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Abstract. Haviland and Thomason and Chung and Graham were the
first to investigate systematically some properties of quasi-random hy-
pergraphs. In particular, in a series of articles, Chung and Graham con-
sidered several quite disparate properties of random-like hypergraphs
of density 1/2 and proved that they are in fact equivalent. The central
concept in their work turned out to be the so called deviation of a hyper-
graph. Chung and Graham proved that having small deviation is equiv-
alent to a variety of other properties that describe quasi-randomness. In
this note, we consider the concept of discrepancy for k-uniform hyper-
graphs with an arbitrary constant density d (0 < d < 1) and prove that
the condition of having asymptotically vanishing discrepancy is equiva-
lent to several other quasi-random properties of H, similar to the ones
introduced by Chung and Graham. In particular, we give a proof of the
fact that having the correct ‘spectrum’ of the s-vertex subhypergraphs is
equivalent to quasi-randomness for any s ≥ 2k. Our work can be viewed
as an extension of the results of Chung and Graham to the case of an
arbitrary constant valued density. Our methods, however, are based on
different ideas.

1 Introduction and the main result

The usefulness of random structures in theoretical computer science and in dis-
crete mathematics is well known. An important, closely related question is the
following: which, if any, of the almost sure properties of such structures suffice
for a deterministic object to have to be as useful or relevant?

Our main concern here is to address the above question in the context of
hypergraphs. We shall continue the study of quasi-random hypergraphs along
the lines initiated by Haviland and Thomason [7, 8] and especially by Chung [2],
and Chung and Graham [3, 4]. One of the central concepts concerning hyper-
graph quasi-randomness, the so called hypergraph discrepancy, was investigated
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by Babai, Nisan, and Szegedy [1], who found a connection between commu-
nication complexity and hypergraph discrepancy. This connection was further
studied by Chung and Tetali [5]. Here, we carry out the investigation very much
along the lines of Chung and Graham [3, 4], except that we focus on hypergraphs
of arbitrary constant density, making use of different techniques.

In the remainder of this introduction, we carefully discuss a result of Chung
and Graham [3] and state our main result, Theorem 3 below.

1.1 The result of Chung and Graham

We need to start with some definitions. For a set V and an integer k ≥ 2, let
[V ]k denote the system of all k-element subsets of V . A subset G ⊂ [V ]k is
called a k-uniform hypergraph. If k = 2, we have a graph. We sometimes use the
notation G = (V (G), E(G)). If there is no danger of confusion, we shall identify
the hypergraphs with their edge sets. Throughout this paper, the integer k is
assumed to be a fixed constant.

For any l-uniform hypergraph G and k ≥ l, let Kk(G) be the set of all k-
element sets that span a clique K

(l)
k on k vertices. We also denote by Kk(2)

the complete k-partite k-uniform hypergraph whose every partite set contains
precisely two vertices. We refer toKk(2) as the generalized octahedron, or, simply,
the octahedron.

We also consider a function µH : [V ]k → {−1, 1} such that, for all e ∈ [V ]k,
we have

µH(e) =
{
−1, if e ∈ H

1, if e 6∈ H.

Let [k] = {1, 2, . . . , k}, let V 2k denote the set of all 2k-tuples (v1, v2, . . . , v2k),
where vi ∈ V (1 ≤ i ≤ 2k), and let Π(k)

H : V 2k → {−1, 1} be given by

Π
(k)
H (u1, . . . , uk, v1, . . . , vk) =

∏
ε
µH(ε1, . . . , εk),

where the product is over all vectors ε = (εi)ki=1 with εi ∈ {ui, vi} for all i and
we understand µH to be 1 on arguments with repeated entries.

Following Chung and Graham (see, e.g., [4]), we define the deviation dev(H)
of H by

dev(H) =
1
m2k

∑
ui,vi∈V, i∈[k]

Π
(k)
H (u1, . . . , uk, v1, . . . , vk).

For two hypergraphs G and H, we denote by
(H
G
)

the set of all induced
subhypergraphs of H that are isomorphic to G. We also write

(H
G
)w

for the
number of weak (i.e., not necessarily induced) subhypergraphs of H that are
isomorphic to G. Furthermore, we need the notion of the link of a vertex.

Definition 1 Let H be a k-uniform hypergraph and x ∈ V (H). We shall call
the (k − 1)-uniform hypergraph

H(x) = {e \ {x} : e ∈ H, x ∈ e}



the link of the vertex x in H. For a subset W ⊂ V (H), the joint W -link is
H(W ) =

⋂
x∈W H(x). For simplicity, if W = {x1, . . . , xk}, we write H(x1, . . . , xk).

Observe that if H is k-partite, then H(x) is (k − 1)-partite for every x ∈ V .
Furthermore, if k = 2, then H(x) may be identified with the ordinary graph
neighbourhood of x. Moreover, H(x, x′) may be thought of as the ‘joint neigh-
bourhood’ of x and x′.

In [3], Chung and Graham proved that if the density of anm-vertex k-uniform
hypergraph H is 1/2, i.e., |H| = (1/2 + o(1))

(
m
k

)
, where o(1) → 0 as m → ∞,

then the following statements are equivalent:

(Q1(s)) for all k-uniform hypergraphs G on s ≥ 2k vertices and automorphism
group Aut(G), ∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

s

)
2−(sk) s!

|Aut(G)|
,

(Q2) for all k-uniform hypergraphs G on 2k vertices and automorphism group
Aut(G), we have∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

2k

)
2−(2k

k ) (2k)!
|Aut(G)|

,

(Q3) dev(H) = o(1),
(Q4) for almost all choices of vertices x, y ∈ V , the (k−1)-uniform hypergraph
H(x)4H(y), that is, the complement [V ]k−1\(H(x)4H(y)) of the symmetric
difference of H(x) and H(y), satisfies Q2 with k replaced by k − 1,

(Q5) for 1 ≤ r ≤ 2k − 1 and almost all x, y ∈ V ,∣∣∣∣(H(x, y)

K
(k−1)
r

)∣∣∣∣ = (1 + o(1))
(
m

r

)
2−( r

k−1).

The equivalence of these properties is to be understood in the following sense. If
we have two properties P = P (o(1)) and P ′ = P ′(o(1)), then “P ⇒ P ′” means
that for every ε > 0 there is a δ > 0 so that any k-uniform hypergraph H on m
vertices satisfying P (δ) must also satisfy P ′(ε), provided m > M0(ε).

In [3] Chung and Graham stated that “it would be profitable to explore
quasi-randomness extended to simulating random k-uniform hypergraphs Gp(n)
for p 6= 1/2, or, more generally, for p = p(n), especially along the lines carried
out so fruitfully by Thomason [13, 14].” Our present aim is to explore quasi-
randomness from this point of view. In this paper, we concentrate on the case
in which p is an arbitrary constant. In certain crucial parts, our methods are
different from the ones of Chung and Graham. Indeed, it seems to us that the
fact that the density of H is 1/2 is essential in certain proofs in [3] (especially
those involving the concept of deviation).



1.2 Discrepancy and subgraph counting

The following concept was proposed by Frankl and Rödl and later investigated
by Chung [2] and Chung and Graham in [3, 4]. For an m-vertex k-uniform hy-
pergraph H with vertex set V , we define the density d(H) and the discrepancy
disc1/2(H) of H by letting d(H) = |H|

(
m
k

)−1 and

disc1/2(H) =
1
mk

max
G⊂[V ]k−1

∣∣|H ∩ Kk(G)| − |H̄ ∩ Kk(G)|
∣∣ , (1)

where the maximum is taken over all (k−1)-uniform hypergraphs G with vertex
set V , and H̄ is the complement [V ]k \ H of H.

To accommodate arbitrary densities, we extend the latter concept as follows.

Definition 2 Let H be a k-uniform hypergraph with vertex set V with |V | = m.
We define the discrepancy disc(H) of H as follows:

disc(H) =
1
mk

max
G⊂[V ]k−1

∣∣|H ∩ Kk(G)| − d(H)|Kk(G)|
∣∣, (2)

where the maximum is taken over all (k− 1)-uniform hypergraphs G with vertex
set V .

Observe that if d(H) = 1/2, then disc(H) = (1/2) disc1/2(H), so both notions
are equivalent. Following some initial considerations by Frankl and Rödl, Chung
and Graham investigated the relation between discrepancy and deviation. In
fact, Chung [2] succeeded in proving the following inequalities closely connecting
these quantities:

(i) dev(H) < 4k(disc1/2(H))1/2k ,
(ii) disc1/2(H) < (dev(H))1/2k .

For simplicity, we state the inequalities for the density 1/2 case. For the general
case, see Section 5 of [2].

Before we proceed, we need to introduce a new concept. If the vertex set of a
hypergraph is totally ordered, we say that we have an ordered hypergraph. Given
two ordered hypergraphs G≤ and H≤′ , where ≤ and ≤′ denote the orderings on
the vertex sets of G = G≤ and H = H≤′ , we say that a function f : V (G)→ V (H)
is an embedding of ordered hypergraphs if (i) it is an injection, (ii) it respects
the orderings, i.e., f(x) ≤′ f(y) whenever x ≤ y, and (iii) f(g) ∈ H if and only
if g ∈ G, where f(g) is the set formed by the images of all the vertices in g.
Furthermore, if G = G≤ and H = H≤′ , we write

(H
G
)

ord
for the number of such

embeddings.
As our main result, we shall prove the following extension of Chung and

Graham’s result.

Theorem 3 Let H = (V,E) be a k-uniform hypergraph of density 0 < d < 1.
Then the following statements are equivalent:



(P1) disc(H) = o(1),
(P2) disc(H(x)) = o(1) for all but o(m) vertices x ∈ V and disc(H(x, y)) = o(1)

for all but o(m2) pairs x, y ∈ V ,
(P3) disc(H(x, y)) = o(1) for all but o(m2) pairs x, y ∈ V ,
(P4) the number of octahedra Kk(2) in H is asymptotically minimized among

all k-uniform hypergraphs of density d; indeed,∣∣∣∣( H
Kk(2)

)w∣∣∣∣ = (1 + o(1))
m2k

2kk!
d2k ,

(P5) for any s ≥ 2k and any k-uniform hypergraph G on s vertices with e(G)
edges and automorphism group Aut(G),∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

s

)
de(G)(1− d)(

s
k)−e(G) s!

|Aut(G)|
,

(P ′5) for any ordering H≤ of H and for any fixed integer s ≥ 2k, any ordered
k-uniform hypergraph G≤ on s vertices with e(G) edges is such that∣∣∣∣(HG

)
ord

∣∣∣∣ = (1 + o(1))
(
m

s

)
de(G)(1− d)(

s
k)−e(G),

(P6) for all k-uniform hypergraphs G on 2k vertices with e(G) edges and auto-
morphism group Aut(G),∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

2k

)
de(G)(1− d)(

2k
k )−e(G) (2k)!

|Aut(G)|
.

(P ′6) for any ordering H≤ of H, any ordered k-uniform hypergraph G≤ on 2k
vertices with e(G) edges is such that∣∣∣∣(HG

)
ord

∣∣∣∣ = (1 + o(1))
(
m

2k

)
de(G)(1− d)(

2k
k )−e(G).

Some of the implications in Theorem 3 are fairly easy or are by now quite
standard. There are, however, two implications that appear to be more difficult.

The proof of Chung and Graham that dev1/2(H) = o(1) implies P5 (the ‘sub-
graph counting formula’) is based on an approach that has its roots in a seminal
paper of Wilson [15]. This beautiful proof seems to make non-trivial use of the
fact that d(H) = 1/2. Our proof of the implication that small discrepancy im-
plies the subgraph counting formula (P1 ⇒ P ′5) is based on a different technique,
which works well in the arbitrary constant density case (see Section 2.2).

Our second contribution, which is somewhat more technical in nature, lies in
a novel approach for the proof of the implication P2 ⇒ P1. Our proof is based
on a variant of the Regularity Lemma of Szemerédi [12] for hypergraphs [6] (see
Section 2.1).



2 Main steps in the proof of Theorem 3

2.1 The first part

The first part of the proof of Theorem 3 consists of proving that properties
P1, . . . , P4 are mutually equivalent. As it turns out, the proof becomes more
transparent if we restrict ourselves to k-partite hypergraphs. In the next para-
graph, we introduce some definitions that will allow us to state the k-partite
version of P1, . . . , P4 (see Theorem 15). We close this section introducing the
main tool in the proof of Theorem 15, namely, we state a version of the Regu-
larity Lemma for hypergraphs (see Lemma 20).

Definitions for partite hypergraphs. For simplicity, we first introduce the
term cylinder to mean partite hypergraphs.

Definition 4 Let k ≥ l ≥ 2 be two integers. We shall refer to any k-partite
l-uniform hypergraph H = (V1 ∪ · · · ∪ Vk, E) as a k-partite l-cylinder or (k, l)-
cylinder. If l = k−1, we shall often write Hi for the subhypergraph of H induced
on
⋃
j 6=i Vj. Clearly, H =

⋃k
i=1Hi. We shall also denote by K(l)

k (V1, . . . , Vk) the
complete (k, l)-cylinder with vertex partition V1 ∪ · · · ∪ Vk.

Definition 5 For a (k, l)-cylinder H, we shall denote by Kj(H), l ≤ j ≤ k, the
(k, j)-cylinder whose edges are precisely those j-element subsets of V (H) that
span cliques of order j in H.

When we deal with cylinders, we have to measure density according to their
natural vertex partitions.

Definition 6 Let H be a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk. We
define the k-partite density or simply the density d(H) of H by

d(H) =
|H|

|V1| . . . |Vk|
.

To be precise, we should have a distinguished piece of notation for the notion
of k-partite density. However, the context will always make clear which notion
we mean when we talk about the density of a (k, k)-cylinder.

We should also be careful when we talk about the discrepancy of a cylinder.

Definition 7 Let H be a (k, k)-cylinder with vertex set V = V1 ∪ · · · ∪ Vk. We
define the discrepancy disc(H) of H as follows:

disc(H) =
1

|V1| . . . |Vk|
max
G

∣∣|H ∩ Kk(G)| − d(H)|Kk(G)|
∣∣, (3)

where the maximum is taken over all (k, k − 1)-cylinders G with vertex set V =
V1 ∪ · · · ∪ Vk.



We now introduce a simple but important concept concerning the “regular-
ity” of a (k, k)-cylinder.

Definition 8 Let H be a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk
and let δ < α be two positive real numbers. We say that H is (α, δ)-regular
if the following condition is satisfied: if G is any (k, k − 1)-cylinder such that
|Kk(G)| ≥ δ|V1| . . . |Vk|, then

(α− δ)|Kk(G)| ≤ |H ∩ Kk(G)| ≤ (α+ δ)|Kk(G)|.

Lemma 9 Let H be an (α, δ)-regular (k, k)-cylinder. Then disc(H) ≤ 2δ.

Lemma 10 Suppose H is a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk.
Put α = d(H) and assume that disc(H) ≤ δ. Then H is (α, δ1/2)-regular.

The k-partite result. Suppose H is a k-uniform hypergraph and let H′ be a
‘typical’ k-partite spanning subhypergraph of H. In this section, we relate the
discrepancies of H and H′.

Definition 11 Let H = (V,E) be a k-uniform hypergraph with m vertices and
let P = (Vi)k1 be a partition of V . We denote by HP the (k, k)-cylinder consisting
of the edges h ∈ H satisfying |h ∩ Vi| = 1 for all 1 ≤ i ≤ k.

The following lemma holds.

Lemma 12 For any partition P = (Vi)k1 of V , we have

(i) disc(H) ≥ |d(HP)− d(H)||V1| . . . |Vk|/mk,
(ii) disc(HP) ≤ 2 disc(H)mk/|V1| . . . |Vk|.

An immediate consequence of the previous lemma is the following.

Lemma 13 If disc(H) = o(1), then disc(HP) = o(1) for (1−o(1))km partitions
P = (Vi)k1 of V .

With some more effort, one may prove a converse to Lemma 13.

Lemma 14 Suppose there exists a real number γ > 0 such that disc(HP) = o(1)
for γkm partitions P = (Vi)k1 of V . Then disc(H) = o(1).

We now state the k-partite version of a part of our main result, Theorem 3.

Theorem 15 Suppose V = V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n, and let H =
(V,E) be a (k, k)-cylinder with |H| = dnk. Then the following four conditions
are equivalent:

(C1) H is (d, o(1))-regular;
(C2) H(x) is (d, o(1))-regular for all but o(n) vertices x ∈ Vk and H(x, y) is

(d2, o(1))-regular for all but o(n2) pairs x, y ∈ Vk;



(C3) H(x, y) is (d2, o(1))-regular for all but o(n2) pairs x, y ∈ Vk;
(C4) the number of copies of Kk(2) in H is asymptotically minimized among

all such (k, k)-cylinders of density d, and equals (1 + o(1))n2kd2k/2k.

Remark 1. The condition |V1| = · · · = |Vk| = n in the result above has the sole
purpose of making the statement more transparent. The immediate generaliza-
tion of Theorem 15 for V1, . . . , Vk of arbitrary sizes holds.

Remark 2. The fact that the minimal number of octahedra in a (k, k)-cylinder
is asymptotically (1 + o(1))n2kd2k/2k is not difficult to deduce from a standard
application of the Cauchy–Schwarz inequality for counting “cherries” (paths of
length 2) in bipartite graphs.

We leave the derivation of the equivalence of properties P1, . . . , P4 from The-
orem 15 to the full paper.

A regularity lemma. The hardest part in the proof of Theorem 15 is the
implication C2 ⇒ C1. In this paragraph, we discuss the main tool used in the
proof of this implication. It turns out that, in what follows, the notation is
simplified if we consider (k + 1)-partite hypergraphs.

Throughout this paragraph, we let G be a fixed (k+1, k)-cylinder with vertex
set V (G) = V1∪· · ·∪Vk+1. Recall that G =

⋃k+1
i=1 Gi, where Gi is the corresponding

(k, k)-cylinder induced on
⋃
j 6=i Vj . In this section, we shall focus on “regulariz-

ing” the (k, k)-cylinders G1, . . . ,Gk, ignoring Gk+1. Alternatively, we may assume
that Gk+1 = ∅.

Definition 16 Let F =
⋃k
i=1 Fi be a (k, k − 1)-cylinder with vertex set V1 ∪

· · · ∪ Vk. For a vertex v ∈ Vk+1, we define the G-link GF (x) of x with respect to
F to be the (k, k − 1)-cylinder GF (x) = G(x) ∩ F .

Definition 17 Let W ⊂ Vk+1 and let F =
⋃k
i=1 Fi be as above. We shall say

that the pair (F ,W ) is (ε, d)-regular if∣∣∣∣ |Kk(GF (x))|
|Kk(F)|

− d
∣∣∣∣ < ε (4)

for all but at most ε|W | vertices x ∈W , and∣∣∣∣ |Kk(GF (x)) ∩ Kk(GF (y))|
|Kk(F)|

− d2

∣∣∣∣ < ε (5)

for all but at most ε|W |2 pairs x, y ∈W .

Definition 18 Let t be a positive integer and let Vk+1 = W1 ∪ · · · ∪ Wt be
an arbitrary partition of Vk+1. For every i ∈ [k], consider a t-partition P

(t)
i =

{E(i)
1 , . . . , E(i)

t } of V1 × · · · × Vi−1 × Vi+1 × · · · × Vk =
⋃t
α=1 E

(i)
α . Put P (t) =

(P (t)
1 , . . . , P

(t)
k ). We shall write E(P (t)) for the collection of all (k, k−1)-cylinders

E of the form E(1)
α1 ∪ · · · ∪ E

(k)
αk , where E(i)

αi ∈ P
(t)
i for all 1 ≤ i ≤ k.



Clearly, with the notation as above, we have |E(P (t))| = tk. Moreover, ob-
serve that each of the tk+1 pairs (E ,Wi), where E ∈ E(P (t)) and 1 ≤ i ≤ t, may
be classified as ε-regular or ε-irregular (i.e., not ε-regular), according to Defini-
tion 17. Also, notice that each v = (v1, . . . , vk+1) ∈ V1 × · · · × Vk+1 is ‘covered’
by exactly one such pair, that is, v ∈ Kk(E)×Wi for a unique pair (E ,Wi).

Definition 19 Let P (t) =
(
P

(t)
i

)k
1

and
(
Wi

)t
1

be as in Definition 18. We shall

say that the system of partitions
{
P

(t)
1 , . . . , P

(t)
k , {W1, . . . ,Wt}

}
is ε-regular if

the number of (k+1)-tuples (v1, . . . , vk+1) ∈ V1×· · ·×Vk+1 that are not covered
by the family of ε-regular pairs (E ,Wi) with E ∈ E(P (t)) and 1 ≤ i ≤ t is at most
ε|V1| . . . |Vk+1|.

The main tool in the proof of C2 ⇒ C1 is the following result (see [9] for the
details).

Lemma 20 For every ε > 0 and t0 ≥ 1, there exist integers n0 and T0 such
that every (k + 1, k)-cylinder G =

⋃k+1
i=1 Gi with vertex set V1 ∪ · · · ∪ Vk+1,

where |Vi| ≥ n0 for all 1 ≤ i ≤ k + 1, admits an ε-regular system of parti-
tions {P (t)

1 , . . . , P
(t)
k , {W1, . . . ,Wt}} with t0 < t < T0.

2.2 The subgraph counting formula

In this section, we shall state the main result that may be used to prove the im-
plication P1 ⇒ P ′5. To this end, we need to introduce some notation. Throughout
this section, s ≥ 2k is some fixed integer.

If H and G are, respectively, k-uniform and `-uniform (k ≥ `), then we say
that H is supported on G if H ⊂ Kk(G).

Suppose we have pairwise disjoint sets W1, . . . ,Ws, with |Wi| = n for all i.
Suppose further that we have a sequence G(2), . . . ,G(k) of s-partite cylinders
on W1 ∪ · · · ∪Ws, with G(i) an (s, i)-cylinder and, moreover, such that G(i) is
supported on G(i−1) for all 3 ≤ i ≤ k. Suppose also that, for all 2 ≤ i ≤ k and for
all 1 ≤ j1 < · · · < ji ≤ s, the (i, i)-cylinder G[j1, . . . , ji] = G(i)[Wj1 ∪ · · · ∪Wji ] is
(γi, δ)-regular with respect to G(i−1)[j1, . . . , ji] = G(i−1)[Wj1 ∪ · · · ∪Wji ], that is,
whenever G ⊂ G(i−1)[j1, . . . , ji] is such that |Ki(G)| ≥ δ|Ki(G(i−1)[j1, . . . , ji])|,
we have

(γi − δ)|Ki(G)| ≤ |G[j1, . . . , ji] ∩ Ki(G)| ≤ (γi + δ)|Ki(G)|.

Finally, let us say that a copy of K(k)
s in W1∪· · ·∪Ws is transversal if |V (K(k)

s )∩
Wi| = 1 for all 1 ≤ i ≤ s.

Our main result concerning counting subhypergraphs is then the following.

Theorem 21 For any ε > 0 and any γ2, . . . , γk > 0, there is δ0 > 0 such that if

δ < δ0, then the number of transversal K(k)
s in G(k) is (1 +O(ε))γ(sk)

k . . . γ
(s2)
2 ns.

Theorem 21 above is an instance of certain counting lemmas developed by
Rödl and Skokan for such complexes G =

(
G(i)

)
2≤i≤k (see, e.g., [11]).



3 Concluding remarks

We hope that the discussion above on our proof approach for Theorem 3 gives
some idea about our methods and techniques. Unfortunately, because of space
limitations and because we discuss the motivation behind our work in detail, we
are unable to give more details. We refer the interested reader to [9].

It is also our hope that the reader will have seen that many interesting
questions remain. Probably, the most challenging of them concerns developing
an applicable theory of sparse quasi-random hypergraphs. Here, we have in mind
such lemmas for sparse quasi-random graphs as the ones in [10].
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