT COMMUNICATIONS 

THE WELL-POSEDNESS OF POTENTIAL-TYPE FREDHOLM INTEGRAL EQUATIONS 
OF THE FIRST KIND FOR TH¶N WIRES* 

V.A. STRIZHKOV 

Regularizing spaces are constructed for investigating the integral 
equations of the thin-wire approximation. Convergence of the Galerkin 
method is established. Necessary conditions are established for the 
stability of certain numerical algorithms. 

When handling problems of thediffractionandexcitationof electromagnetic waves in 
compound three-dimensional wire structures one often encounters integral equations of the 
form 

where z(8.e) is an-unknown function (usually the axial current), K(s,s',s), G(s) are known 
functions, L is a three-dimensional curve representing the structure of the antenna graph, 
and eai is a small parameter (the ratio of the wire radius I to the wavelength). This is 
the case, for example, for the integral equations of Hallen, Mei, Pocklington etc. (see the 
bibliography in /l, 2/). 

Setting up mathematical models of electrodynamic processes using the integral equations 
of the thin-wire approximation (1) requires a consideration of the following problems: 

1) to check whether problem (1) is well-posed for small e, i.e., to construct a space 
of functions in which theproblem has a unique solution I(& 8) depending continuously on the 
right-hand side G(s); 

2) to estimate the accuracy to which the axial current Z(s, e) approximates the real 
surface current Zp(s,e) and the accuracy with which the other electrodynamic quantities are 
determined; 

3) to select the most efficient numerical algorithm for solving problem (l), andestablish 
its convergence and its range of applicability. 

The most natural solution space for Eq.(l) is the following regularizing class of func- 
tions: 

where g,(e) are the essentially singular manifolds, determined by the order of singularity 
of the initial integral operator 9, as e-+0. In the case when n=l we have $,(e)=llnej-* 
and $ (~)-el-~ n for any na2. We have jr(s,e)=fiIZL(L) uniformly in e, IlZll~.- $.-*(e)Illll~,~. 

The existence and uniqueness of the solution in class V, have been investigated for the 
following generalized problem: 

(vp,Ip.lzl)q -bP,C)., 'rpE~llw. (2) 

Theorem 1. Assume that: a) K(s,s',~)EC'(LXL) uniformly in eg b) G(s)=&?*(L); C) IA(&*,O)(r8> 
OYSGL. 

Then there exists eo>O such that for any e=(O.eOl problem (2) has a unique solution in 
V., and moreover lllil~.~CilGII~, 
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