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Abstract

To overcome the problems involved with an infinite universe, we can use math-
ematical models of finite spaces without boundaries. In practically all cases,
these imply a multiply-connected universe whereby the space we live in (and,
therefore, make observations in) is really an infinite lattice of fundamental cells.
This paper covers some of the basic mathematical theory and discusses some
of the investigations made in recent years.



1 Introduction

When we gaze out upon the sky, our eyes are met with a vast black canvas
apparently without end. There appears no physical boundary to our view,
constrained only by the finite speed of light and the age of the universe. But
is space truly infinite in extent? There are many problems with such a notion.
Our immediate reality is purely a finite one – very rarely do practical notions
of infinity come into our lives. The age of our universe, the dimensions of
our galaxy, the number of atoms in the Sun; while large, these are still finite
measurements of time, space and quantity. Is it plausible to jump then from
our finite existence to a notion of infinite space? Scientific principles would
make us question such a leap.1

Putting aside aesthetic reasons, there are physical problems with an open
(infinite) universe. Consider the inertia of a body, a measure of its resistance to
motion. One can ask how the body “knows” it is in motion? For example, how
does a spinning bucket of water know it is spinning, exhibiting the centrifugal
effects associated with rotational acceleration, while a stationary bucket shows
no such behaviour? Mach postulated that the entire mass of the universe pro-
vided a stationary reference frame, against which a body could move relative
to, and thus exhibit inertial effects. However, in an infinite universe with a uni-
form mass distribution (i.e. homogeneity), we would have an infinite quantity
of mass, and hence infinite inertia. No motion would be possible and yet we are
all capable of observing and undergoing it. Everyday experience would appear
to require a finite space.

If we do live in a finite universe then we must consider possible boundary
conditions – what happens at the edge? Furthermore, if our universe is truly
bound by something, could there then be something on the “outside”.2 In
§2 we shall cover some basic mathematical groundwork which will allow us to
construct finite surfaces (two-dimensional spaces) without boundary which are
not required to be embedded in a higher dimensional space. We can thus talk
about a finite space without an “outside” to it. In §3 we shall then see what
consequences these spaces will have on cosmological observations made in them,
generalizing our two-dimensional results from the previous section to the realm
of three-dimensional spaces. Section §4 then considers practical research in this
fast developing field.

2 Bounding the Infinite

How do we achieve finiteness without boundary? Consider a triangle drawn on
a square, both of which lie in a Euclidean space. The angles add up to 2π, and
will continue to do so no matter the size of the triangle or its position in the
square.

1Indeed Occam would positively cry out in alarm
2In fact, recent theoretical work suggests another quite interesting answer to what we shall

consider here, and the reader is referred to “Inflation in a Low-Density Universe” by Martin A.
Bucher and David N. Spergel; Scientific American, January 1999
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Figure 1: “Gluing” the sides of a square to form a cylinder

If we now glue two opposite sides of the square together to form a cylinder,
see Figure 1, although lines not parallel to the axis are now curved, Euclidean
geometry still reigns. The angle sum is unchanged, while the shortest distance
between two points is still the length of a connecting Euclidean straight line
on the unfurled square. The apparent curvature has not affected the geometry.
Mathematically this is equivalent to noting that the intrinsic curvature, (that
belonging to the surface alone), and not its embedding (representation) in space,
is the same for both the cylinder and the plane.3 In fact, the plane is of zero
curvature, and hence so is the cylinder. However, fundamental differences have
arisen: the cylinder is now finite transverse to its length. Any lines on the
square connecting the two identified edges will wrap around the cylinder (E.g.
the dashed line in Figure 1). By considering the tessellation of the Euclidean
plane in Figure 2, we see that this identification of edges rolls the Euclidean
plane around the cylinder. Inhabitants on the cylinder will see along lines of
sight which appear to stretch out over infinite Euclidean space but in fact do
so in only one direction, i.e. those along the cylinder’s axis.

Figure 2: Our fundamental square can cover the Euclidean plane.

Finally, let us glue together the other two sides in like direction to obtain
a torus, Figure 3. Once again, the intrinsic curvature is zero (we have merely
identified sides) and Euclidean geometry holds on the surface.4 However, the

3The curvature is an intrinsic measure of the deviation from flatness the surface represents
that cannot be removed by flattening or rolling, (that is actions which do not involve stretching
or tearing).

4Should you try to construct a torus in real life, effectively embedding it in R3, you will
note that the surface is not Euclidean. Triangles are warped by the curving – compressed
in the ring, stretched on the outside. This is a consequence of the embedding itself, not a
property of our conceptual torus.
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surface is now finite in all direction, but without boundary. Once more consid-
ering the tessellation in Figure 2, we see that the identifications in Figure
3 wrap the Euclidean plane around the torus. Infinite lines (of sight) merely
wrap around the torus continuously. Inhabitants on this surface would once
again see along infinite lines of sight, but their universe is now finite without
boundary. What this means for physical observation will be discussed in the
next section.
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Figure 3: Constructing the torus. The joins are shown for the fundamental
square.

Both the cylinder and torus, with their repeating universes, exhibit non-
trivial topologies. Specifically, not all closed paths can be contracted to points
– precisely those loops which circle the “hole” in the cylinder and torus. We can
generalise this notion to surfaces with more holes (i.e a higher genus). To do so,
first note that the Euclidean plane can be covered by tessellation with hexagons.
By identifying opposing sides as indicated in Figure 3 we are once again able
to cover the torus with the plane. Mathematically, our torus is generated by a
fundamental polygon, either the square or the hexagon. The covering spaces,
in which the inhabitants live, is in this case the Euclidean plane. To generate
a two-holed torus5 we require an octagon, as in Figure 4. However, unlike the
cases above, we are no longer able to tessellate the Euclidean plane, with this
fundamental polygon – the angle sum at the join of octagons would be greater
than 2π and we can no longer wrap the Euclidean plane around our 2-torus.
Mathematically, the Euclidean plane is no longer the covering space of the 2-
torus, so its inhabitants no longer see a Euclidean geometry. What geometry
then do they see?
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Figure 4: The fundamental polygon for a torus of genus 2.

In the Euclidean plane, angles are independent of the size of their parent
5A surface of genus 2.
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shape. However, on a curved surface angle size does depend on this size. Con-
sider our triangle now inscribed on a sphere. It should be a familiar fact that
the angle sum is now greater than 2π. Furthermore the actual sum is dependent
on the size of our triangle, relative to the sphere, in a manner which ultimately
depends on the curvature of the sphere. For a sphere, the curvature k is con-
stant and greater than zero. If you now try to flatten the triangle, i.e. embed
it in the Euclidean plane, you will find that you do not have enough material
to do so, the triangle is always curved; thus, areas on a spherical surface6 are
less than equivalent areas on a Euclidean surface. In a similar fashion, we can
have negatively curved surfaces on which angle sums are now less than their
Euclidean counterparts and every point behaves essentially like a saddle point.
If you try to flatten a saddle, you will see that you now have too much material
and you cannot “iron out” the shape; that is, areas are greater in negatively
curved spaces, called hyperbolic spaces.

Moreover, as in the spherical case, by choosing an octagon of precisely the
right size in hyperbolic space, we can shrink the angle sum down to 2π, so that
the natural geometry for a 2-torus is that of its hyperbolic covering space, which
implies a negative curvature. Such a tessellation is shown in Figure 5, where
the hyperbolic plane is actually the Poincare circle as shown. Although the
octagons appear in different sizes, the metric7 means that they are all of the
same size in the hyperbolic geometry.

Figure 5: The fundamental polygon for a 2-torus requires the hyperbolic field

Thus the natural geometry for a 2-torus (and, indeed, any n-hold torus,
nge2) is hyperbolic.

6In fact, any surface of constant positive curvature is called a spherical surface
7Loosely speaking, this is the way the distance between two points is measured.
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3 Physical Consequences

3.1 Infinitely many images

In section §2 we have laid most of the mathematical framework to consider
physical models of the universe. Generalizing to three (or higher) dimensions,
we summarize these results by noting that a universal covering space can be
constructed as a tessellation of fundamental polyhedra by making identifi-
cations of their faces.8 By altering the geometry of the underlying space we are
then able to use the fundamental polyhedron to tessellate spaces with constant
positive, zero, or negative curvature. Inhabitants in a fundamental polyhe-
dron will see themselves living in the infinite universal covering, inheriting the
underlying geometry of this space.

But, while the two-dimensional models we considered in §2 share these ba-
sic mathematical properties, they differ markedly in certain other respects.
The cylinder, and the one-holed and many-holed tori all exhibit multiply-
connected topologies – not every closed loop in these spaces can be con-
tracted down to point, see lines a and b in Figure 3.9 Physically, this is char-
acterized as finiteness without boundary of the surface – lines can appear to
extend towards infinity, but actually wrap eternally around the surface. Inhab-
itants on this surface will look along lines of sight which ultimately traverse
the same region of space infinitely many times. There are thus, potentially,
infinitely many copies of object images to be seen in our heavens, limited only
by the time taken for their light to reach our observatories. Our universe now
resembles a bizarre hall of mirrors with ghost images extending as far as the
eye can see.

3.2 Infinitely many mirrors

To obtain multiply-connected topologies, we have seen (in the two-dimensional
case) that it may be necessary to alter the curvature of the underlying covering
space to accommodate certain tessellations of fundamental polyhedra (see Fig-
ure 5). Thus there is some interplay between geometry and topology. In fact,
for compact two-dimensional surfaces there exists a precisely defined relation-
ship between topology and geometry whereby knowledge of one is ultimately
knowledge of the other.10 One may hope for a similar relationship between
topology and geometry in three dimensions.

At the turn of the century, Einstein forsook a gravitational theory of the
universe for a geometric theory of space and time. The General Theory of Rela-
tivity. The field equations of his General Theory of Relativity encoded the local
geometry of space-time into the metric tensor – space told matter how to move,
and matter told space how to curve – thus allowing us to calculate the cur-

8In the case of two dimensions, fundamental polyhedra become the polygons for which
‘identifying faces’ requires gluing together the necessary edges of copies of this polygon, see
§2.

9The infinite Euclidean plane is simply connected in that any closed loop can be continu-
ously contracted down to a point. There are no holes acting as obstacles.

10The “Classification theorem” for (compact) surfaces was proved in the 1920s
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vature (tensor) of space. So relativity theory offered us an insight into the
curvature, and hence geometry, of space-time from which, it was thought, we
could conclude the topology of the universe. According to Einstein, a negative
or zero curvature implied a hyperbolic or Euclidean space, and hence an infinite
space. To overcome the problems of an infinite Newtonian cosmology (see §1)
necessarily required a positively curved, spherical space. Space was “thus” the
three-dimensional “surface” of a four-dimensional hypersphere. Just as is the
case with its two-dimensional counterpart, the surface of a sphere, any closed
path or surface could be shrunk to a point in this space, thus implying a trivial
topology – space was simply connected.

However, the almost unique relationship exhibited by surfaces is absent in
three dimensions, geometry constrains but does not dictate topology, and so
a far richer structure prevails. While the relativistic partial differential field
equations provide us with local geometric solutions, they are not sufficient to
tell us how to piece these neighbourhoods of space together to form the global
topology of the space. In fact, for any local geometry there are infinitely many
topologically distinct spaces. We are therefore faced with an infinite number of
possible cosmologies to model our universe on.

4 Exploring the Infinite

However, this realization that precisely these topological notions were needed
to determine finiteness of the universe has only just recently bore results. The
easy elegance of Einstein’s supposition of a three-dimensional hyperspherical
surface soon became fixed in cosmology as fact, even though eminent physicists
of the time11 questioned both this ‘conclusion’ and the topological determinacy
of the field equations themselves. It has only been in the previous five years that
serious investigations into the topology of the universe have been undertaken.
These have been motivated by two areas of research, old and new. Classical
general relativity can now be seen to yield vastly different models when coupled
with differing topological models of the universe. The young topic of quantum
gravity also poses questions which are essentially topological in nature. Indeed
recent work in quantum gravity suggests that negatively curved spaces are more
probable than other geometries.

Investigations can be first roughly classified as either: the primarily theo-
retical , which seek to infer physical constraints on the universe from assumed
topologies, and the observational, which seek to directly detect or constrain the
underlying topology via new or existing data.

4.1 Splitting infinities

Given the infinite number of distinct topologies that any particular solution
of the field equations allows, some theorists seek to reduce and tabulate the

11Notably the originators of the big-bang concept, Alexander Friedmann and Lemâitre, as
well as Felix Klein and Hermann Weyl. Indeed, Friedmann was the first to explicitly point out
the topological indeterminacy of the solutions to the field equations of relativity.

6



possibilities under the assumption of certain basic constraints: notably those
of symmetry, such as homogeneity and isotropy. An alternative response by
some is to consider the physical consequences of different models of the uni-
verse. Thus already existing cosmological observations may help to invalidate
or support different models.12 We shall see in more detail how the Cosmic
Microwave Background, CMB, may offer a way of determining topology.
One particular method is to generate computer simulations of what the CMB
should look like given a specific topology constrained by symmetry requirements
(e.g. local homogeneity and isotropy).13 To date, only two spaces have been
constrained in this manner; the bulk of them remaining spaces do not admit an-
alytical solutions, and hence require computationally burdensome statistics and
mathematics. These theoretical investigations have yet to provide any definite
results, although they do suggest some evidence for hyperbolic spaces.

4.2 Three-dimensional methods

Of more interest here is the observational work performed so far. If our uni-
verse does indeed have a non-trivial topology then it may lead to physically
observable effects, see §3. Multiple-connectedness would mean that our uni-
verse repeats itself periodically, and the (covering) space we live in is an infinite
crystal lattice. The simplest starting point for observational cosmology is then
to consider the observable sphere of the universe and its relation to the cover-
ing space. If the fundamental polyhedron is smaller than the observable sphere,
then we should be able to see in our heavens repeated images of astronomical
objects. The success, or failure, of detecting these ghost images can impose
bounds on the dimensions of the fundamental polyhedron with respect to the
observable sphere. Although there are several methods proposed for this, they
all share some basic properties. Clearly, astrophysical “objects” are required,
upon observation of which we can draw conclusions. Ideal objects must satisfy
certain properties which proves difficult to ensure in practice.

i. The farther afield we look, the further back in time we are effectively
looking, due to the finite speed of light. Thus ideal objects should not
evolve considerably with this lookback time. In addition it is clear that
such an assumption also requires a known evolutionary process.

ii. In a similar vein, we of course require that the objects remain constant
and visible over large distances and volumes of space.

iii. The behaviour of the object must have very little peculiarities, such as
large intrinsic velocities, or anisotropic emission of light.

iv. Finally, observation of the object itself must be unimpeded, so the effects
of galactic dust should be minimal.

12Topology and Fragility in Cosmology by M.J. Rebouca̧s, R.K.Tavakol and A.F.F.Teixeira,
preprint gr-qc/9711026

13The topology of the universe: the biggest manifold of the all by James Levin, Evan Scanna-
pieco and Joseph Silk, preprint gr-qc/9803026; Class. and Quant. Grav.
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Unfortunately, a trade-off between these requirements is necessary. Perhaps
the most suitable galactic candles are clusters of galaxies. These are observable
by X-ray emission from their hot gas, a process which varies little within the
age of the universe. Furthermore, their emission should be isotropic compared
to other candidates. However, these are only observable over small ranges, so
at best they can provide a mere lower estimate to sizes of our fundamental
polyhedron and will certainly not allow far-reaching conclusions to be made
on multi-connectedness if the fundamental polyhedron exeeds this range. Re-
gardless of these problems, due to the quality of the objects, any lower bounds
obtained from observation are very strong ones. The lack of ghost images of the
Coma cluster of galaxies or other examples of large scale structure (e.g. walls,
filaments, voids) strongly suggest that the fundamental polyhedron must have
sides of at least 60 ∼ 150h−1Mpc in length.14

4.3 Gazing into our crystal lattice

We survey the various three-dimensional methods which have been proposed,
whereby analysis is primarily focussed on the distribution of astrophysical ob-
jects throughout the observable sphere.

The simplest test to perform is to search for repeated arrangements of ideal
objects, specifically galaxies, see §4.2. Put simply, if an arrangement of galaxies
is observed equally spaced throughout the observable sphere, then the universe
is a one-holed torus whose fundamental polyhedron is smaller than the ob-
servable universe. While this method allows us to accommodate more general
multiply-connected topologies (for instance by observing the orientations of re-
peated arrangements and any underlying axes of symmetry), as we gradually
look further and further back in time, the evolution of individual galaxies plays
an increasingly discordant role. Investigations along these lines have been car-
ried out over the past 25 years15 revealing no repeated images of galaxies within
one billion light years of the earth.

A possibility, in keeping with the ideas above but which has not yet been
fully investigated, is observation of “large scale structure” in the universe, e.g.
objects on scales of 50 ∼ 150h−1Mpc. The evolution of these structural units
is not expected to change much with the evolution of individual components.
Effective considerations based upon this line of thinking has yet to be carried
out.

As the distances concerned become larger, galaxies cease to become use-
ful candles to use, and others have turned to more observable long range
candles – quasars.16 Boudewijn F. Roukema, of the Inter-University Center
for Astronomy and Astrophysics, and others, have tried to look for repeated
patterns amongst three-dimensional catalogues of quasars up to a distance of

14Gott J. R., 1980, MNRAS, 193, 153
1986, in Inner Space/Outer

15By researchers such as Dmitri Sokoloff (Moscow State University), Viktor Shvartsman (So-
viet Academy of Sciences), L. Richard Gott III (Princeton University), and Helio V. Fagundes
(Institute for Theoretical Physics in São Paulo)

16On Determining the Topology of the Observable Universe via 3-D Quasar Positions by
Boudewijn F. Roukema, preprint astro-ph/9603052 12th March 1996
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3300h−1Mpc from the earth. Initially, Roukema sought repeated images of quin-
tuplets, finding one pair of candidates; however, statistically simulated quasar
catalogues reveal this number to be well below any significant quantities of
matches that may occur at random, so his evidence was statistically insignifi-
cant. Further investigations have yet to reveal other candidates, but this could
be due to the poor coverage of the skies of current quasar catalogues. Cur-
rent research, such as at Imperial College in London, will produce expanded
catalogues within a couple of years, so there is still a chance of detecting such
quasar groups.

Using quasars is problematic in itself, since not enough is known about
their properties. One particular method which utilizes the quasar catalogues
is to search for repeated images of our own galaxy at an earlier stage of its
evolution, as a quasar. Fagundes and Wichoski (1987)17 have searched for such
quasar images in directions separated by 90◦ and 180◦, but found no conclusive
evidence of a non-trivial topology. An interesting aspects of this approach
is that if indeed our galaxy was a quasar in its early development, and the
fundamental polyhedron is significantly smaller than the observable universe,
then ghost images from farther and farther copies will provide snapshots of
quasar evolution in earlier and earlier stages of growth.

Of course, the properties that makes the use of quasars interesting also make
them poor candles. Quasar lifetimes can be considerably shorter than the times-
pans neede to see past fundamental polyhedra above a certain size. Another
substantial problem is that quasars may not be easily identifiable as such due to
their angular aspect with respect to our point of view. Two alternative methods
have been suggested to circumvent this problem.

To overcome identification problems of astrophysical objects, a team of
French scientists have developed a statistical method called cosmic crystal-
lography.18 If the universe does repeat itself periodically (as in crystal lattices)
then plots of object-pair separations should reveal spikes at certain distances
corresponding to repeated images, i.e. to the lengths of the fundamental poly-
hedron. The researchers (see footnote 18) concluded that current quasar cata-
logues were insufficient to conclude multi-connectedness above a lower limit of
650h−1Mpc for the fundamental polyhedron, while their tests were negative for
distances less than this. It is hoped that the ongoing American-Japanese Sloan
Digital Sky Survey (SDSS) will provide a larger data set for this statistical
method to be applied to.

An alternative method is to forsake quasars entirely, following previous work
(see footnote 14) and use X-ray clusters as topology standard candles.19 These
candles satisfy many of the criteria outlined in §4.2: they are observable at scales
of up to 1000h−1Mpc, a far wider range than other candidate objects, while
their behaviour exhibits isotropic emission as well as small evolution over the
timescales involved. No statistically significant discoveries (compared against

17H. V. Fagundes and U. F. Wichoski, 1987, Ap. J., 322, L5
18Cosmic Crystallography by Roland Lehoucq, Marc Lachièze-Rey and Jean-Pierre Luminet,

preprint gr-qc/9604050; Astronomy and Astrophysics, 24th June 1998.
19Constraining Cosmological Topology via Highly Luminous X-ray Clusters by Boudewijn F.

Roukema and Alastair C. Edge, preprint astro-ph/9706166, 16th June 1997.
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purely chance coincidences arising from a random distribution) were made and
researchers have conculded that the fundamental polyhedron must be of the
order of at least 1000h−1Mpc.

4.4 Two-dimensional methods

One natural boundary to our observable universe does exists, namely the Cos-
mic Microwave Background (CMB), the last remnants of the Big Bang. This
two-dimensional surface represents the last scattering surface (LSS), when the
universe cooled enough to allow transmission of photons. Any of these mi-
crowave photons arriving at the Earth at the same time left the LSS at pre-
cisely the same time at equal distances from the Earth, so that the LSS is a
sphere. This spherical surface exhibits a remarkable level of homogeneity, down
to one part in 100,000 as measured by the recent Cosmic Background Explorer
(COBE) satellite.

Some scientists believe that this surface may allow us to reconstruct the
global topology of our universe.20 21 If the LSS is large enough to entirely con-
tain the fundamental polyhedron, then our tessellation of the covering space
will imply that the infinitely many copies of the LSS, one for each polyhedron,
will intersect some of its neighbours. Illustrated in Figure 6 is just such an
example: the LSS, centred on the observation point, i.e. the earth, intersects
with another LSS centred on a copy of the earth in another fundamental poly-
hedron. Because the LSS are all spheres, the intersection points form a circle
whose points we see twice, one from each side of the circle.

EARTHEARTHEARTH

Figure 6: Self-intersection of the CMB particle horizon.

Thus if the LSS is large enough to cause intersections, the earthbound ob-
servers will see these common circles repeated throughout the sky, in fact at

20Circles in the Sky: Finding Topology with the Microwave Background Radiation by Neil J.
Cornish, David N. Spergel and Glenn D. Starkman in Classical and Quantum Gravity, Vol.
25, No. 9, pages 2657-2670; September 1998. Preprint astro-ph/9801212.

21Reconstructing the global topology of the universe from the cosmic microwave background
by Jeffrey R. Weeks in Classical and Quantum Gravity, Vol. 15, No. 9, pages 2599-2604;
September 1998. Preprint astro-ph/9802012
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antipodal positions. Moreover, these lines represent precisely equal temperature
distributions, whose variations arise due to the low-level inhomogeneity of the
CMB. Given precise enough data, and enough computational power, we may
be able to statistically extract such distribution circles. The sizes of such would
then give us a measure of the size of the fundamental polyhedron, and hence
of our universe. Unfortunately, the data provided by COBE is not enough to
extract such data, although much theoretical work has been done with the data
to not only place constraints on the possible topologies of the universe, but also
to test methods of topology detection. The COBE is not the end of research
into the microwave sky. Underway are preparations for a year 2000 launch of
its successor, the National Aeronautics and Space Administration’s Microwave
Anisotropy Probe (MAP), which will probe the background to a level of reso-
lution almost thirty-fold higher than that of COBE. Following that will be the
European Space Agency’s PLANCK Surveyor mission in 2006, which is hoped
to improve even on MAP’s resolution.

The low resolution of the COBE data has not stopped research work in-
volving it. Another approach by some theorists22 is to compare the observed
temperature distribution of the CMB to those predicted by computer models of
different topological models of the universe, thus providing a more quantitative
method of comparing possible topologies.

5 Results, Past and Future

So far, no positive evidence for non-trivial topology has been discovered. How-
ever, current research has put lower bounds on any dimensions of the funda-
mental polyhedron required of these topologies. Furthermore, more research is
being planned to take advantage of higher quality data that is expected from a
variety of sources. The Sloan Digital Sky Survey should provide a more com-
prehensive astrophysical object catalogue for statistical methods to be applied
to. The next decade will see a number of other sky surveys come to fruition;
those of MAP, PLANCK and the X-ray Multiple Mission (XMM) satellites.
Theoretical work in cosmic topology and other subjects, most notably that of
quantum cosmology, suggest increasingly that the underlying geometry of the
universe is in fact hyperbolic, i.e. space has a negative curvature. Mathemati-
cally we know that most topologies require a hyperbolic geometry, while, on the
observational side, astronomical data indicates that the average density of our
observable universe23 is less than the critical value needed for a zero or positive
curvature.

22John D. Barrow and Janna H. Levin of the University of Sussex, Emory F. Bunn of Bates
College and Evan Scannapieco and Joseph I. Silk of the University of California at Berkeley.
Further research is also being carried out by J. Richard Bond, Dmitry Pogosyan and Tarun
Souradeep of the Canadian Institute for Theoretical Astrophysics.

23We should be wary here. Matter alone is commonly accepted to be insufficient, in the
quantities present, to obtain non-negative curvature, but other forms of energy may do so.
A current candidate of intense interest is Einstein’s cosmological constant. See “Cosmological
Antigravity by Lawrence M. Krauss; Scientific American, January 1999”
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Other cosmological issues such as the determination of the metric pa-
rameters

Ω + λ− 1 =
kc2

H2
0R2

0
(1)

An independent method of determining the topology, and hence the
curvature, of the universe would give us a way to verify any determined
values of the other parameters
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