

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 2166-2173

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Transversal numbers of translates of a convex body

Seog-Jin Kim^{a,*,1}, Kittikorn Nakprasit^b, Michael J. Pelsmajer^c, Jozef Skokan^{d,2}

^aDepartment of Mathematics Education, Konkuk University, Seoul 143-701, Republic of Korea

^bDepartment of Mathematics, Faculty of Science, Khon Kaen University, 123 Friendship Highway, 40002, Thailand

^cDepartment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

^d Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo, Brazil

Received 3 March 2003; received in revised form 4 June 2004; accepted 12 December 2005 Available online 28 July 2006

Abstract

Let \mathscr{F} be a family of translates of a fixed convex set M in \mathbb{R}^n . Let $\tau(\mathscr{F})$ and $v(\mathscr{F})$ denote the transversal number and the independence number of \mathscr{F} , respectively. We show that $v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq 8v(\mathscr{F}) - 5$ for n = 2 and $\tau(\mathscr{F}) \leq 2^{n-1}n^n v(\mathscr{F})$ for $n \geq 3$. Furthermore, if M is centrally symmetric convex body in the plane, then $v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq 6v(\mathscr{F}) - 3$. @ 2006 Elsevier B.V. All rights reserved.

Keywords: Transversal number; Intersection graph; Convex; Homothety

1. Introduction

For a family \mathscr{F} of convex bodies in Euclidean space let $\tau(\mathscr{F})$ denote the minimum size of a set of points that intersects every member of \mathscr{F} and let $v(\mathscr{F})$ denote the maximum size of a subfamily of pairwise disjoint members of \mathscr{F} . We call $\tau(\mathscr{F})$ the *transversal number* of \mathscr{F} and $v(\mathscr{F})$ the *independence number* of \mathscr{F} . The *intersection graph* G of a family \mathscr{F} of sets is the graph with vertex set \mathscr{F} in which two members of \mathscr{F} are adjacent if and only if they have nonempty intersection. We denote the complement of a graph G by \overline{G} . The chromatic number of the complement $\chi(\overline{G})$ of G is the minimum number of cliques that suffices to cover V(G).

If every intersecting subfamily of a family \mathscr{F} has a common point, then we say that the family \mathscr{F} has the *Helly* property. Let \mathscr{B}_n be a family of boxes in the *n*-dimensional Euclidean space \mathbb{R}^n , $n \ge 2$. Since the family \mathscr{B}_n of boxes has the Helly property, $\tau(\mathscr{B}_n) = \chi(\overline{G})$, where G is the intersection graph of \mathscr{B}_n . The study of $\tau(\mathscr{B}_n)$ was initiated by Gyárfás and Lehel [7]. Put $k = \nu(\mathscr{B}_n)$. Gyárfás and Lehel [7] proved that $\tau(\mathscr{B}_n) \le k(k-1)/2$ and Károlyi [9]

* Corresponding author.

E-mail addresses: skim12@konkuk.ac.kr (S.-J. Kim), kitnak@kku.ac.th (K. Nakprasit), pelsmajer@iit.edu (M.J. Pelsmajer), jozef@member.ams.org (J. Skokan).

¹ The author was partially supported by the faculty research fund of Konkuk University in 2005.

² The author was partially supported by NSF Grant INT-0305793, by NSA Grant H98230-04-1-0035, and by FAPESP/CNPq (Proj. Temático-ProNEx Proc. FAPESP 2003/09925-5 and Proc. FAPESP 2004/15397-4).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.05.014

improved this bound to $\tau(\mathscr{B}_n) \leq (1 + o(1))k \log^{n-1} k$. Fon-Der-Flaass and Kostochka [5] gave a simple proof of a slight refinement of Károlyi's bound:

$$\tau(\mathscr{B}_n) \leqslant k \log_2^{n-1} k + n - 0.5k \log_2^{n-2} k.$$

However, families of convex sets of other types, such as disks, do not necessarily have the Helly property. Example 10 in Section 3 presents an intersecting family having no common point. Hence, it is interesting to study how much the transversal number of such a family can exceed its independence number.

In this paper, we consider families of convex bodies in \mathbb{R}^n obtained by translations of a fixed convex body. We will show that

 $v(\mathcal{F}) \leq \tau(\mathcal{F}) \leq 8v(\mathcal{F}) - 5$

for any family \mathcal{F} of translates of a fixed convex set M in the plane. Furthermore, if M is centrally symmetric, then

$$v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq 6v(\mathscr{F}) - 3.$$

Note that the smallest upper bound on $\tau(\mathscr{F})$ should be at least $3\nu(\mathscr{F})$ because there exists a family \mathscr{F} for which $\tau(\mathscr{F}) = 3\nu(\mathscr{F})$ (see Example 10 in Section 3). We also obtain upper bounds on $\tau(\mathscr{F})$ in higher dimensions.

The paper is organized as follows: In Section 2, we bound the transversal number $\tau(\mathscr{F})$ in terms of $v(\mathscr{F})$. In Sections 3 and 4, we study $\tau(\mathscr{F})$ for special classes of families: in Section 3 for a family \mathscr{F} of translates of a centrally symmetric convex set in the plane, and in Section 4 for a family \mathscr{F} of homothetic copies of a fixed convex set in the plane. In Section 3 we also show that if \mathscr{F} is a family of unit disks and $\tau(\mathscr{F}) = 2$, then $v(\mathscr{F}) \leq 6$, which is best possible.

2. Transversal numbers

Let \mathscr{F} be a family of convex bodies obtained by translations of a fixed convex body in \mathbb{R}^n . Let *G* be the intersection graph of \mathscr{F} .

First we consider the case when n=2. Grünbaum [4] proposed the following question: let \mathscr{T} be a family of translates of a fixed convex set in the plane. If \mathscr{T} is an intersecting family, does $\tau(\mathscr{T}) \leq 3$ hold? Karasev [8] showed that the answer to this question is yes.

Using Karasev's result, we have the following.

Proposition 1. If \mathscr{F} is a family of translates of a fixed convex body in the plane, then $\chi(\overline{G}) \leq \tau(\mathscr{F}) \leq 3\chi(\overline{G})$, where G is the intersection graph of \mathscr{F} .

Kim and Nakprasit [11] showed that $\chi(\overline{G}) \leq 3\nu(\mathscr{F}) - 2$, where G is the intersection graph of \mathscr{F} . Using this result and Proposition 1, we obtain $\tau(\mathscr{F}) \leq 9\nu(\mathscr{F}) - 6$. Now we will improve the upper bounds on $\tau(\mathscr{F})$ in the plane and also obtain bounds on $\tau(\mathscr{F})$ in higher dimensions. The following lemma is folklore.

Lemma 2. Let *A* be a centrally symmetric convex body in \mathbb{R}^n and let *B* be a translation of *A*. If the center of *B* is in *A*, then *B* contains the center of *A*.

Proof. Without loss of generality, we may assume that the center of *A* is the origin and the center of *B* is the point *x*. If $x \in A$, then $-x \in A$ because *A* is centrally symmetric. Hence $0 = x + (-x) \in x + A = B$. \Box

Before stating the next lemma, we need some definitions. For a convex body A in a family \mathscr{F} , let N(A) be the set of all convex bodies in the family \mathscr{F} that intersects A and let $N[A] = N(A) \cup \{A\}$. We also say that a convex body A is the *highest* in a family \mathscr{F} if it has a point of the largest *n*th coordinate among all points in $\bigcup_{F \in \mathscr{F}} F$.

Definition 3. Let *x* be a point in \mathbb{R}^n and λ be a real number. We set $x + \lambda D = \{x + \lambda w : w \in D\}$. Two convex bodies *K* and *D* in \mathbb{R}^n are called *homothetic* if $K = x + \lambda D$ for some $x \in \mathbb{R}^n$ and $\lambda > 0$. Here we call λ the *homothety ratio* of *K* to *D*.

Fig. 1. When n = 2.

Lemma 4. Let \mathscr{F} be a family of translates of a fixed convex body in \mathbb{R}^n and let A be any convex body in \mathscr{F} . If there exist parallelotopes R_A and S_A such that $R_A \subseteq A \subset S_A$ and R_A and S_A are homothetic with homothety ratio λ , then there is a set of $\lceil 2\lambda \rceil^n$ points that intersects every member of N[A]. Moreover, if A is the highest convex body in \mathscr{F} , then there is a set of $\lceil 2\lambda \rceil^{n-1} \lceil \lambda \rceil$ points intersecting every member of N[A].

Proof. Since \mathscr{F} is a family of translates of a fixed convex body and *A* is a member in \mathscr{F} , we may assume that \mathscr{F} is a family of translates of *A*. Let *L* be the set of points in \mathbb{R}^n such that $\mathscr{F} = \{z + A : z \in L\}$. Since every $C \in \mathscr{F}$ has the form $z_c + A$ for some $z_c \in L$, we have $R_C \subseteq C \subseteq S_C$, where $R_C = z_c + R_A$ and $S_C = z_c + S_A$. By rotating and translating *A*, if necessary, we may assume that the origin is one of the vertices of S_A and a side of S_A is parallel to the hyperplane $x_n = 0$.

Then we can represent the parallelotope S_A using *n* vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ in \mathbb{R}^n as follows:

$$S_A = \{ \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n : \alpha_i \text{ is a real number and } 0 \leq \alpha_i \leq 1 \}.$$

Here we assume that the initial point of every vector \vec{v} is the origin.

Set $w_A = \vec{v}_1 + \vec{v}_2 + \cdots + \vec{v}_n$. We call w_A the "representing point" of A. The representing point of C is $w_C = z_c + w_A$. The representing point w_C of each convex body C in N[A] is in the parallelotope

$$P = \{\beta_1 \vec{v}_1 + \beta_2 \vec{v}_2 + \dots + \beta_n \vec{v}_n : 0 \leq \beta_j \leq 2, 1 \leq j \leq n\}.$$

(Fig. 1 illustrates this when n = 2.)

In Fig. 1, *P* is covered by 16 translates of R_A . In general, we consider $\lceil 2\lambda \rceil^n$ translates of R_A specified as follows. Every element of N[A] has its representing point in one of the translates of R_A . For $1 \le i \le \lceil 2\lambda \rceil^n$, let M_i be the set of convex bodies in N[A] whose representing points are in the *i*th translate of R_A . Let $\Re_i = \{R_C : C \text{ is in } M_i\}$. The centers of all convex bodies in \Re_i are in a translate of R_A . The members of \Re_i have a common point since R_A is a centrally symmetric convex body, and so do the members of M_i . Therefore we have found a set of $\lceil 2\lambda \rceil^n$ points that intersects every convex body in N[A].

If A is the highest convex body in \mathcal{F} , then w_C is in the parallelotope

$$P' = \{\beta_1 \vec{v}_1 + \beta_2 \vec{v}_2 + \dots + \beta_n \vec{v}_n : 0 \leq \beta_j \leq 2, 1 \leq j \leq n-1, 0 \leq \beta_n \leq 1\}.$$

Thus, similarly as above, we can prove that there exists a set of $\lceil 2\lambda \rceil^{n-1} \lceil \lambda \rceil$ points that intersects every convex body in N[A]. \Box

Let \mathscr{F} be a family of convex bodies obtained by translations of a fixed convex body in \mathbb{R}^n . We will decompose \mathscr{F} into at most $v(\mathscr{F})$ subfamilies as follows. First, we pick the highest convex body A_1 and put $\mathscr{F}_1 = N[A_1]$. Next, we choose the highest convex A_2 in $\mathscr{F} \setminus \mathscr{F}_1$ and let $\mathscr{F}_2 = N[A_2] \cap (\mathscr{F} \setminus \mathscr{F}_1)$. We continue this process. At step *i*, we select the highest convex body A_i in $\mathscr{F} \setminus \bigcup_{s=1}^{i-1} \mathscr{F}_s$ and let $\mathscr{F}_i = N[A_i] \cap (\mathscr{F} \setminus (\bigcup_{s=1}^{i-1} \mathscr{F}_s))$. This process ends within $v(\mathscr{F})$ steps, since no more than $v(\mathscr{F})$ members of \mathscr{F} are pairwise disjoint. Here $\mathscr{F}_{v(\mathscr{F})}$ is an empty set or an intersecting family. Hence, V(G) decomposes into $v(\mathscr{F})$ subsets of \mathscr{F} such that $V(G) = \bigcup_{i=1}^{v(\mathscr{F})} \mathscr{F}_i$. We call the resulting decomposition process greedy decomposition.

Chakerian and Stein [3] proved the following theorem.

Theorem 5. For every convex body C in \mathbb{R}^n there exist parallelotopes R_C and S_C such that $R_C \subseteq C \subset S_C$, where R_C and S_C are homothetic with homothety ratio at most n.

Combining this theorem with Lemma 4 yields:

Theorem 6. If \mathscr{F} is a family of convex bodies obtained by translations of a fixed convex body in \mathbb{R}^n , then $v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq 2^{n-1}n^n v(\mathscr{F})$.

Proof. By Theorem 5 and Lemma 4, if *A* is the highest convex body in \mathscr{F} , then $\tau(N[A]) \leq 2^{n-1}n^n$. Let $k = \nu(\mathscr{F})$. By the greedy decomposition above, \mathscr{F} splits into $\mathscr{F}_1, \mathscr{F}_2, \ldots, \mathscr{F}_k$. Since for each $\mathscr{F}_i, 1 \leq i \leq k$, we have $\mathscr{F}_i \subseteq N[A_j]$, where A_j is the highest convex body at step *i* in the greedy decomposition, there exists a set of $2^{n-1}n^n$ points that intersects all members of \mathscr{F}_i . Hence, $\tau(\mathscr{F}) \leq \sum_{i=1}^k \tau(\mathscr{F}_i) \leq \sum_{i=1}^k 2^{n-1}n^n = 2^{n-1}n^n\nu(\mathscr{F})$. \Box

When n = 2, we modify the argument in Theorem 6 to strengthen the bound on $\tau(\mathscr{F})$.

Corollary 7. If \mathscr{F} is a family of translates of a fixed convex set in the plane, then $v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq 8v(\mathscr{F}) - 5$.

Proof. Let $k = v(\mathscr{F})$. Using the greedy decomposition, \mathscr{F} decomposes into $\mathscr{F}_1, \mathscr{F}_2, \ldots, \mathscr{F}_k$, where \mathscr{F}_k is an empty set or an intersecting family. Hence by Karasev's [8] result, $\tau(\mathscr{F}_k) \leq 3$. By Theorem 6, for each \mathscr{F}_i with $1 \leq i \leq k-1$, there is a set of 8 points that intersects all convex sets of \mathscr{F}_i . Hence, $\tau(\mathscr{F}) \leq 8(k-1) + 3 = 8v(\mathscr{F}) - 5$. \Box

3. Transversal numbers of a family of centrally symmetric convex bodies

When we consider centrally symmetric convex bodies in the plane, we have an upper bound on the homothety ratio guaranteed by Theorem 5.

Theorem 8 (Asplund [2]). If C is a centrally symmetric convex set in the plane, there are parallelograms R and S such that $R \subseteq M \subseteq S$ where R and S are homothetic with homothety ratio at most $\frac{3}{2}$.

Consequently, we have the following improvement of Corollary 7.

Theorem 9. If \mathscr{F} is a family of convex sets obtained by translations of a fixed centrally symmetric convex set M in the plane, then $v(\mathscr{F}) \leq \tau(\mathscr{F}) \leq \delta v(\mathscr{F}) - 3$.

Proof. By Theorem 8, there are parallelograms *R* and *S* such that $R \subseteq M \subseteq S$ and *S* is homothetic to *R* with homothety ratio at most $\frac{3}{2}$. By Lemma 4, if *A* is the highest convex set in a subfamily of \mathscr{F} , then $\tau(N[A]) \leq 6$. Let $k = v(\mathscr{F})$. Using the greedy decomposition, \mathscr{F} splits into $\mathscr{F}_1, \mathscr{F}_2, \ldots, \mathscr{F}_k$, where \mathscr{F}_k is either empty or an intersecting family. It follows from Karasev's [8] result that $\tau(\mathscr{F}_k) \leq 3$. Consequently, $\tau(\mathscr{F}) \leq \sum_{i=1}^k \tau(\mathscr{F}_i) \leq 6(k-1) + 3 = 6v(\mathscr{F}) - 3$. \Box

The smallest upper bound on $\tau(\mathscr{F})$ must be at least $3v(\mathscr{F})$. We prove this by providing an arbitrarily large family \mathscr{F} such that $\tau(\mathscr{F}) = 3v(\mathscr{F})$.

Example 10. Let *T* be the regular triangle with vertices *x*, *y*, and *z* of side length 2. Let D_x , D_y , and D_z be disks of radius 2 whose centers are *x*, *y*, and *z*, respectively. Let *C* be the curve consisting of the three arcs from *x* to *y* on D_z , from *y* to *z* on D_x , and from *z* to *x* on D_y . (See Fig. 2.) Let *S* be the set of points consisting of {*x*, *y*, *z*} and 3×10^{10} additional points equally spaced on *C*. (Here the number 3×10^{10} is not important. Any large enough number of points works.) Let \mathscr{F}' be the family of unit disks whose centers are the points in *S*, and let \mathscr{F} be a family that is the union of *k* completely disjoint copies of \mathscr{F}' .

First we will show that $\tau(\mathscr{F}') = 3$. It is not difficult to show that \mathscr{F}' is an intersecting family because *C* is of constant width 2. Hence $v(\mathscr{F}') = 1$. Since $\{x, y, z\}$ intersects all disks of \mathscr{F}' , we have $\tau(\mathscr{F}') \leq 3$. Suppose that two points are enough to cover all the disks in \mathscr{F}' . Since these two points must cover the three disks whose centers are *x*, *y*, and *z*, one of the points must cover two of them, so we may assume that one of the transversal points must be the middle point of the segment joining *x* and *y*. Since the arcs from *y* to *z* and from *z* to *x* are outside the unit disk with center *a*, the disks with centers on these arcs do not contain the point *a*. Therefore, the other point must cover all disks whose centers are on the two arcs from *y* to *z* and *z* to *x*. That is impossible, because three disks with centers at *z*, near *x*, and near *y* have no common point. Thus $\tau(\mathscr{F}') \geq 3$, and therefore $\tau(\mathscr{F}') = 3$. Now since \mathscr{F} consists of *k* disjoint copies of \mathscr{F}' , we have $\tau(\mathscr{F}) = 3k$ and $v(\mathscr{F}) = k$.

Now we find $\tau(\mathscr{F})$ when \mathscr{F} is a family of unit disks in the plane with $v(\mathscr{F}) = 2$. By Theorem 9, $\tau(\mathscr{F}) \leq 9$ if $v(\mathscr{F}) = 2$ and \mathscr{F} is a family of translates of centrally symmetric convex set in the plane. We will show that $\tau(\mathscr{F})$ is at most 6 if \mathscr{F} is a family of unit disks. Note that this is sharp by Example 10.

Theorem 11. If \mathscr{F} is a family of unit disks in the plane with $v(\mathscr{F}) = 2$, then $\tau(\mathscr{F}) \leq 6$.

Proof. Since $v(\mathscr{F}) = 2$, among every three unit disks, two of them intersect. Let U_x and U_y be unit disks in \mathscr{F} whose centers x, y have the largest distance d in \mathscr{F} . Denote by D_x and D_y the disks of radius 2 whose centers are x and y, respectively. Furthermore, let W_x and W_y be disks of radius d also centered in x and y, respectively.

Then the center of each disk in \mathcal{F} belongs to

$$T = (D_x \cap W_y) \cup (D_y \cap W_x)$$

because every disk in \mathscr{F} must intersect either U_x or U_y .

Now we distinguish the following three cases.

Case 1 ($d \leq 2$): In this case, $\tau(\mathscr{F}) \leq 3$, since \mathscr{F} is an intersecting family.

Case 2 ($2 < d < 2\sqrt{3}$): In this case, we will cover the region *T* with six unit disks. Set d = 2r. Without loss of generality, we may assume that x = (-r, 0) and y = (r, 0). We place two unit disks centered at $(\pm r/2, 0)$ and four unit disks centered at $(\pm r/2, \pm 1)$. Denote by U_q the disk centered at q = (r/2, 1) and by U_+ the disk centered at (r/2, 0). By symmetry, it suffices to check that U_q contains the region T^+ consisting of $D_y \cap W_x \setminus U_+$ restricted to the first quadrant.

Fig. 3. The case when $1 < r < \sqrt{3}$.

Let *a*, *b*, *c*, *d* be the intersection points of the *y*-axis and D_y , W_x and D_y , W_x and U_+ , U_+ and the *y*-axis, respectively (see Fig. 3). It is easy to observe that the coordinates of points *a*, *b*, *c*, and *d* are $a = (0, \sqrt{4 - r^2}), b = (r - 1/r, \sqrt{4 - 1/r^2}), c = (13r/12 - 1/(3r), \sqrt{1 - (7r/12 - 1/(3r))^2}), d = (0, \sqrt{1 - r^2/4})$. A short calculation shows that the distance of *a*, *b*, *c*, and *d* from *q* is smaller than 1 for every $1 < r < \sqrt{3}$. Thus, all these points are inside the disk U_q .

A moment of thought shows that T^+ is bounded by curve segments between a and b on D_y , b and c on W_x , c and d on U_+ , and the line segment da. Since the curvature of each of these curves is at most the curvature of U_q , each curve lies entirely in U_q . By convexity, U_q contains T^+ as well.

Case 3 $(d \ge 2\sqrt{3})$: Let $S = D_x \cap D_y$, $L = (D_x \cap W_y) \setminus S$, and $R = (D_y \cap W_x) \setminus S$. Note that $T = L \cup S \cup R$ and this union is disjoint. Denote by \mathscr{F}_L , \mathscr{F}_S , and \mathscr{F}_R the sets of disks whose centers are in L, S, and R, respectively. Hence $\mathscr{F} = \mathscr{F}_L \cup \mathscr{F}_S \cup \mathscr{F}_R$. Since $v(\mathscr{F}) = 2$, both \mathscr{F}_L and \mathscr{F}_R are intersecting families, as every disk in \mathscr{F}_L is disjoint from U_y and every disk in \mathscr{F}_R is disjoint from U_x .

It follows that $\tau(\mathcal{F}_L) \leq 3$ and $\tau(\mathcal{F}_R) \leq 3$, and if *S* is empty, six unit disks suffice to cover \mathcal{F} . Thus we may assume that $r \leq 2$.

Since \mathscr{F}_L is an intersecting family, the distance between the centers of every two disks in \mathscr{F}_L is at most 2. Hence, we may assume that there are two horizontal lines L_1 and L_2 in L of distance at most 2 such that the centers of disks in \mathscr{F}_L are between the lines L_1 and L_2 . Similarly, the centers of disks in \mathscr{F}_R must lie between two horizontal lines L_3 and L_4 whose distance is at most 2. Let R_1 be the portion of L that lies between the lines L_1 and L_2 , and let R_2 be the portion of R that lies between L_3 and L_4 . (See Fig. 4.)

Let $T_r = S \cup R_1 \cup R_2$. Then the centers of disks in \mathscr{F} are in T_r . We will cover T_r with six unit disks. First, place two unit disks U_1 and U_2 with centers $(0, \frac{1}{2})$ and $(0, -\frac{1}{2})$, respectively. Among the two intersection points of U_1 and U_2 , let z be the one with smallest x-coordinate, and choose p_1 and p_2 similarly from the intersection points of D_x and U_1 , and D_x and U_2 , respectively. Then $z = \left(-\frac{\sqrt{3}}{2}, 0\right)$ and the x-coordinate of both p_1 and p_2 is

$$x_1 = \frac{22r - 8r^3 - \sqrt{-105 + 152r^2 - 16r^4}}{4(1+4r^2)}.$$

Note that since $\sqrt{3} \leq r \leq 2$, the region *S* is contained in $U_1 \cup U_2$. Let $R'_1 = R_1 \setminus (U_1 \cup U_2)$ and $R'_2 = R_2 \setminus (U_1 \cup U_2)$. Clearly, $T_r \subseteq U_1 \cup U_2 \cup R'_1 \cup R'_2$. Hence, if we show that both R'_1 and R'_2 are covered by two unit disks each, then we have $\tau(\mathscr{F}) \leq 6$.

Fig. 4. The case when $\sqrt{3} \leq r \leq 2$.

Let h_1 be the vertical line connecting the points p_1 and p_2 and let h_2 be the vertical line passing through the point x. Observe that x_1 is greater than $-\frac{\sqrt{3}}{2}$ for $\sqrt{3} \le r \le 2$. This means that z is to the left of the line h_1 . Consequently, the region R'_1 lies in between the lines h_1 and h_2 . Hence the region R'_1 is contained in the rectangle $\overline{R_1}$ bounded by h_1, h_2, L_1 , and L_2 . Next we will show how to cover R'_1 with two unit disks.

First observe that

$$|x_1 - (-r)| = \frac{22r - 8r^3 - \sqrt{-105 + 152r^2 - 16r^4}}{4(1 + 4r^2)} + r \le 1.6$$
(1)

for $\sqrt{3} \le r \le 2$. Suppose that L_1 is the line y = t and L_2 is the line y = t - 2, where t is a constant. We cover R'_1 with two unit disks Q_1 and Q_2 as follows: the center of Q_1 is $z_1 = ((-r + x_1)/2, t - \frac{1}{2})$ and the center of Q_2 is $z_2 = ((-r + x_1)/2, t - \frac{3}{2})$.

It follows from (1) that two vertices (-r, t) and (x_1, t) of $\overline{R_1}$ belong to Q_1 and (-r, t - 2) and $(x_1, t - 2)$ of $\overline{R_1}$ belong to Q_2 . Furthermore, since the intersection points of Q_1 and Q_2 have distance $\sqrt{3}$ that is greater than $|x_1 - (-r)|$, we can conclude that $R'_1 \subset \overline{R_1} \subset Q_1 \cup Q_2$.

We cover R'_2 with two unit disks similarly. \Box

4. Transversal number of homothetic copies of a convex set

Lemma 12. Given a convex set U, for each $v \in U$ and $0 \le \lambda \le 1$, the set $W(U, v, \lambda) = (1 - \lambda)v + \lambda U$ is contained in U and contains v.

Proof. Let $w(u, v, \lambda) = v + \lambda(u - v)$. By the definition, $W(U, v, \lambda) = \{w(u, v, \lambda) : u \in U\}$. Since $w(u, v, 0) = v \in U$ and $w(u, v, 1) = u \in U$, we have $w(u, v, \lambda) \in U$ for every $0 \le \lambda \le 1$. On the other hand, $v = w(v, v, \lambda) \in W(U, v, \lambda)$ for every $0 \le \lambda \le 1$. \Box

Lemma 13. Let \mathcal{D} be a family of homothetic copies of a convex set D in the plane. Let Z be the smallest convex set in \mathcal{D} , and denote by N[Z] the set of all convex sets in \mathcal{D} that intersects Z. Then there is a set of 16 points that intersects all convex sets in N[Z], and there is a set of 9 points that intersects all convex sets in N[Z] if D is a centrally symmetric convex set.

Proof. For every $U \in N[Z]$, let λ_U be the positive real such that $Z = u + \lambda_U U$ for some u. For every $U \in N[Z]$, choose a point $z_U \in Z \cap U$ and denote $U^* = W(U, z_U, \lambda_U) = (1 - \lambda_U)z_U + \lambda_U U$. Note that U^* is a translate of Z and $U^* \subset U$. By Lemma 12, $\mathscr{D}^*(Z) = \{Z\} \cup \{U^*: U \in N[Z]\}$ is a set of convex sets that intersects Z.

By Theorem 5 and Lemma 4, there is a set of 16 points that intersects all convex sets in $\mathscr{D}^*(Z)$. Since $U^* \subset U$ for all U^* in $\mathscr{D}^*(Z)$, the set of 16 points also intersects all convex sets in N[Z].

When *D* is a centrally symmetric convex set, by Theorem 8 and Lemma 4, there is a set of 9 points that intersects all convex sets of $\mathscr{D}^*(Z)$. Again since $U^* \subset U$ for all U^* in $\mathscr{D}^*(Z)$, the set of 9 points also intersects all convex sets in N[Z]. \Box

Theorem 14. If \mathcal{D} is a family of homothetic copies of a convex set D in the plane, then $v(\mathcal{D}) \leq \tau(\mathcal{D}) \leq 16v(\mathcal{D})$. In particular, $v(\mathcal{D}) \leq \tau(\mathcal{D}) \leq 9v(\mathcal{D})$ if D is a centrally symmetric convex set.

Proof. Let $k = v(\mathcal{D})$. We decompose \mathcal{D} into $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_k$ as follows. First, pick the smallest convex set A_1 and put $\mathcal{D}_1 = N[A_1]$. And next, pick the smallest convex A_2 in $\mathcal{D} \setminus \mathcal{D}_1$. Put $\mathcal{D}_2 = N[A_2] \cap (\mathcal{D} \setminus \mathcal{D}_1)$. We continue this process. At step *i*, pick the smallest convex set A_i in $\mathcal{D} \setminus \bigcup_{s=1}^{i-1} \mathcal{D}_s$. And then put $\mathcal{D}_i = N[A_i] \cap \left(\mathcal{D} \setminus \bigcup_{s=1}^{i-1} \mathcal{D}_s \right)$. This process ends within *k* steps.

By Lemma 13, for each \mathscr{D}_i , for $1 \le i \le k$, there is a set of 16 points that intersects all convex sets in \mathscr{D}_i , and there is a set of 9 points that intersects all convex sets in \mathscr{D}_i if *D* is a centrally symmetric convex set. This completes the proof. \Box

5. Concluding remarks

We showed that if \mathscr{F} is a family of unit disks in the plane with $v(\mathscr{F}) = 2$, then $\tau(\mathscr{F}) \leq 6$. It seems that every family of translates of centrally symmetric convex set in the plane has a similar property. Hence we would like to propose the following question.

Question 15. If \mathscr{F} is a family of translates of centrally symmetric convex set in the plane, is it true that $\tau(\mathscr{F}) \leq 3v(\mathscr{F})$?

Acknowledgments

We would like to thank the referees for their valuable comments.

References

[2] E. Asplund, Comparison between plane symmetric convex bodies and parallelograms, Math. Scand. 8 (1960) 171–180.

[3] G.D. Chakerian, S.K. Stein, Some intersection properties of convex bodies, Proc. Amer. Math. Soc. 18 (1967) 109-112.

- [4] L. Danzer, B. Grünbaum, V. Klee, Helly's theorem and its relatives, Proceedings of Symposia Pure Mathematics, vol. VII, American Mathematical Society, Providence, RI, 1963, pp. 101–181.
- [5] G. Fon-Der-Flaass, A. Kostochka, Covering boxes by points, Discrete Math. 120 (1993) 269–275.
- [7] A. Gyárfás, J. Lehel, Covering and coloring problems for relatives of intervals, Discrete Math. 55 (1985) 167–180.
- [8] R.N. Karasev, Transversals for families of translates of a two-dimensional convex compact set, Discrete Comput. Geom. 24 (2000) 345–353.
- [9] G. Károlyi, On point covers of parallel rectangles, Period. Math. Hungar. 23 (1991) 105-107.
- [11] S.-J. Kim, K. Nakprasit, On the chromatic number of the complement of an intersection graph, submitted for publication.