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Abstract. Let Cn denote the 3-uniform hypergraph loose cycle,
that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3,
v3v4v5, v5v6v7, . . . , vn−1vnv1. We prove that every red-blue colour-
ing of the edges of the complete 3-uniform hypergraph with N
vertices contains a monochromatic copy of Cn, where N is asymp-
totically equal to 5n/4. Moreover this result is (asymptotically)
best possible.

1. Introduction

A classical result in graph theory states that for n ≥ 5, the 2-colour
Ramsey number r(Cn, Cn) of the cycle Cn with n vertices is 2n − 1
if n is odd and 3n/2 − 1 if n is even (Bondy and Erdős [1], Faudree
and Schelp [3], Rosta [10]). Bondy and Erdős conjectured in 1973 that
the 3-colour Ramsey number r(Cn, Cn, Cn) ≤ 4n− 3, and this appears
to be quite a difficult problem. An asymptotic version was proved by
 Luczak in 1999 [8], who showed that r(Cn, Cn, Cn) = (4 + o(1))n if
n is odd. Recently, Figaj and  Luczak [4] found the asymptotic value
of the Ramsey number for all triples of even long cycles, proving, in
particular, that r(Cn, Cn, Cn) = (2 + o(1))n if n is even. Thus, in this
case as well, the Ramsey number depends in a significant way on the
parity of n.

In this paper we consider the problem of finding the 2-colour Ram-
sey number for a 3-uniform hypergraph cycle with n vertices. There
are several natural definitions for a cycle in a 3-uniform hypergraph.
The one we focus on here is what we call the loose cycle Cn, which has
vertices v1, . . . , vn and edge set {v1v2v3, v3v4v5, v5v6v7, . . . , vn−1vnv1}.
Note that the number of vertices n of Cn is necessarily even, and Cn

contains exactly n/2 vertices of degree one and n/2 vertices of de-
gree two. The number of edges of Cn, called the length of Cn, is n/2.
We remark that in another paper [7] we consider the analogous prob-
lem for the tight cycle, which has vertex set v1, . . . , vn and edge set
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{v1v2v3, v2v3v4, v3v4v5, . . . , vnv1v2}. The Ramsey number for the tight
cycle is larger than that of the loose cycle, and the techniques required
in the argument are substantially different.

The Ramsey number r(Cn, Cn) of Cn is defined to be the smallest
integer N for which every colouring of the edges of the complete 3-

uniform hypergraph K
(3)
N contains a monochromatic copy of Cn, that

is, a copy of Cn whose edges are all coloured the same colour. We first
note the following lower bound on r(Cn, Cn).

Lemma 1.1. We have r(C4k, C4k) > 5k−2 and r(C4k+2, C4k+2) > 5k+1.

Proof. To prove the first assertion we exhibit a 2-colouring of the edges

of K
(3)
5k−2 that contains no monochromatic copy of C4k. We partition

the vertex set into parts A and B, where |A| = k− 1 and |B| = 4k− 1.
We colour all edges that contain a vertex of A blue, and the rest red.
Now this colouring cannot contain a red copy of C4k, since any such
copy must have all vertices in B. Suppose that a blue copy of C4k

exists, then each of its edges must contain a vertex of A, that is, a
vertex-cover of C4k would be contained in A. But C4k has 2k edges and
maximum degree two, and so cannot have a vertex cover of size smaller
than k. Therefore, since |A| = k − 1, no blue copy of C4k can exist in
this colouring, hence the lower bound is proved.

The argument for the second bound is exactly the same, except that
we take |A| = k and |B| = 4k + 1. �

Our main aim in this paper is to prove that this lower bound is
asymptotically tight, in other words that r(Cn, Cn) ∼ 5n/4.

Theorem 1.2. For all η > 0 there exists n0 = n0(η) such that for every

n > n0, every 2-colouring of K
(3)
5(1+η)n/4 contains a monochromatic copy

of Cn.

As in [8] and [4], our proof is based on the Regularity Lemma, here
however we will need a hypergraph variant of this result. Note that in
contrast to the graph case, the parity of the length of our cycle does
not have a significant effect on its Ramsey number.

In our arguments we will often need to find loose paths between
specified vertices. The loose path Pn has vertices v1, . . . , vn and edge set
{v1v2v3, v3v4v5, v5v6v7, . . . , vn−2vn−1vn}. By the length of a loose path
we mean its number of edges, so Pn has length (n − 1)/2. Often we
will abbreviate the terms “3-uniform hypergraph”, “loose cycle”, and
“loose path” to “hypergraph”, “cycle”, and “path” whenever there is
no danger of confusion.
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2. Proof of Theorem 1.2

In this section we state the principal lemmas required to prove The-
orem 1.2, and show how they lead to the proof.

We begin by introducing a regularity lemma for hypergraphs. There
are several generalizations of the Regularity Lemma of Szemerédi [11]
to hypergraphs, due to various authors, e.g. [2], [5], [6], [9]. Here we
will use the most straightforward one (see Chung [2]).

Let ε > 0, let V1, V2, V3 be disjoint vertex sets of size m, and let H be
a hypergraph such that each edge of H contains exactly one element of
each Vi for i = 1, 2, 3. Let d = |H|/m3. Then H is said to be ε-regular
of density d if for every choice of Xi ⊆ Vi with |X1||X2||X3| > εm3 we
have ∣∣∣∣ |H[X1, X2, X3]|

|X1||X2||X3|
− d

∣∣∣∣ < ε.

Here by H[X1, X2, X3] we mean the subhypergraph of H induced by
the vertex set X1 ∪ X2 ∪ X3. We often refer to the hypergraph H =
H[V1, V2, V3] as an ε-regular triple. In this setting the (weak) regularity
lemma for hypergraphs from [2] can be stated as follows.

Theorem 2.1. Let ε > 0 and t0 ∈ N be given. Then there exist
t(ε, t0) and N(ε, t0) such that every 3-uniform hypergraph M with N =
|V (M)| > N(ε, t0) vertices has a partition V0∪V1∪ . . .∪Vt of its vertex
set V (M), where t0 ≤ t ≤ t(ε, t0), such that

(1) |V0| < εN ,
(2) |Vi| = m for i = 1, . . . , t, where (1− ε)N/t ≤ m ≤ N/t,
(3) all but at most εN3 edges of M lie in some ε-regular triple

M[Vi, Vj, Vk] with 1 ≤ i < j < k ≤ t.

We will prove Theorem 1.2 in three steps. In the first step, given a 2-

colouring of the edges of K
(3)
N for suitably chosen N , we apply Theorem

2.1 to the subhypergraph consisting of the red edges, to obtain a new
2-coloured structure called the cluster hypergraph. In the second step
we show that the cluster hypergraph contains a monochromatic subhy-
pergraph L with certain special properties. Then in the third step, we

prove that the monochromatic subhypergraph of K
(3)
N corresponding to

L contains a copy of Cn.

Step 1. Let the parameter η from Theorem 1.2 be given. We may
assume η < 1/5. Let ε0 < 500−24 be small enough such that 0 <

g(ε0) < 1 + η, where g(ε0) = (1 − 500ε
1/24
0 )−3, and t0 = dε−6

0 e. We set
n0 = 100t(ε0, t0)

2M(ε0, t0)ε0
−1, where t(ε0, t0) and M(ε0, t0) are chosen

in such a way that the assertion of Theorem 2.1 holds. For n > n0,



4 P.E. HAXELL ET AL.

consider an arbitrary colouring of the edges of K
(3)
N with red and blue,

where N = 5g(ε0)n/4. Let J denote the subhypergraph consisting of
the edges coloured red, and let J̄ denote the blue subhypergraph. We
apply Theorem 2.1 to J with ε0 to obtain a partition V0 ∪ V1 ∪ . . .∪ Vt

of V (K
(3)
N ) with the properties stated in Theorem 2.1. Then we have

the following lemma, whose very standard proof appears in Section 3.

Lemma 2.2. Let ε = ε
1/4
0 . Then

(1) all but at most εt3 triples J [Vi, Vj, Vk] are ε-regular,
(2) if J [Vi, Vj, Vk] is ε-regular with density d then J̄ [Vi, Vj, Vk] is

ε-regular with density 1− d,
(3) 20t < εm.

We define the cluster hypergraph J0 as follows. The vertex set of J0

is {1, . . . , t}, and ijk forms an edge of J0 precisely when J [Vi, Vj, Vk]
is ε-regular (of some density). Then by Lemma 2.2, all but at most εt3

of the triples ijk are edges of J0.
We consider the edges of J0 to be coloured red or blue, as follows.

We colour the edge ijk ∈ J0 red if J [Vi, Vj, Vk] has density at least
1/2, otherwise we colour it blue. Then by Lemma 2.2(2), if ijk is
coloured blue, then J̄ [Vi, Vj, Vk] is ε-regular of density more than 1/2.
This completes Step 1.

Step 2. To describe Step 2 we need to introduce a few more defi-
nitions. Let M be a 3-uniform hypergraph. The shadow graph Γ(M)
of M is defined on the vertex set V (M) by joining vertices x and y
by an edge if and only if there exists an edge xyz ∈ M. We call M
a connected hypergraph if Γ(M) is connected in the ordinary graph
sense. A subhypergraph of M that is maximal with respect to being
connected is called a component of M. Thus a component of M is
determined by its set of vertices. We will use this concept when M is
the subhypergraph of a 2-coloured hypergraph K consisting of all the
red edges (or all the blue edges). A component of M will be called
a monochromatic component of K, so each monochromatic component
is either red or blue. Thus each vertex in a 2-coloured hypergraph K
is in one red monochromatic component and one blue monochromatic
component.

We also define a special small hypergraph called a diamond. A dia-
mond D has vertex set {x1, x2, x3, x4} and edge set {x1x2x3, x2x3x4}.
The two vertices x2 and x3 of degree 2 in D are called the central points
of D.

Step 2 of the proof of Theorem 1.2 is accomplished by the following
lemma.
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Lemma 2.3. The cluster hypergraph J0 has a monochromatic com-
ponent L that contains s = df(ε) n

N
t
4
e vertex-disjoint diamonds D1,

D2, . . . ,Ds, where f(ε) = (1− 500ε1/6)−2.

The proof of Lemma 2.3 appears in Section 4. Note that since N =
5g(ε0)n/4, and f(ε) and g(ε0) are very close to 1, the parameter s is
approximately equal to t/5.

Step 3. To complete Step 3 we show that the monochromatic com-
ponent L guaranteed by Lemma 2.3 corresponds to a monochromatic
subhypergraph H of J ∗ = J or J̄ that contains a copy of Cn. If L is
red then we let J ∗ = J , if L is blue then we choose J ∗ = J̄ . Then H
is defined in the natural way, that is, V (H) =

⋃
{Vi : i ∈ V (L)} and

H =
⋃
{J ∗[Vi, Vj, Vk] : ijk ∈ L}.

Lemma 2.4. H contains a copy of Cn.

To prove Lemma 2.4, we first trace a “route” in the monochromatic
component L of the cluster hypergraph J0, that visits all of the s dis-
joint diamonds D1, . . . ,Ds in L (see Lemma 5.1). Then (using Lemma
5.3), we choose a collection of short loose paths (of length three or
six) in the hypergraph H, that link together to form a cycle, following
the chosen route. Finally, to obtain the cycle Cn in H we “blow-up”
s ∼ t/5 short paths (of length 3) corresponding to diamonds by long
paths (each of length ∼ 4m ∼ 4N/t ∼ 5n/t). More precisely, for each
diamond Di = {hjk, hjp}, we replace the short path that starts in Vh

and ends in Vj by a long path with the same end-vertices, that uses
almost all the vertices in Vh ∪ Vj ∪ Vk ∪ Vp. (This step uses Lemma
5.5). Note that these long paths are mutually vertex disjoint since all
diamonds Di are vertex disjoint. Therefore, to obtain a cycle, we just
need to make sure that the short paths do not intersect and they do
not interfere with the long paths. The full proof of Lemma 2.4 appears
in Section 5.

Note that the above strategy should work with any chosen simple
hypergraph U in place of the diamond D, provided

• enough disjoint copies of U can be found to cover∼ 4t/5 vertices
of J0, and

• each U corresponds to a subhypergraph of J ∗ that contains a
path covering almost all its vertices.

For example, taking U to be just a single edge may seem more natural
than choosing U = D, the diamond. Then we would want L to be
a component containing a matching (a set of disjoint edges) of size
∼ 4t/15. However, unfortunately such a monochromatic component is
not guaranteed to exist in every 2-coloured J0. A construction similar
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to that given in Lemma 1.1, but with |A| = t/4 and |B| = 3t/4, gives
a colouring of J0 in which the largest monochromatic matching has
size t/4. Thus we need to choose U to be something more than just a
single edge, and the diamond turns out to be a suitable choice. Note
that the single blue component in the above example in fact contains
t/4 disjoint diamonds. For the colouring with proportions essentially
as given in Lemma 1.1, with |A| = t/5 and |B| = 4t/5, each of the
red and the blue components contains exactly t/5 disjoint diamonds,
showing that Lemma 2.3 is asymptotically best possible.

3. Proof of Lemma 2.2

With the definitions given in Step 1, we consider the first assertion

of Lemma 2.2. We begin by claiming that if |J [Vi, Vj, Vk]| < ε
1/2
0 m3,

then it is ε-regular. To see this, note that 0 ≤ d < ε
1/2
0 < ε for this

triple, so if |Xi||Xj||Xk| > εm3, then

0 ≤ |J [Xi, Xj, Xk]|
|Xi||Xj||Xk|

<
ε
1/2
0 m3

ε
1/4
0 m3

= ε.

Therefore the density of J [Xi, Xj, Xk] differs from d by less than ε, as
required.

Suppose on the contrary that at least εt3 triples are not ε-regular
in J . Then they are certainly not ε0-regular either. By the above
claim, the total number of edges of J contained in these triples is

at least εε
1/2
0 m3t3 > ε

3/4
0 (1 − ε0)

3N3 by Theorem 2.1(2). But since
ε0 < 1/5000 this number is more than ε0N

3, contradicting Theorem
2.1(3). Therefore the first assertion of Lemma 2.2 holds.

To check the second assertion, note that

|J̄ [Xi, Xj, Xk]| = |Xi||Xj||Xk| − |J [Xi, Xj, Xk]|
holds for arbitrary sets Xi ⊆ Vi, Xj ⊆ Vj and Xk ⊆ Vk. In particular,
the densities dJ̄ of J̄ [Vi, Vj, Vk] and dJ of J [Vi, Vj, Vk] are related by
dJ̄ = 1−dJ . Thus if J [Vi, Vj, Vk] is ε-regular then for any sets Xi ⊆ Vi,
Xj ⊆ Vj and Xk ⊆ Vk with |Xi||Xj||Xk| > εm3 we have

|J̄ [Xi, Xj, Xk]|
|Xi||Xj||Xk|

= 1− |J [Xi, Xj, Xk]|
|Xi||Xj||Xk|

,

and so this number differs from dJ̄ = 1−dJ by less than ε as required.
The third assertion is simply a calculation from the definitions given

in Step 1. We have N > n > 100t(ε0)2

ε0
> 100t2

ε
so ε(1− ε)N > 20t2. This

together with Theorem 2.1(2) implies εm > ε(1− ε0)
N
t

> ε(1− ε)N
t

>
20t as required.
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4. Proof of Lemma 2.3

We begin this section by focusing on a subhypergraph of J0 with
convenient properties.

Lemma 4.1. The hypergraph J0 contains a subhypergraph J1 with the
following properties. Here ε1 = 10ε1/6.

(1) J1 has t1 > (1− ε1)t vertices,
(2) if some edge of J1 contains the vertices x and y then more than

(1− ε1)t edges contain both x and y,
(3) for every vertex x, more than (1 − ε1)t pairs xy are such that

at least (1− ε1)t edges contain both x and y.

Proof. Recall from Step 1 (Lemma 2.2) that J0 has t vertices and at
least

(
t
3

)
− εt3 edges. We call a vertex x of J0 bad if it is in fewer than(

t−1
2

)
− ε1/2t2 edges. We first estimate the number αt of bad vertices

by counting the edges of J0 over the vertices as follows.

3|J0| ≤ (1− α)t

(
t− 1

2

)
+ αt

((t− 1

2

)
− ε1/2t2

)
.

Therefore (
t

3

)
− εt3 ≤(1− α)

(
t

3

)
+ α

(
t

3

)
− αε1/2t3/3

=

(
t

3

)
− αε1/2t3/3.

Thus the number αt of bad vertices must be at most 3ε1/2t. Remove
these, and denote the resulting hypergraph by J ′. Then every vertex
of J ′ is in at least

(
t−1
2

)
− ε1/2t2 − 3ε1/2t2 =

(
t−1
2

)
− 4ε1/2t2 edges.

We call a pair xy of vertices of J ′ bad if it is contained in fewer than
(1 − 2ε1/4)t edges. Then the maximum degree of the graph on V (J ′)
formed by bad pairs is less than 4ε1/4t, by a similar double counting
argument using the vertex property of J ′.

We let J1 be the hypergraph formed by removing all edges that
contain bad pairs. To check (1), note that |V (J1)| = |V (J ′)| > t −
3ε1/2t > (1− ε1)t.

Property (2) is true because if an edge remains, no pair in it was
bad. Therefore if x and y are contained in this edge then they were
contained in at least (1 − 2ε1/4)t edges of J ′. Thus, the number of
edges lost for xy is at most 4ε1/4t for the bad pairs incident to x, plus
4ε1/4t for the bad pairs incident to y. Therefore xy is contained in at
least (1− 10ε1/4)t > (1− ε1)t edges of J1.
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Finally to verify (3), note that the above argument tells us that each
pair xy that was not bad satisfies the property in (2). Thus x is incident
to more than |V (J1)| − 4ε1/4t > (1 − 3ε1/2 − 4ε1/4)t > (1 − ε1)t such
pairs.

�

The following lemma is a simple calculation that relates s to the
parameters of J1.

Lemma 4.2. We have s ≤ 1
5
|V (J1)| − 6ε1t.

Proof. Recall that s = df(ε) n
N

t
4
e, where f(ε) is as defined in Lemma

2.3, and N = 5g(ε0)n/4 (see Step 1). Then since ε = ε
1/4
0 (see

Lemma 2.2) and ε1 = 10ε1/6 (see Lemma 4.1) we have N = 5(1 −
50ε1)

−1f(ε)n/4. Therefore

f(ε)
n

N

5t

4
= (1− 50ε1)t = (1− ε1)t− 49ε1t.

Hence f(ε) n
N

t
4

< 1
5
(1 − ε1)t − 9ε1t, which implies the desired result

because |V (J1)| > (1− ε1)t by Lemma 4.1(1). �

We are interested in the monochromatic components of the 2-col-
oured hypergraph J1 (as defined in Step 2). Note that each vertex of J1

is in one red monochromatic component and one blue monochromatic
component.

Lemma 4.3. The hypergraph J1 has the following properties.

(1) J1 contains a monochromatic component with more than (1 −
3ε1)t vertices. Let us say without loss of generality that this
component R is red.

(2) if R does not contain s disjoint diamonds, then the largest blue
component B has at least 4|V (J1)|/5 vertices.

Proof. For the first assertion, consider the shadow graph G = Γ(J1) as
defined in Step 2. Then the minimum degree of G is more than (1−ε1)t
by Lemma 4.1(3). We call an edge xy of G red if it is contained in a red
edge of J1, and blue if it is in a blue edge of J1. Note that some edges
may be both red and blue. Then a monochromatic component of J1 is
by definition the same as a monochromatic component of G. Suppose
that the largest monochromatic (say blue) component C in G does not
cover all vertices of G. Certainly |C| > (1 − ε1)t/2 because there is a
monochromatic star of this size by the minimum degree bound. Let x
be a vertex outside C. Then all the edges of G joining x to a vertex of
C are red, and there are more than |C| − ε1t such edges. Let y ∈ C be
a neighbour of x, then all the edges of G joining y to V (G) \C are red
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as well, and there are more than |V (G) \ C| − ε1t > (1 − 2ε1)t − |C|
such edges. Then this gives a red component in G of size more than
(1− 3ε1)t as required.

To prove (2), suppose the largest blue component B has at most
4|V (G)|/5 vertices. We first claim that there exists a set A ⊂ V (G)
with |V (G)|/5 ≤ |A| ≤ |V (G)|/2 such that all edges of G that contain
a vertex of A and a vertex of Ā = V (G) \A are red but not blue. This
is clearly true if |V (B)| ≥ |V (G)|/5, since either V (B) or V (G) \ V (B)
would do. If |V (B)| < |V (G)|/5 then there is a subset S of the blue
components such that A′ =

⋃
Bi∈S V (Bi) satisfies 2|V (G)|/5 ≤ |A′| ≤

3|V (G)|/5. (Note that some blue components may just be isolated
vertices.) Then again either A′ or V (J1) \A′ is a suitable choice for A.

Note then that the red component of J1 given by these red edges of
G joining A and Ā must be R. Next we show that this structure for R
guarantees that it contains s disjoint diamonds. We construct greedily
a set of at least 1

6
(4|A| − |Ā|) − ε1t disjoint diamonds in R as follows.

Suppose i < 1
6
(4|A|−|Ā|)−ε1t, and that disjoint diamonds D1, . . . ,Di−1

have already been found in R, each of which has two vertices in each
of A and Ā. Then there remain at least |A| − 2(i − 1) ≥ 2ε1t unused
vertices in A (and hence also in Ā). Then by Lemma 4.1(3), there is an
edge xy of G with x ∈ A and y ∈ Ā both unused, which is contained
in more than (1 − ε1)t edges of J1, which are all red by our choice of
A. Therefore there exists another unused vertex w ∈ A, and another
unused z ∈ Ā, such that xyw and xyz are both red edges of J1. Then
we set Di to be this red diamond.

When we have found q = max{0, d1
6
(4|A| − |Ā|)− ε1te} diamonds in

R as above, we add 1
3
(|Ā| − |A|) − 2ε1t more diamonds that have one

vertex in A and three in Ā. Suppose i < 1
3
(|Ā| − |A|)− 2ε1t, and that

disjoint diamonds D1, . . . ,Di−1 have already been found in R, each of
which has one vertex in A and three in Ā. Then there remain at least
|A|−2q−i−1 ≥ 2ε1t unused vertices in A and |Ā|−2q−3(i−1) ≥ 8ε1t
in Ā. Then by Lemma 4.1(3), there is an edge xy of G with x ∈ A and
y ∈ Ā both unused, which is contained in more than (1− ε1)t edges of
J1, which are all red. Therefore there exist two more unused vertices
w, z ∈ Ā, such that xyw and xyz are both red edges of J1. Then we
set Di to be this red diamond.

The total number of disjoint diamonds we find by this greedy con-

struction is at least 1
6
(4|A|−|Ā|)−ε1t+

1
3
(|Ā|−|A|)−2ε1t ≥ |V (G)|

5
−3ε1t,

which is more than s by Lemma 4.2. �

In addition to Lemma 4.3, the following technical lemma will be
important for the proof of Lemma 2.3. By a diadem we mean any
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coloured hypergraph with 5 vertices that contains both a red diamond
and a blue diamond.

Lemma 4.4. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5} be
disjoint vertex sets such that xixjyk ∈ J1 for all i, j, k except possibly
when {i, j} = {1, 4}. Let S ⊂ X be a subset of size at least two.
Suppose further that x1x2x3, x2x3x4 ∈ J1 and are both red. Then one
of the following holds.

(1) X ∪ Y contains two disjoint red diamonds, both of which inter-
sect X.

(2) X∪Y contains a diadem E such that 3 ≤ |V (E)∩X| ≤ 4 whose
blue diamond intersects both S and Y .

Proof. Since |S| ≥ 2, either we have both {x1, x2}∩S 6= ∅ and {x3, x4}∩
S 6= ∅, or {x1, x3} ∩ S 6= ∅ and {x2, x4} ∩ S 6= ∅. Since x2 and x3 are
symmetric in the assumptions of the lemma, we may assume without
loss of generality that the former possibility holds. We look first at the
edges x1x2yi, i = 1, . . . , 5. We argue that if more than one of them is
blue, then X ∪ Y contains a diadem.

Indeed, suppose that, say, the edges x1x2y1 and x1x2y2 are blue.
Then, if the edge x1x3y1 is blue, we take the vertex set W of E to
be W = {x1, x2, x3, x4, y1}, and, if x1x3y1 is red, then we put W =
{x1, x2, x3, y1, y2}. Consequently, we may assume that, say, the edges
x1x2yi, i = 1, . . . , 4, are coloured red.

An analogous argument shows that, to avoid a diadem, at most one of
the edges x3x4yi, i = 1, . . . , 4, is blue, so suppose that x3x4yi, i = 1, 2, 3,
are red. But then X ∪Y contains two red diamonds with edges x1x2y4,
x1x2y3, x3x4y2 and x3x4y1. �

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Let {D1, . . . ,Dq} be a set of disjoint diamonds in
R of maximum size q. If q ≥ s we have proved the lemma, so let us
assume q < s. Our aim is to show that the largest blue component B
contains s disjoint diamonds.

Our first step is to replace the red diamonds in R one-by-one by
disjoint diadems. Suppose 0 ≤ i < q, let Qi =

⋃q
j=i+1 V (Dj), and

suppose that disjoint diadems E1, . . . , Ei have been found such that

(a) V (E1 ∪ . . . ∪ Ei) ∩Qi = ∅,
(b) each Ej has its red diamond in R and its blue diamond in B,
(c) the set Vi = V (J1) \ V (E1 ∪ . . . ∪ Ei) contains at least 4

5
|Vi|

vertices of B.

Lemma 4.3(2) guarantees that this process can start.
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We now consider two cases, and in each case our aim is to find a
diadem Ei+1 such that (a), (b), and (c) hold for i + 1 in place of i.
The next lemma lays out two useful facts that will be used in the case
analysis to follow.

Lemma 4.5. If (a), (b), and (c) hold then

(1) |Vi \Qi| = |V (J1)| − 4q − i.
(2) Let X = V (Dj) for some j ∈ {i + 1, . . . , q} and let Z ⊂ Vi \

Qi be a set of size at least 5ε1t + 5. Then there exists a set
Y ⊂ Z, |Y | = 5, such that X ∪ Y satisfies the assumptions of
Lemma 4.4.

Proof. The proof of (1) is immediate since by the definitions we have
|Vi \Qi| = |V (J1)| − 5i− 4(q − i) = |V (J1)| − 4q − i.

To prove (2), let x1, x2, x3, x4 be the vertices of X such that x1x2x3

and x2x3x4 are the edges of Dj. Then each of the five pairs {i, j} ⊂
{1, 2, 3, 4} with {i, j} 6= {1, 4} is such that xixj is in an edge of J1.
Thus by Lemma 4.1(2), at most ε1t vertices z ∈ Z are such that xixjz
is not an edge of J1. Therefore since |Z| ≥ 5ε1t + 5, there are at least
five vertices z such that xiyjz is an edge of J1 for each of the five pairs
{i, j} 6= {1, 4}, as required. �

We consider two cases according to the size of Vi \ (V (B) ∪Qi).

Case 1. Vi \ (V (B) ∪Qi) < 5ε1t + 5.
Using Lemma 4.5(1) we see that |Vi \Qi| ≥ |V (J1)|−5q > |V (J1)|−

5s, so |Vi \Qi| > 10ε1t + 10 by Lemma 4.2. Thus |(Vi \Qi) ∩ V (B)| ≥
5ε1t + 5.

We choose j ∈ {i + 1, . . . , q} such that Dj has the smallest possible
number p of vertices of B. Then with X = V (Dj) and Z = (Vi \Qi) ∩
V (B), by Lemma 4.5(2) there exists Y ⊂ (Vi\Qi)∩V (B), |Y | = 5, such
that X∪Y satisfies the conditions of Lemma 4.4. We apply Lemma 4.4
with an arbitrary set S ⊂ X of size two. Note that outcome (1) is not
possible, since otherwise we would have a set of disjoint red diamonds
of size q + 1 in R, contradicting the definition of q. Therefore we have
a diadem E satisfying (2), so its blue diamond intersects Y ⊂ V (B),
and hence is in B. Since |V (E)∩X| ≥ 3 the red diamond of E is in R.
Thus (a) and (b) hold for Ei+1 = E .

Now if p ≤ 2 then X = V (Dj) has at least two vertices that are
not in V (B), so since |V (E) ∩ X| ≥ 3 we know |V (E) ∩ V (B)| ≤ 4.
Therefore Vi+1 = Vi \ V (E) contains at least 4

5
|Vi+1| vertices of B, so
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(c) holds. But if p ≥ 3 then by definition of p we know

|Vi ∩ V (B)| ≥3

4
|Vi ∩Qi|+ |(Vi \Qi) ∩ V (B)|

≥3q − 3i + |Vi \Qi| − 5ε1t− 5

≥3q − 3i + |V (J1)| − 4q − i− 5ε1t− 5 by Lemma 4.5(1)

=|V (J1)| − q − 4i− 5ε1t− 5

=(
4

5
|V (J1)| − 4i) +

1

5
|V (J1)| − q − 5ε1t− 5

≥4

5
|Vi|+ 1,

where the last line follows since |Vi| = |V (J1)| − 5i and q < s ≤
1
5
|V (J1)| − 5ε1t − 6 by Lemma 4.2. Therefore |Vi+1 ∩ V (B)| ≥ |Vi ∩

V (B)| − 5 ≥ 4
5
|Vi| − 4 = 4

5
(|Vi| − 5) = 4

5
|Vi+1|, verifying (c).

Case 2. Vi \ (V (B) ∪Qi) ≥ 5ε1t + 5.
First suppose that some j ∈ {i + 1, . . . , q}, say without loss of gen-

erality j = i + 1, is such that Dj has at least 2 vertices in B. Set
X = V (Di+1). By Lemma 4.5(2) with Z = Vi \ (V (B) ∪ Qi), there
exists Y ⊂ Vi \ (V (B) ∪ Qi), |Y | = 5, such that X ∪ Y satisfies the
conditions of Lemma 4.4. We let S = X ∩ V (B) and apply Lemma
4.4. Again note that outcome (1) is not possible, since otherwise we
would have a set of disjoint red diamonds of size q + 1 in R. Therefore
we have a diadem E satisfying (2). But then the blue diamond in E
intersects S and hence is in B, the red diamond of E intersects X and
hence is in R, and |V (E)∩V (B)| ≤ 4 because Y ∩V (B) = ∅. Therefore
Vi+1 = Vi \ V (E) contains at least 4

5
|Vi+1| vertices of B. Thus (a), (b),

and (c) hold for i + 1 if we set Ei+1 = E .
Now suppose that each Dj with j ∈ {i + 1, . . . , q} has at most one

vertex of B. We claim that in this case we must have |(Vi\Qi)∩V (B)| ≥
5ε1t + 5. To see this, suppose the contrary. Then

4

5
|V (J1)| − 4i =

4

5
|Vi| ≤ |Vi ∩ V (B)|

=|Vi ∩Qi ∩ V (B)|+ |(Vi \Qi) ∩ V (B)|
≤ q − i + 5ε1t + 5.

Here the first inequality comes from (c) and the last follows because
each Dj has at most one point in B. Therefore 4

5
|V (J1)| ≤ q + 3i +

5ε1t + 5 < 4s + 5ε1t + 5, implying 1
5
|V (J1)| < s + 5

4
ε1t + 5

4
, which

contradicts Lemma 4.2. Thus this cannot occur, and so we may assume
|(Vi \Qi) ∩ V (B)| ≥ 5ε1t + 5.
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Set X = V (Di+1) and Z = (Vi \ Qi) ∩ V (B), and apply Lemma
4.5(2) to get a set Y ⊂ (Vi \ Qi) ∩ V (B), |Y | = 5, such that X ∪ Y
satisfies the conditions of Lemma 4.4. As in Case 1, we apply Lemma
4.4 with an arbitrary set S ⊂ X of size two. Again we cannot get two
disjoint red diamonds, so we get a diadem E satisfying (2). Its blue
diamond intersects Y ⊂ V (B), and hence is in B. Since |V (E)∩X| ≥ 3
the red diamond of E is in R. Thus (a) and (b) hold for Ei+1 = E .
Note that |V (E) ∩X| ≥ 3 also implies that |V (E) ∩ V (B)| ≤ 3, and so
Vi+1 = Vi \ V (E) contains at least 4

5
|Vi+1| vertices of B, so (c) holds.

Therefore in all cases we can complete the above construction to find
disjoint diadems E1, . . . , Eq, whose red diamonds are all in R and whose
blue diamonds are all in B, such that Vq = V (J1) \ V (E1 ∪ . . . ∪ Eq)
contains at least 4

5
|Vq| vertices of B. Note that |Vq| = |V (J1)| − 5q ≥

30ε1t by Lemma 4.2, and so by Lemma 4.3(1) we have |Vq ∩ V (R)| ≥
|Vq| − 3ε1t ≥ 27ε1t. Note also that by definition of q, no red diamond
can be present in Vq ∩ V (R).

We now complete the proof by showing that Vq ∩ V (R)∩ V (B) con-
tains a set U of s−q disjoint blue diamonds. Then U together with the
q blue diamonds in E1, . . . , Eq will give a set of s disjoint blue diamonds
in B as required.

First we observe that for any x ∈ Vq∩V (R), since |Vq∩V (R)| > ε1t,
by Lemma 4.1(3) there exists y ∈ Vq ∩ V (R) such that xy is in at
least (1− ε1)t edges of J1. Therefore, since Vq ∩ V (R) contains no red
diamonds, all but at most ε1t+1 of the vertices z ∈ Vq∩V (R) are such
that xyz ∈ J1 and xyz is blue. Therefore in particular

|Vq ∩ V (R) ∩ V (B)| ≥|Vq ∩ V (R)| − ε1t− 1

≥|V (J1)| − 5q − 4ε1t− 1 > 4(s− q) + 2ε1t,

where the last line follows since |V (J1)| > 5s+30ε1t > 4s+q +6ε1t+1
by Lemma 4.2.

We can now find the required set U of s − q blue diamonds in Vq ∩
V (R) ∩ V (B) by a greedy construction. Suppose we have put into U
some disjoint blue diamonds, and there remains a set W of at least 2ε1t
unused vertices. Then as above, we can choose x ∈ W and y ∈ W such
that there exist at least |W \{x, y}|−ε1t+1 ≥ 2 vertices z ∈ W \{x, y}
such that xyz is a blue edge of J1. Thus we can add another blue
diamond to U . Thus since |Vq ∩ V (R) ∩ V (B)| > 4(s − q) + 2ε1t this
construction yields a set U of at least s − q disjoint blue diamonds as
required. �
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5. Proof of Lemma 2.4

We follow the outline presented in Step 3. Let G = Γ(L) be the
shadow graph of L, as defined in Step 2. Then for each of the s disjoint
diamonds Di = {hjk, hjp} in L, there is an edge hj of G joining the
two central points of Di. Let M denote the matching in G consisting
of these s disjoint edges. By a closed directed trail in G we mean
a sequence of (not necessarily distinct) vertices x1, x2, . . . , xr, where
xr = x1, of G, together with the edges (xi, xi+1) for i = 1, . . . , r − 1
which we consider as being directed from xi to xi+1 and call arcs.

The following easy lemma provides the route that our cycle will
eventually follow.

Lemma 5.1. Let G = Γ(L), and let M be defined as above. Then G
contains a closed directed trail with r < 2t vertices that uses every edge
of M as an arc, and no edge of G is used as an arc more than once in
each direction.

Proof. Recall that |V (G)| ≤ t. Let T be any spanning tree of G that
contains the edges of M . We can easily obtain a closed directed trail
with the desired properties as follows. Fix a planar embedding of T , and
let x1 be the root of T . Construct the trail by taking a walk starting at
x1 around the boundary of the (single) face of the embedding, ending
back at x1. Then each edge of T is traversed exactly once in each
direction, so the number of vertices of this trail is at most 2t − 1.
Moreover, every edge of M is used as an arc. �

For each diamond Di, 1 ≤ i ≤ s, we choose one arc that uses the
edge of M corresponding to Di and call it the diamond arc for Di.

When choosing short paths that will link up to form a cycle, we
need to make sure the end-vertices of these paths can indeed coincide.
Let Vh, Vj, and Vk be any vertex classes such that H[Vh, Vj, Vk] is ε-
regular with density d > 2ε1/2 (recall |Vh| = |Vj| = |Vk| = m), and for
i ∈ {h, j, k} let Ui ⊆ Vi be arbitrary subsets. We say that a vertex
x ∈ Vh is good for the triple H[Uh, Uj, Uk] if

(i) for at least d|Uj|/2 vertices y ∈ Uj, there are at least d|Uk|/2
vertices z ∈ Uk such that xyz ∈ H, and

(ii) for at least d|Uk|/2 vertices z ∈ Uk, there are at least d|Uj|/2
vertices y ∈ Uj such that xyz ∈ H.

Note that for x ∈ Vh, the property of being good for H[Uh, Uj, Uk] is
independent of the choice of Uh.

We define vertices in Vj and Vk to be good for H[Uh, Uj, Uk] in a
similar way. The next lemma implies that, as long as Uh, Uj and Uk

are reasonably large, most vertices in Vh ∪ Vj ∪ Vk are good.
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Lemma 5.2. Suppose d > 2ε1/2. With the above definitions, the num-
ber of vertices in Vh that are good for H[Uh, Uj, Uk] is at least m− εm3

|Uj ||Uk|
.

The analogous bounds hold for Vj and Vk. In particular, for each
i ∈ {h, j, k} the number of vertices in Vi that are good for H[Vh, Vj, Vk]
is at least (1− ε)m.

Proof. Suppose x ∈ Vh fails to satisfy (i). Then the total number of
edges of H[{x}, Uj, Uk] is smaller than

(d|Uj|/2)|Uk|+ (1− d/2)|Uj|(d|Uk|/2) = (d− d2/4)|Uj||Uk|.

If x fails to satisfy (ii) then we find the same bound. Let X ⊂ Vh

denote the set of vertices that are not good. Then |H[X, Uj, Uk]| ≤
|X|(d− d2/4)|Uj||Uk|. Thus if |X||Uj||Uk| > εm3 we find

|H[X,Uj, Uk]|
|X||Uj||Uk|

≤ d− d2/4 < d− ε,

which contradicts the fact that H[Vh, Vj, Vk] is ε-regular. Therefore the
number of vertices in Vh that are not good for H[Uh, Uj, Uk] is at most

εm3

|Uj ||Uk|
. Similar bounds can be found for Vj and Vk. �

The set of vertices in Vh ∪Vj ∪Vk that are good for H[Vh, Vj, Vk] will
simply be called good. To make sure the end-vertices of our short paths
coincide where necessary, we will require them to be good. This idea
will be made precise in the upcoming proof of Lemma 2.4.

We will also need to choose our short paths in ε-regular triples so
that they avoid some “bad” set B of vertices. The next lemma allows
us to find these short paths (of length three).

Lemma 5.3. Let H[Vh, Vj, Vk] be an ε-regular triple with density d >
2ε1/3. Then for every pair of good vertices x ∈ Vh and y ∈ Vj, and for
every set B ⊂ Vh ∪ Vj ∪ Vk \ {x, y} that contains all non-good vertices
and satisfies |B∩Vi| < (d/2− ε1/3)m for i ∈ {h, j, k}, there is a path of
length three in H[Vh, Vj, Vk] joining x to y that is disjoint from B (and
hence contains only good vertices). Moreover the path can be chosen so
that one vertex of degree two in the path is in Vh, and the other is in
Vj.

Proof. Since x is good, there exists a set Ux ⊂ Vj, |Ux| ≥ dm/2, such
that for each z ∈ Ux, there are at least dm/2 vertices w ∈ Vk such
that xzw ∈ H. Since y is good, there exists a set Uy ⊂ Vh with similar
properties. Then, writing b = (d/2− ε1/3), we have

|Ux \B||Uy \B||Vk \B| > (d/2− b)2(1− b)m3 > εm3.
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Therefore, since H is ε-regular, we know that |H[Ux \ B, Uy \ B, Vk \
B]| ≥ (d− ε)|Ux \B||Uy \B||Vk \B|. We may therefore choose vertices
z ∈ Ux \{y} and v ∈ Uy \{x}, and distinct good vertices uh, uj, uk ∈ Vk

such that xzuh, yvuj, zvuk ∈ H. This gives the required path. �

The following immediate consequence of the above lemma will be
used to adjust the parity of the length of a path.

Corollary 5.4. Let H = H[Vh, Vj, Vk] be an ε-regular triple with den-
sity d > 2ε1/3. Then for every pair of good vertices x ∈ Vh and y ∈ Vj,
and for every set B ⊂ Vh ∪ Vj ∪ Vk \ {x, y} that contains all non-good
vertices and satisfies |B∩Vi| < (d/2− ε1/3)m− 6 for each i ∈ {h, j, k},
there is a path of length six in H joining x to y that is disjoint from B
(and hence contains only good vertices).

Proof. Let w be any vertex in Vk \ B. Then by Lemma 5.3 there is
a path P of length three joining x and w that avoids B ∪ {y}. Let
B′ = B ∪ V (P) \ {w}. Then applying Lemma 5.3 again with w, y
and B′ we may extend P to a path of length six with the required
properties. �

Our final preparatory lemma tells us that in a “blown-up diamond”
we can find long paths between specified vertices, that avoid any given
small set B. We remark that the condition on the parity of the path
is not essential, it is present simply to make the proof a bit easier.

Lemma 5.5. Let Vh, Vj, Vk, Vp be classes such that H1 = H[Vh, Vj, Vk]
and H2 = H[Vj, Vk, Vp] are both ε-regular of density d ≥ 32ε1/6. Let
x ∈ Vj and y ∈ Vk be good vertices for both H1 and H2. Let B ⊂
Vh ∪ Vj ∪ Vk ∪ Vp \ {x, y} be such that B contains all vertices that are
not good for H1 or not good for H2, and |B ∩ Vi| < 2εm for each
i ∈ {h, j, k, p}. Then there is a path joining x and y in H1 ∪ H2 of
length ` for all odd integers ` satisfying 2dm/7 ≤ ` ≤ (1 − 2ε1/6)2m
that avoids B.

Proof. We prove the lemma by means of the following two claims. The
first is an easy greedy argument using Lemma 5.3.

Claim 5.6. Let 0 ≤ q < b(d/2− ε1/3)m/6c, and let B′ ⊂ Vh∪Vj ∪Vk \
{x, y} be such that B′ contains all vertices that are not good for H1,
and |B′ ∩ Vi| < (d/2 − ε1/3)m − 6q for each i ∈ {h, j, k}. Then there
is a path joining x and y in H1 of length 6q + 3 that avoids B′, whose
degree-two vertices all lie in Vj or Vk.

Proof. We prove the claim by induction on q. For q = 0 it is immedi-
ately given by Lemma 5.3. Assume q ≥ 1 and that the claim is true for
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smaller values of q. Let B′ be given. Choose z ∈ Vk \ (B′∪{y}), then z
is good. Then by the induction hypothesis, there is a path P of length
6(q− 1) + 3 joining x to z that avoids B′ ∪ {y}, and whose degree-two
vertices all lie in Vj or Vk. Note then |V (P) ∩ Vh| = 6(q − 1) + 3 and
|V (P) ∩ Vj| = |V (P) ∩ Vk| = 3(q − 1) + 2.

Let B′′ = B′∪V (P)∪{y}\{z}. Then |B′′∩Vi| < (d/2− ε1/3)m− 3.
Let w ∈ Vj \ B′′. Then w is good, so by Lemma 5.3 there is a path
P ′ of length three joining z and w that avoids B′′. Finally let B′′′ =
B′′∪V (P ′)\{w, y}. Then |B′′′∩Vi| < (d/2−ε1/3)m. Apply Lemma 5.3
once more to obtain a path P ′′ of length 3 joining w to y that avoids
B′′′. The concatenation PP ′P ′′ then has length 6q + 3, avoids B′, and
all its degree-two vertices lie in Vj ∪ Vk. �

Our second claim states that any reasonably long path can be length-
ened by two, unless it uses almost all the vertices of H1 ∪H2.

Claim 5.7. With the assumptions of Lemma 5.5, let P be a path in
H1 ∪H2 joining x and y of length `, where dm/4 < ` < (1− 2ε1/6)2m,
that avoids B. Suppose all degree-two vertices of P lie in Vj ∪ Vk.
Then there exists a path P ′ joining x and y that avoids B, all of whose
degree-two vertices lie in Vj ∪ Vk, of length ` + 2.

Proof. The aim is to replace one edge of P by three edges, however we
must choose the edge to be replaced appropriately.

For each i ∈ {h, j, k, p} let Ui ⊂ Vi denote the available vertices in
Vi, that is Ui = Vi \ (V (P) ∪ B). Then by the condition on the length
of P , we have |Ui| > ε1/6m for i ∈ {j, k}, and |Ui| > ε1/6m for some
i ∈ {h, p}, say without loss of generality h.

Now by Lemma 5.2, for each i ∈ {h, j, k} at most ε2/3m vertices of
Vi∩V (P) are not good for H[Uh, Uj, Uk]. Therefore, since |Vi∩V (P)| ≥
`/2 ≥ dm/8 > 4ε2/3m holds for i ∈ {j, k}, there exist x1 ∈ Vj ∩ V (P)
and y1 ∈ Vk ∩ V (P) that are both good for H[Uh, Uj, Uk], such that
x1y1z1 is an edge of P for some z1 ∈ Vh. Let Uk(x1) ⊂ Uk be the set
guaranteed by the goodness of x1, so |Uk(x1)| ≥ d|Uk|/2 > ε1/3m has
property (i). Let Uj(y1) ⊂ Uj be defined similarly (having property
(ii)). Then we have |Uh||Uj(y1)||Uk(x1)| > εm3, and so there exist
u ∈ Uk(x1) and w ∈ Uj(y1) such that uwz ∈ H for some z ∈ Uh. Thus,
a path of length three from x1 to y1 can easily be found, that is disjoint
from the rest of P and from B, and whose degree-two vertices lie in Vj

and Vk. �

The proof of Lemma 5.5 now follows immediately: First, we find a B-
avoiding path of odd length `0 = 6(b(2d/7− ε1/3)m/6c−1)+3 > dm/4
from x to y using Claim 5.6. Then, since `0 < 2dm/7, we extend it step
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by step using Claim 5.7 until a path of the desired odd length between
2dm/7 and (1− 2ε1/6)2m is reached. �

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4. Let L be as in Lemma 2.3, and let T = x1x2 . . . xr,
where xr = x1, be the closed directed trail in Γ(L) given by Lemma 5.1.
For each arc (xi−1, xi), choose an ε-regular triple Hi = H[Vxi−1

, Vxi
, Vki

]
of density at least 1/2 for some ki (the existence of which is guaranteed
by the definition of Γ(L)). We also choose distinct vertices vi ∈ Vxi

for
1 ≤ i ≤ r − 1 such that vi is good for both triples Hi and Hi+1 (here
indices are taken mod r−1). If xi is incident to the diamond arc (h, j)
for some diamond {hjk, hjp} ∈ {D1, . . . ,Ds}, we also require that vi

be good for the two triples H[Vh, Vj, Vk] and H[Vh, Vj, Vp] as well. (Note
that these two triples may or may not have been chosen as some Hb.)
Then Lemma 5.2 together with the fact that r < 2t < εm (given by
Lemma 2.2(3)) ensure that such a choice of v1, . . . , vr−1 can always be
made. We also set vr = v1. These vertices will be the end-vertices of
our short paths.

Next we join vi−1 to vi by a path of length three (or six) for each
i, starting with i = 2. We apply Lemma 5.3 to the triple H2 =
H[Vx1 , Vx2 , Vk2 ], the vertices x = v1 and y = v2, and the set B of ver-
tices that are not good for H2 together with all vertices in {v1, . . . , vr}.
This gives a path of length three joining v1 and v2, whose two vertices
of degree two lie in Vx1 and Vx2 .

In the general step, for i = 3, . . . , r, we apply Lemma 5.3 to the
triple Hi = H[Vxi−1

, Vxi
, Vki

], the vertices x = vi−1 and y = vi, and the
set B of vertices that are not good for Hi together with all vertices of
previously defined short paths and in {v1, . . . , vr}. Since the latter set
has size at most 7r < εm by Lemma 2.2(3), the assumptions on the
size of B in Lemma 5.3 are satisfied. This gives a path of length three
joining vi−1 and vi, disjoint from all previously defined paths, whose
two vertices of degree two lie in Vxi−1

and Vxi
. These short paths link

to form a loose cycle of length 3(r−1). If the length of our target cycle
Cn has different parity from 3(r − 1), we replace one path of length
three that does not correspond to a diamond arc by a path of length
six, using Corollary 5.4, to make the parities agree. This gives a loose
cycle C of length c, where 3(r − 1) ≤ c ≤ 3r and c ≡ n/2 (mod 2).

Finally, to complete the proof we replace each short path in C corre-
sponding to a diamond arc by a long path. Let (xi−1, xi) be a diamond
arc, for some diamond {xi−1xik, xi−1xip}. Then we apply Lemma 5.5 to
the two ε-regular triples H[Vxi−1

, Vxi
, Vk] and H[Vxi−1

, Vxi
, Vp] of density

d ≥ 1/2, corresponding to the diamond. Here we are taking x = vi−1
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and y = vi, and the length ` = b1
s
(n

2
− c)c or b1

s
(n

2
− c)c− 1, whichever

is odd. We call this number the basic length for our long paths. Let the
set B be the set of all vertices that are not good for H[Vxi−1

, Vxi
, Vk]

or for H[Vxi−1
, Vxi

, Vp] together with the set of all vertices in C. Note
that the latter set still has size at most 6r < εm, since the s diamonds
D1, . . . , Ds of L are vertex-disjoint and so the long paths cannot inter-
fere with each other.

To check that the condition 2dm/7 ≤ ` ≤ (1−2ε1/6)2m from Lemma
5.5 is satisfied, observe first the following:

(a) s ≥ f(ε) n
N

t(ε0,t0)
4

, where f(ε) = (1− 500ε1/6)−2, by Lemma 2.3;

(b) t ≤ t(ε0, t0) and m ≥ (1−ε)N
t

> (1−500ε1/6)N
t

by Theorem 2.1;
(c) c ≤ 3r ≤ 6t < εm < εn by Lemma 2.2(3);
(d) N < 5

4
n(1 + η) < 3

2
n (see Step 1).

From (a) and (b), it follows that

1

s

n

2
<

(
1− 500ε1/6

)
2m <

(
1− 2ε1/6

)
2m− 2r. (5.1)

Then, using (5.1) and (c), we obtain ` ≤ b1
s
(n

2
− c)c < (1 − 2ε1/6)2m

as required.
Of course we also have s ≤ t by Lemma 4.2, so since (c) implies

` > 1
s
(n

2
− c) − 2r > n

t
(1

2
− ε) − εm. But then this is at least 2

3
N
t

(1
2
−

ε) − εm > 2m
7

by (d). Thus ` falls into the correct range for Lemma
5.5.

Therefore the assumptions of Lemma 5.5 are satisfied, and we can
find a path joining vi and vi+1 of length `. For the last diamond we
choose ` appropriately so that the resulting cycle has length exactly
n/2, i.e. it is a copy of Cn. This is possible since we would need to
adjust the basic length by at most 2r, and as above

2m

7
<

1

s

(n

2
− c

)
− 2r <

1

s

(n

2
− c

)
+ 2r ≤

(
1− 2ε1/6

)
2m.

This completes the proof. �
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Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão
1010, 05508–900 São Paulo, Brazil

E-mail address: jozef@member.ams.org


