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John von Neumann (1903–1957)

• set theory

• mathematics of quantum mechanics

• minimax theorem [1928], game theory

• stored-program computer

• self-replicating automata

from The Man from the Future (2021):

“Von Neumann would carry on a conversation with my
three-year-old son, and the two of them would talk as equals, and
I sometimes wondered if he used the same principle when he
talked to the rest of us.” Edward Teller, 1966
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3 October 1947: Dantzig meets von Neumann

GD: In under one minute I slapped on the blackboard a geometric
and algebraic version of the linear programming problem.

Von Neumann stood up and said, “Oh, that!”

[ gives eye-popping lecture on LP duality ]

JvN: . . . I have recently completed a book with
Oscar Morgenstern on the theory of games.
I conjecture that the two problems are equivalent.

GD: Thus I learned about Farkas’s Lemma and
about duality for the first time. George Dantzig

(1914–2005)
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Notation, treat vectors and scalars as matrices

All vectors are column vectors. A>= matrix A transposed.

0 = (0, . . . , 0)>, 1 = (1, . . . , 1)>.

Ax = linear combination of columns of A · =

y>A = linear combination of rows of A · =

y>b = scalar product of y and b · =

xα = (column) vector x scaled by α · =

αy>= row vector y scaled by α · =
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Primal and dual linear programs
Primal LP:

maximize c>x

subject to Ax ≤ b ,

x ≥ 0 .

Dual LP:

minimize y>b

subject to y ≥ 0 ,

y>A ≥ c>.

Weak LP duality: For any feasible primal x , dual y :

c>x ≤ y>b

because 0 ≤ (y>A− c>)x, 0 ≤ y>(b − Ax) .

So c>x = y>b ⇒ x optimal for primal LP, y optimal for dual LP.

feasible x, y optimal ⇔ complementary slackness:
0 = (y>A− c>)x, 0 = y>(b − Ax)
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Tucker diagram

Primal LP: maximize c>x subject to Ax ≤ b, x ≥ 0.

Dual LP: minimize y>b subject to y>A ≥ c>, y ≥ 0.

c>
∨

A

x ≥ 0

y ≥ 0 ≤ b

→max

↪→min
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Zero-sum games

Game matrix A ∈ Rm×n

maximizing row player chooses row i ∈ [m] = {1, . . . ,m}

minimizing column player chooses column j ∈ [n] = {1, . . . , n}

payoff ai j to row player = cost to column player

Mixed-strategy sets

Y = {y ∈ Rm | y ≥ 0, 1>y = 1},

X = {x ∈ Rn | x ≥ 0, 1>x = 1},

expected payoff / cost: y>Ax
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Best responses

Let x ∈ X . (Ax)i = expected payoff in row i .

A best response y ∈ Y to x maximizes y>Ax .

max{y>(Ax) | y ∈ Y}

= max{(Ax)1, . . . , (Ax)m}

= min{v ∈ R | (Ax)1 ≤ v , . . . , (Ax)m ≤ v}

= min{v ∈ R | Ax ≤ 1v}
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max-min and min-max strategies

min-max strategy x̂ ∈ X :

max
y∈Y

y>Ax̂ = min
x∈X

max
y∈Y

y>Ax

= min
x∈X
{v ∈ R | Ax ≤ 1v}

max-min strategy ŷ ∈ Y :

min
y∈Y

x̂>Ay = max
y∈Y

min
x∈X

x>Ay

= max
y∈Y
{u ∈ R | y>A ≥ u1>}
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Written as general LP

Minimizer: minimize v subject to Ax ≤ 1v , x ∈ X .

Maximizer: maximize u subject to y>A ≥ u1>, y ∈ Y .

u u · · · u
∨

A

x ≥ 0, 1>x = 1

y ≥ 0
y>1 = 1

≤

v
v
...
v

→max

↪→min
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Written as general LP

Minimizer: minimize v subject to Ax ≤ 1v , x ∈ X .

Maximizer: maximize u subject to y>A ≥ u1>, y ∈ Y .

−1 · · · −1

0 0· · ·
∨

−1

A

x ≥ 0 v

y ≥ 0

u

≤

=0

−1

...

−1

0

...

0
−1

→max

↪→min
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von Neumann’s minimax theorem

Every zero-sum game A has a value v :

max
y∈Y

min
x∈X

y>Ax = v = min
x∈X

max
y∈Y

y>Ax

also, with max-min strategy ŷ and min-max strategy x̂ :

min
x∈X

ŷ>Ax = ŷ>Ax̂ = max
y∈Y

y>Ax̂

ŷ>Ax ≥ ŷ>Ax̂ ≥ y>Ax̂

⇔ (ŷ , x̂) is a Nash equilibrium (exists via fixed point theorem).

The minimax theorem is a consequence of strong LP duality.

What about the converse?
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Dantzig’s game [1951]

B =


0 A −b

−A> 0 c

b> −c> 0



B = −B> ⇒ symmetric game with value 0 (by minimax theorem),

∃ optimal z = (y , x, t) ≥ 0 with Bz ≤ 0 and z>B ≥ 0> :

Ax − bt ≤ 0 , −A>y + ct ≤ 0 , b>y − c>x ≤ 0 .

If t > 0 : x 1
t primal optimal and y 1

t dual optimal.

If t = 0 and b>y < c>x then b>y < 0 or 0 < c>x

(otherwise b>y ≥ 0 ≥ c>x ), and Ax ≤ 0 and y>A ≥ 0>.
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Unbounded rays
Suppose for some x̄ :

Ax̄ ≤ b , x̄ ≥ 0 ,

and 0 < c>x , Ax ≤ 0 for some x ≥ 0 .

Then A(x̄ + xα) ≤ b , x̄ + xα ≥ 0 ,

c>(x̄ + xα) = c>x̄ + (c>x)α→∞

as α→∞.

⇒ (by weak duality): dual LP infeasible.

⇒ Strong LP duality theorem

Either primal and dual LP are feasible and then have optimal
solutions with equal objective functions,

or at least one LP is infeasible and the other (if feasible) is
unbounded (with an unbounded ray).
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But what if t = 0 and b>y = c>x ?

Dantzig’s game gives no information about the LP!

B =


0 A −b

−A> 0 c

b> −c> 0


This means an unused best response and thus violates
strict complementarity. This only occurs in degenerate cases.

Given B = −B>∈ Rk×k

want z ≥ 0, Bz ≤ 0, zk − (Bz)k > 0 .
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Tucker’s Lemma [1956]

For B = −B>∈ Rk×k , A ∈ Rm×n :

∃ z ≥ 0 , Bz ≤ 0 , zk − (Bz)k > 0

⇓ : B =

[
0 A
−A> 0

]
, z =

(y
x
)
. ⇑ : B = A , z = y + x

∃ x ≥ 0 , y ≥ 0 : y>A ≥ 0>, Ax ≤ 0 , xn + (y>A)n > 0

⇓ : Ax ≤ 0 , −Ax ≤ 0 ⇑ : Im×ms + Ax = 0

∃ x ≥ 0 , y : y>A ≥ 0>, Ax = 0 , xn + (y>A)n > 0
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Lemma of Tucker ⇒ Lemma of Farkas

Tucker’s Lemma :

∃ x ≥ 0 , y : y>A ≥ 0>, Ax = 0 , xn + (y>A)n > 0

Apply to [ A −b ] :

∃ x ≥ 0 , t ≥ 0 , y : Ax − bt = 0 , y>A ≥ 0>, −y>b ≥ 0 ,

t − y>b > 0 .

t = 0 : y>b < 0 .

t > 0 : Ax 1
t = b

= Lemma of Farkas :

/∃ x ≥ 0 : Ax = b ⇔ ∃ y : y>A ≥ 0>, y>b < 0 .
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Lemma of Farkas ⇒ Lemma of Tucker

Lemma of Farkas :

/∃ x ≥ 0 : Ax = b ⇔ ∃ y : y>A ≥ 0>, y>b < 0 .

A = [A1 · · ·An] :

either ∃ z ∈ Rn−1 : z ≥ 0,
∑n−1

j=1 Ajz j = −An :

let x =
(z

1

)
, y = 0

or ∃ y : y>Aj ≥ 0 (1 ≤ j ≤ n − 1), y>(−An) < 0 :
let x = 0 .

⇒ x ≥ 0, y>A ≥ 0>, Ax = 0 , xn + (y>A)n > 0

= Lemma of Tucker
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Dantzig’s assumption

. . . assumes Tucker’s Lemma and hence the Lemma of Farkas,

which proves LP duality directly.

The minimax theorem is not of much use here!

Next: we fix this.

Distilled from Adler [2013].
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Tucker’s Theorem

Let A ∈ Rm×n

Tucker’s Lemma: for any j ∈ {1, . . . , n} :

∃ x ≥ 0 , y : y>A ≥ 0>, Ax = 0 , x j + (y>A)j > 0

Summing over all j gives x , y with

x ≥ 0 , y>A ≥ 0>, Ax = 0 , x>+ y>A > 0>

= Tucker’s Theorem (⇒ Tucker’s Lemma)

Also for B = −B> : ∃ z ≥ 0 : Bz ≤ 0 , z − Bz > 0 .
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Stiemke [1915], Gordan [1873]

Stiemke’s Theorem

/∃ y : y>A ≥ 0>, y>A 6= 0> ⇔ ∃ x : Ax = 0 , x > 0

Gordan’s Theorem

/∃ x : Ax = 0 , x ≥ 0 , x 6= 0 ⇔ ∃ y : y>A > 0>

Tucker’s Theorem

∃ x, y : x ≥ 0 , y>A ≥ 0>, Ax = 0 , x>+ y>A > 0>
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Gordan, Ville [1938], minimax theorem

Gordan’s Theorem

/∃ x : Ax = 0 , x ≥ 0 , x 6= 0 ⇔ ∃ y : y>A > 0>

Ville’s Theorem

/∃ x : Ax ≤ 0 , x ≥ 0 , x 6= 0 ⇔ ∃ y ≥ 0 : y>A > 0>

minimax theorem

∃ x ∈ X , y ∈ Y , v ∈ R : Ax ≤ 1v , y>A ≥ v1>
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From Gordan to Tucker

Let x̃ with x̃ ≥ 0, Ax̃ = 0 have maximum support

S = { j | x̃ j > 0 }

, write x = (xJ , xS), Ax = AJxJ + ASxS .

= 0

xJ = 0 xS > 0

∨
0 0

want:

y AJ AS

find:

w

0

C 0

D E (spanning
rows of AS)

Ax = 0 ⇔ BAx = BAJxJ + BASxS = 0

⇔ CxJ = 0 ,

DxJ + ExS = 0 .
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Gordan ⇒ Tucker
Ax̃ = 0 , x̃ ≥ 0 , x̃S > 0 where x̃ has maximum support S .

Ax = 0 ⇔ BAx = BAJxJ + BASxS = 0

⇔ CxJ = 0 ,

DxJ + ExS = 0 .

Suppose ∃ xJ ≥ 0 , xJ 6= 0 , CxJ = 0.

E has full rank ⇒ ∃ xS : DxJ + ExS = 0 .

⇒ B(AJxJ + AS (xS + x̃Sα)︸ ︷︷ ︸
>0 as α→∞

) = 0 , S not maximal. E

Gordan ⇒

∃w : w>C > 0>, (
(w

0

)>
B)AJ > 0 , (

(w
0

)>
B)AS = 0 . �
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Summary: minimax theorem ⇒ LP duality

Recall: Using Dantzig’s game B =


0 A −b

−A> 0 c

b> −c> 0


with B = −B> assumes Tucker’s Lemma

∃ z ≥ 0, Bz ≤ 0, zk − (Bz)k > 0 .

minimax theorem ⇒ Gordan’s Theorem, ⇒ Tucker’s Theorem

∃ z ≥ 0, Bz ≤ 0, z − Bz > 0

⇒ LP duality with strict complementarity: for feasible LPs

∃ x, y : (y>A− c>)x = 0 , y>(b − Ax) = 0 ,

(y>A− c>) + x>> 0>, y + (b − Ax) > 0 .
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Minimax theorem: Proof by Loomis [1946]

min-max strategy x ∈ X : minimize v s.t. Ax ≤ 1v ,

max-min strategy y ∈ Y : maximize u s.t. y>A ≥ u1>,

u = u1>x ≤ y>Ax ≤ y>1v = v .

u1>= y>A and Ax = 1v ⇒ u = v , done.

Assume (Ax)k < v for some row k , let A be A without row k .

By inductive hypothesis, A has game value v , Ax ≤ 1v .

v ≤ u, v ≤ v , (A better than A for minimizer).

Claim : v = v . Intuition: maximizer avoids row k of A anyhow.
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Proof that v = v

minimal v s.t. Ax ≤ 1v , maximal u s.t. y>A ≥ u1>, u ≤ v .

(Ax)k < v , matrix A is A without row k , value v ≤ u, v ≤ v .

Suppose v < v . For 0 < ε ≤ 1 ,

A(x(1− ε) + xε︸ ︷︷ ︸
x(ε)∈X (convex)

) ≤ 1(v(1−ε) + vε) = 1(v−ε(v−v)) < 1v

For missing row k of A and sufficiently small ε > 0 :

(A(x(1− ε) + xε))k = (Ax)k︸ ︷︷ ︸
<v

(1− ε) + (Ax)kε < v ,

overall Ax(ε) < 1v , contradicting minimality of v . Hence v = v .

⇒ v ≤ u ≤ v = v , u = v . Induction complete . �
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“On a theorem of von Neumann”

Theorem Loomis [1946]

Let A,B ∈ Rm×n, B > 0.

Then there exist x ∈ X , y ∈ Y , v ∈ R :

Ax ≤ Bxv , y>A ≥ vy>B .

B = 1 1>: minimax theorem, Ax ≤ 1v , y>A ≥ v1>.

Conversely, theorem is implied by the minimax theorem:

value(A− αB) < 0 for α→∞,

value(A− αB) > 0 for α→ −∞, continuous in α, hence

value(A− αB) = 0 for some v = α. �
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Conforti, Di Summa, Zambelli [2007]

Theorem

Ax ≤ b minimally infeasible ⇒ Ax = b minimally infeasible .

⇒ reversing any inequality aix ≤ bi creates feasible system:

∀ row i ∃ x : aix > bi , ∀ k 6= i : ak x = bk .

Then apply linear algebra (get 0 = −1 from infeasible Ax = b):

/∃ x : Ax = b ⇔ ∃ y : y>A = 0>, y>b = −1

to prove inequality-Farkas (get 0 ≤ −1 from infeasible Ax ≤ b):

/∃ x : Ax ≤ b ⇔ ∃ y ≥ 0 : y>A = 0>, y>b < 0 .
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How did the chicken cross the triangle?

c a

b

c a

b

c a

b

Consider a triangle with corners a, b, c and a chicken at b that
wants ???

to get to the other side.

Then the closest point to get there is c if and only if
the angle at c is not acute, that is,

(b − c)>(a − c) ≤ 0 .
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Supporting hyperplane theorem
Theorem

Let ∅ 6= C ⊂ Rm, closed, convex, b 6∈ C.

Let c ∈ C with smallest ‖b − c‖.

Consider hyperplane H with normal vector b − c through c :
then all of C on one side, b strictly on the other side of H,

(b − c)>(b − c) > 0 , ∀ a ∈ C : (b − c)>(a − c) ≤ 0 .

H

c

b

a
C
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Lemma of Farkas

Cone C = {Ax | x ≥ 0} and b 6∈ C.

Consider c ∈ C with smallest ‖b − c‖, and y = b − c. Then

y>b > 0, (∀ a ∈ C : y>a ≤ 0) y>A ≤ 0>.

A1
A2

A3

y = b−c

H

c

0

b

C
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Why is the cone C = {Ax | x ≥ 0} closed?

• show: limit a of any sequence of points a(k) in C is in C

• ∀k ∃ basis B, xB ≥ 0 : a(k) = ABxB

• only finitely many bases B

• restrict to subsequence with one B that occurs infinitely often

• a = lim
k→∞

a(k) = AB lim
k→∞

A−1
B a(k)︸ ︷︷ ︸
≥ 0

∈ C

• need theorem of Carathéodory (and Weierstrass).
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Fourier–Motzkin elimination = projection

Lemma (ineq-Farkas, get 0 ≤ −1 from infeasible Ax ≤ b):

/∃ x ∈ Rn : Ax ≤ b ⇔ ∃ y ≥ 0 : y>A = 0>, y>b < 0 .

Proof By induction on n.

Scale rows of Ax ≤ b with affine ai , bj , ck as

ai(x2, . . . , xn) ≤ x1 , x1 ≤ bj(x2, . . . , xn) , ck (x2, . . . , xn) ≤ 0 .

Eliminate x1 by writing ai ≤ bj for all pairs i, j .

By inductive hypothesis: Either solve in x2, . . . , xn ≥ 0 and
choose any x1 with ai ≤ x1 ≤ bj for all i, j , or linearly combine
(then also in terms of rows of Ax ≤ b) to get 0 ≤ −1 . �
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Thanks for listening!
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