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Abstract This paper describes algorithms for finding all Nash equilibria of a two-
player game in strategic form. We present two algorithms that extend earlier work. Our
presentation is self-contained, and explains the two methods in a unified framework
using faces of best-response polyhedra. The first method lrsNash is based on the known
vertex enumeration program lrs, for “lexicographic reverse search”. It enumerates the
vertices of only one best-response polytope, and the vertices of the complementary
faces that correspond to these vertices (if they are not empty) in the other polytope.
The second method is a modification of the known EEE algorithm, for “enumeration
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of extreme equilibria”. We also describe a second, as yet not implemented, variant
that is space efficient. We discuss details of implementations of lrsNash and EEE, and
report on computational experiments that compare the two algorithms, which show
that both have their strengths and weaknesses.

Keywords Bimatrix game · Nash equilibrium · Linear programming ·
Complementarity

JEL Classification C72

1 Introduction

This paper describes algorithms for finding all Nash equilibria of a two-player game.
These methods apply to games in strategic form, and have the potential to be extended
to other game descriptions, for example games in extensive form (discussed briefly in
Sect. 9). We present two main algorithms, and some variants, that extend earlier work.
For both of the algorithms we give a variant that is space efficient, requiring memory
polynomial in the input size, in order to produce a duplicate free output list. As far
as we know, these are the only known algorithms with this property. Our presenta-
tion is self-contained, and explains the two methods in a unified framework based on
polyhedra.

The first method lrsNash is based on the vertex enumeration program lrs (for “lex-
icographic reverse search”) described in Avis and Fukuda (1992) and Avis (2000).
The extensions of lrs to finding Nash equilibria are here described for the first time
in a journal article. The second method is the EEE algorithm (for “enumeration
of extreme equilibria”) by Audet et al. (2001), implemented in exact arithmetic by
Rosenberg (2005), and presented here in modified form. We also give for the
first time a geometric description of the EEE algorithm in terms of facets of
polyhedra.

A Nash equilibrium is given by a mixed strategy for each player that is a best
response to the fixed strategy of the other player. According to the well-known “best
response condition” (Prop. 1, due to Nash 1951), this means that the pure strategies
in the support of the mixed strategy have maximal, and hence equal, expected payoff.
This defines linear equations and inequalities for the mixed strategy probabilities of
the other player. These are captured by a “best response polyhedron”, an approach
that has already been described by Vorob’ev (1958); Kuhn (1961), and Mangasarian
(1964), explained in detail in Sect. 3. An equilibrium strategy of a player is a vertex
of his best response polyhedron, or a convex combination of such vertices, as char-
acterized in Prop. 4 (Winkels 1979; Jansen 1981). Hence, the Nash equilibria of a
two-player game can be found by enumerating all pairs of vertices of the two best
reponse polyhedra, and checking the equilibrium property, which gives the extreme
equilibria of the game.

A vertex enumeration program, such as lrs, enumerates all vertices of a polyhe-
dron specified by inequalities (see Sect. 6). A straightforward enumeration of extreme
equilibria generates the vertices of both best response polyhedra and outputs the
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Enumeration of Nash equilibria 11

vertex pairs that match as equilibria, as implemented by Canty (2003) and Savani
(2005).

Here we describe a different approach, the basics of which have been outlined in
von Stengel (1998). This approach considers the vertices of only one best response
polyhedron, say for player 1. Each such vertex x is an equilibrium strategy of player 1
if and only if the “complementary” inequalities in the other polyhedron are tight, so
these equations determine a face of that polyhedron, called the “complementary face”
to x . (This complementary face is empty if x is not part of an equilibrium, and a single
point if the equilibrium is isolated.) The approach thus considers the vertices x of one
best response polyhedron, and enumerates the vertices y of the complementary face
to x in the other polyhedron, which defines all extreme equilibria (x, y) of the game.
This may involve only a small number of vertices y of the second polyhedron and
thereby save computation time. One may use a preliminary run of lrs to choose the
first polyhedron judiciously.

The programs described in this paper use exact arithmetic with integers of arbitrary
precision, given integer or fractional payoffs as input. This avoids rounding errors that
can occur with floating-point arithmetic, and safely finds all equilibria even when the
game is degenerate. Fractional numbers in the input can be scaled to become integers.
The pivoting operations in lrs preserve integers in the linear programming tableaus via
“integer pivoting” (see Sect. 5). This known technique is superior to using fractions
of integers (rational arithmetic) because their cancelation requires greatest common
divisor computations which tend to take the bulk of computation time.

The EEE approach due to Audet et al. (2001) enumerates all equilibria by alter-
nately solving parameterized linear programs. It explores a binary search tree where in
each step, a pure strategy is selected and converted to a tight inequality in one of the two
best response polyhedra (which defines the binary choice). This ends when all strate-
gies have been fixed, or the corresponding face of the polyhedron is empty, detected as
an infeasible linear program. Rosenberg (2005) has implemented this approach with
integer pivoting instead of floating-point arithmetic as done by Audet et al. (2001).
We present variants of EEE that give some speedup for degenerate games.

In Sect. 2, we recall the best response condition. For nondegenerate games, this
gives rise to an algorithm for finding all equilibria by enumerating all possible supports.
Section 3 describes the best response polyhedra that are the basis of our algorithms.
Degenerate games are discussed in Sect. 4. The possibly infinite set of all equilibria in
a degenerate game can be described by “maximal Nash subsets”. These are polytopes
obtained from the finite set of extreme equilibria. The Clique Algorithm 2 shows how
to determine these maximal Nash subsets, as well as their non-disjoint unions that
define connected components of Nash equilibria. An extreme equilibrium is a pair
of vertices of the best response polyhedra. Vertices are represented algebraically by
linear programming tableaus or “dictionaries”. We recall these standard techniques
in Sect. 5 in order to explain the details of our algorithms, as well as the less known
method of “integer pivoting” which is economical for keeping arbitrary precision. In
Sect. 6, we explain our first algorithm lrsNash. In Sect. 7, we describe the second
EEE algorithm in two variants EEE-m and EEE-2. We report experimental results
in Sect. 8. A number of possible extensions, and open problems, are discussed in
Sect. 9.
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2 Bimatrix games and the best response condition

We use the following notation throughout. Let (A, B) be a bimatrix game, where A and
B are m ×n matrices of payoffs to the row player 1 and column player 2, respectively.
Let M be the set of the m pure strategies of player 1 (the row player), and let N be the
set of the n pure strategies of player 2 (the column player). It is useful to assume that
these sets are disjoint, as in

M = {1, . . . , m}, N = {m + 1, . . . , m + n}. (1)

The payoff matrices A and B belong to R
M×N , so A has entries ai j and B has entries

bi j for i ∈ M and j ∈ N . When A and B define the input to an algorithm for finding
all Nash equilibria, the payoffs are assumed to be rationals, or, by suitable scaling,
integers.

A mixed strategy of player 1 is a vector x of probabilities xi for playing rows
i ∈ M , so x ∈ R

M ; similarly, a mixed strategy of player 2 is a probability vector
y ∈ R

N . All vectors are column vectors. The support of a mixed strategy is the set of
pure strategies that have positive probability. A vector or matrix with all components
zero is denoted by 0, and a vector of all ones by 1. Inequalities like x ≥ 0 between
two vectors hold for all components.

A best response to the mixed strategy y of player 2 is a mixed strategy x of player 1
that maximizes his expected payoff x� Ay. Similarly, a best response y of player 2 to
x maximizes her expected payoff x� By. A Nash equilibrium is a pair (x, y) of mixed
strategies that are best responses to each other.

The following well-known proposition states that a mixed strategy x is a best
response to an opponent strategy y if and only if all pure strategies in its support are
pure best responses to y. The same holds with the roles of the players exchanged.

Proposition 1 (Best response condition, Nash 1951) Let x and y be mixed strategies
of player 1 and 2, respectively. Then x is a best response to y if and only if for all
i ∈ M,

xi > 0 �⇒ (Ay)i = u = max{ (Ay)k | k ∈ M}, (2)

and y is a best response to x if and only if for all j ∈ N,

y j > 0 �⇒ (B�x) j = v = max{ (B�x)k | k ∈ N }. (3)

Proposition 1 is useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used to find all Nash equilibria (see Algorithm 1 below), by
trying out the different possible supports of mixed strategies. All pure strategies in the
support must have maximum, and hence equal, expected payoff to that player. This
leads to equations for the probabilities of the opponent’s mixed strategy. These linear
equations may not have full rank. To avoid this complication, we apply this algorithm
only to nondegenerate games, defined as follows.
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Enumeration of Nash equilibria 13

Definition 1 A two-player game is called nondegenerate if no mixed strategy with
support of size k has more than k pure best responses.

The following observation is immediate from Prop. 1.

Proposition 2 In any Nash equilibrium (x, y) of a nondegenerate bimatrix game, x
and y have supports of equal size.

The following “support enumeration algorithm” has been described by Dickhaut
and Kaplan (1991).

Algorithm 1 (Equilibria by support enumeration) Input: A nondegenerate bimatrix
game. Output: All Nash equilibria of the game. Method: For each k = 1, . . . ,

min{m, n} and each pair (I, J ) of k-sized subsets I of M and J of N , respectively,
solve the equations

∑
i∈I xi bi j = v for j ∈ J ,

∑
i∈I xi = 1,

∑
j∈J ai j y j = u for

i ∈ I ,
∑

j∈J y j = 1, and check that x ≥ 0, y ≥ 0 and that (2) holds for x and (3) for y.

The linear equations considered in Algorithm 1 may not have solutions, which
means that there is no equilibrium for that support pair. Nonunique solutions occur
only for degenerate games, because a linear dependency allows to reduce the support
of a mixed strategy. Degenerate games are discussed in Sect. 4 below.

3 Equilibria via labeled polytopes

In order to identify the possible supports of equilibrium strategies, one can use “best
response polytopes”. These express directly that best-response payoffs are equal to
each other, and at least as large as the expected payoffs for other pure strategies.

We first recall some notions from the theory of (convex) polyhedra. An affine com-
bination of points z1, . . . , zk in some Euclidean space is of the form

∑k
i=1 ziλi where

λ1, . . . , λk are reals with
∑k

i=1 λi = 1. It is called a convex combination if λi ≥ 0
for all i . A set of points is convex if it is closed under forming convex combinations.
Given points are affinely independent if none of these points is an affine combination
of the others. A convex set has dimension d if and only if it has d + 1, but no more,
affinely independent points.

A polyhedron P in R
d is a set {z ∈ R

d | Cz ≤ q} for some matrix C and vec-
tor q. It is called full-dimensional if it has dimension d. It is called a polytope if it
is bounded. A face of P is a (possibly empty) set { z ∈ P | c�z = q0} for some
c ∈ R

d , q0 ∈ R so that the inequality c�z ≤ q0 holds for all z in P . A vertex of P is
the unique element of a 0-dimensional face of P . An edge of P is a one-dimensional
face of P . A facet of a d-dimensional polyhedron P is a face of dimension d − 1. It
can be shown that any nonempty face F of P can be obtained by turning some of the
inequalities that define P into equalities, which are then called binding inequalities.
That is, F = { z ∈ P | ci z = qi , i ∈ I }, where ci z ≤ qi for i ∈ I are some of the
rows in Cz ≤ q . A facet is characterized by a single binding inequality that is irre-
dundant, that is, the inequality cannot be omitted without changing the polyhedron.
A d-dimensional polyhedron P is called simple if no point belongs to more than d fac-
ets of P , which is true if there are no special dependencies between the facet-defining
inequalities.
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The best response polyhedron P for player 1 is the set of player 1’s mixed strategies
x together with the “upper envelope” of expected payoffs (and any larger payoffs) v

to player 2. The best response polyhedron Q for player 2 is defined analogously:

P = {(x, v) ∈ R
M × R | x ≥ 0, 1�x = 1, B�x ≤ 1v },

Q = {(y, u) ∈ R
N × R | Ay ≤ 1u, y ≥ 0, 1�y = 1 } .

(4)

As an example, consider the 3 × 2 bimatrix game (A, B) with

A =
⎡

⎣
3 3
2 5
0 6

⎤

⎦ , B =
⎡

⎣
3 2
2 6
3 1

⎤

⎦ . (5)

In this example, Q is the set of triples (y4, y5, u) that fulfill 3y4+3y5 ≤ u, 2y4+5y5 ≤
u, 0y4 +6y5 ≤ u, y4 ≥ 0, y5 ≥ 0, and y4 + y5 = 1. The left picture in Fig. 1 shows Q
for 0 ≤ y4 ≤ 1 which uniquely determines y5 as 1 − y4. The circled numbers indicate
the facets of Q, which are either strategies i ∈ M of the other player or own strategies
j ∈ N . Facets 1, 2, 3 of player 1 indicate his best responses together with his expected
payoff u. For example, strategy 1 is a best response when y4 ≥ 2/3. Facets 4 and 5 of
player 2 tell when the respective own strategy has probability zero, namely y4 = 0 or
y5 = 0.

We say a point (y, u) of Q has label k ∈ M ∪N if the kth inequality in the definition
of Q is binding, which for k = i ∈ M is the i th binding inequality

∑
j∈N ai j y j = u

(meaning i is a best response to y), and for k = j ∈ N is the binding inequality
y j = 0. In the example, (y4, y5, u) = (2/3, 1/3, 3) has labels 1 and 2. The labels of a
point (x, v) of P are defined correspondingly: It has label i in M if xi = 0, and label
j in N if

∑
i∈M bi j xi = v.

With these labels, an equilibrium is a pair (x, y) of mixed strategies so that with
the corresponding expected payoffs v and u, the pair ((x, v), (y, u)) in P × Q is com-
pletely labeled, which means that every label k ∈ M ∪ N appears as a label of (x, v)

or of (y, u). This is equivalent to the best response conditions (2) and (3), which say
that in equilibrium, every pure strategy is a best response or has probability zero.

The constraints (4) defining P and Q can be simplified by eliminating the payoff
variables u and v, which works if these are always positive. For that purpose, assume
that

A and B� are nonnegative and have no zero column. (6)

We could simply assume A > 0 and B > 0, but it is useful to admit zero matrix entries
(e.g. as in the identity matrix). Even negative entries are possible as long as the upper
envelope remains positive; for example, a34 (currently zero) in (5) could be negative,
as Fig. 1 shows.

We change P by dividing each inequality
∑

i∈M bi j xi ≤ v by v, where v is positive
by (6). This gives the new inequality

∑
i∈M bi j (xi/v) ≤ 1, where we treat xi/v as

a new variable that we call again xi . The resulting polyhedron is P . Similarly, Q is
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Fig. 1 Left Best reponse polyhedron Q for (5). Bottom right Corresponding polytope Q, which has vertices
0, p, q, r, s. Top right Best response polytope P with vertices 0, a, b, c, d, e

replaced by Q by dividing each inequality in Ay ≤ 1u by u. Then

P = { x ∈ R
M | x ≥ 0, B�x ≤ 1},

Q = { y ∈ R
N | Ay ≤ 1, y ≥ 0} .

(7)

It is easy to see that (6) implies that P and Q are full-dimensional polytopes, unlike
P and Q. In effect, we have normalized the maximum expected payoffs to be 1, and
dropped the conditions 1�x = 1 and 1�y = 1. Nonzero vectors x ∈ P and y ∈ Q
are multiplied by v = 1/1�x and u = 1/1�y to turn them into probability vectors.
The scaling factors v and u are the expected payoffs to the other player.

The set P is in one-to-one correspondence with P − {0} with the map (x, v) �→
x · (1/v). Similarly, (y, u) �→ y · (1/u) defines a bijection Q → Q −{0}. These bijec-
tions are not linear, but are known as “projective transformations”; for a visualization
see von Stengel (2002, Fig. 2.5). They preserve the face incidences since a binding
inequality in P (respectively, Q) corresponds to a binding inequality in P (respectively,
Q) and vice versa. In particular, points have the same labels defined by the binding
inequalities, which are some of the m + n inequalities that define P and Q in (7). An
equilibrium is then defined by a completely labeled pair (x, y) ∈ P × Q − {(0, 0)};
for brevity, we say (x, y) “is” a Nash equilibrium, with the understanding that x and y
have to be rescaled to become probability vectors x ·1/1�x and y ·1/1�y, respectively.
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16 D. Avis et al.

For the example (5), the polytopes P and Q are shown on the right in Fig. 1. Any
point x in P has at most three labels, and any y in Q has at most two labels, and only ver-
tices have that many labels. The following three completely labeled vertex pairs define
the Nash equilibria of the game: The pure strategy equilibrium (a, s), and the mixed
equilibria (b, r) and (d, q). For example, vertex b = (2/7, 1/14, 0)� of P has labels
3, 4, 5, and vertex r = (1/6, 1/9)� of Q has labels 1 and 2, so (b, r) is completely
labeled. This corresponds to the mixed strategy pair ((2/3, 1/3, 0)�, (2/3, 1/3)�).
The vertices c and e of P , and p of Q, are not part of an equilibrium.

Remark 1 A bimatrix game (A, B) is nondegenerate if the polytopes P and Q in (7)
have the property that no point in P has more than m labels, and no point in Q has
more than n labels.

Proof If x ∈ P and x has support of size k and L is the set of labels of x , then
|L ∩ M | = m − k, so |L| > m implies x has more than k best responses in
L ∩ N . ��

If (A, B) is nondegenerate, P and Q are simple polytopes, because a point of P ,
say, that is on more than m facets would have more than m labels. Even if P and Q
are simple polytopes, the game can still be degenerate if the description of P or Q is
redundant in the sense that some inequality can be omitted, but nevertheless is some-
times binding. This occurs if a player has a pure strategy that is weakly dominated by
or payoff equivalent to some other mixed strategy. Redundant inequalities of this kind,
or non-simple polytopes, do not occur for generic payoffs. A strictly dominated strat-
egy may occur generically, but it defines a redundant inequality that is never binding,
so this does not lead to a degenerate game.

If the game is nondegenerate, only vertices of P can have m labels, and only verti-
ces of Q can have n labels. Otherwise, a point of P with m labels that is not a vertex
would be on a higher-dimensional face, and a vertex of that face, which is a vertex
of P , would have additional labels. Consequently, only vertices of P and Q have to
be inspected as possible equilibrium strategies.

4 Degenerate games

In a degenerate game, a vertex of P , for example, may have more than m labels. As
an example, consider the 3 × 2 game

A =
⎡

⎣
3 3
2 5
0 6

⎤

⎦ , B =
⎡

⎣
3 3
2 6
3 1

⎤

⎦ , (8)

which agrees with (5) except that b15 = 3. The polytope Q for this game is the same
as before, shown on the right in Fig. 2. The polytope P , shown in the left in Fig. 2,
differs from P in Fig. 1 only in that vertex b has merged with a.

Degenerate games may have infinite sets of equilibria. In the example (8), vertex a
of P , which represents the pure strategy (1, 0, 0)� of player 1, together with the entire
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Fig. 2 Best response polytopes for the degenerate game (8)

edge of Q that joins vertices r and s, defines a component of Nash equilibria, where
player 2 plays some mixed strategy (y4, 1 − y4) for 2/3 ≤ y4 ≤ 1.

The following central observation characterizes all Nash equilibria of a general
bimatrix game (A, B) with P and Q as defined in (7).

Proposition 3 For K , L ⊆ M ∪ N, let

P(K ) = { x ∈ P | ∀i ∈ K ∩ M : xi = 0, ∀ j ∈ K ∩ N : (B�x) j = 1}
Q(L) = { y ∈ Q | ∀i ∈ L ∩ M : (Ay)i = 1, ∀ j ∈ L ∩ N : y j = 0} (9)

Then (x, y) ∈ P × Q − {0, 0} is a Nash equilibrium if and only if there are sets K
and L so that K ∪ L = M ∪ N and (x, y) ∈ P(K ) × Q(L).

Proof Given K and L so that K ∪ L = M ∪ N , any (x, y) ∈ P(K ) × Q(L) is by (9)
completely labeled. If x = 0, then B�x < 1, so x has no label in N (i.e., K ⊆ M),
which implies N ⊆ L and therefore y = 0 (and thus Ay < 1 and L = N , K = M);
similarly, y = 0 implies x = 0. However, the case (x, y) = (0, 0) is excluded, so
(x, y) is a Nash equilibrium.

Conversely, a Nash equilibrium (x, y) in P × Q −{0, 0} belongs to P(K )× Q(L)

where K and L are the sets of labels of x and y, respectively. ��
Clearly, the set P(K ) in (9) is a face of P , and Q(L) is a face of Q. By Prop. 3, the

set of Nash equilibria is the union of products P(K )× Q(L) of faces of the polytopes
P and Q. The following proposition, due to Winkels (1979) and Jansen (1981), char-
acterizes these products in terms of pairs of vertices of P and Q. We write conv U for
the convex hull of a set U .

Proposition 4 Let (A, B) be a bimatrix game, and (x, y) ∈ P × Q. Then (x, y) is
a Nash equilibrium of (A, B) if and only if there is a set U of vertices of P − {0}
and a set V of vertices of Q − {0} so that x ∈ conv U and y ∈ conv V , and every
(u, v) ∈ U × V is completely labeled.
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18 D. Avis et al.

Proof By Prop. 3, any Nash equilibrium (x, y) belongs to P(K ) × Q(L) for suit-
able K , L with K ∪ L = M ∪ N . Let U and V be the sets of vertices of P(K ) and
Q(L), which are also vertices of P and Q, respectively. Then P(K ) = conv U and
Q(L) = conv V , which shows the “only if” part.

Conversely, given vertex sets U and V so that every (u, v) ∈ U × V is completely
labeled, let K be the set of labels common to all u ∈ U , and let L be the set of labels
common to all v ∈ V . Then K ∪ L = M ∪ N , because otherwise there would be
some label that was missing from some u ∈ U and from some v ∈ V , so that (u, v)

is not completely labeled, contrary to the assumption. Then conv U ⊆ P(K ) and
conv V ⊆ Q(L), which implies the “if” part by Prop. 3. ��

Proposition 4 shows that the set of all Nash equilibria can be completely described
by the (finitely many) Nash equilibria that are vertex pairs of P × Q. These are also
called extreme equilibria in the sense that they are not convex combinations of other
equilibria. For example, the two extreme equilibria (a, r) and (a, s) of the game (8)
represent the component {a} × conv {r, s} of equilibria mentioned above.

Consider the bipartite graph R on the vertices of P −{0} and Q −{0} whose edges
are the completely labeled vertex pairs (x, y), which are the extreme equilibria of
(A, B). The maximal “cliques” (maximal complete bipartite subgraphs) of R of the
form U × V then define sets of Nash equilibria conv U × conv V , as in Prop. 4, whose
union is the set of all Nash equilibria. These sets are called “maximal Nash subsets”
(Millham 1974). They are also the maximal sets of the form X × Y so that any two
Nash equilibria (x, y) and (x ′, y′) in X × Y are interchangeable in the sense that then
(x ′, y) and (x, y′) are equilibria as well, which is a property of equilibria in zero-sum
games.

Maximal Nash subsets may be nondisjoint, as in the abstract example in Fig. 3,
or the game in (17) below. The inclusion-maximal connected sets of Nash equilibria
are usually called the (topological) equilibrium components. The concept of “stable”
equilibria applies to such components; see Kohlberg and Mertens (1986).

The set of extreme equilibria suffices to describe all equilibrium components as
well as their maximal Nash subsets, because if two Nash subsets are not disjoint, they
have a common vertex pair (because by Prop. 3, both Nash subsets are products of
faces of P and Q, and so is their intersection). Hence, equilibrium components are

x1
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x4

y1 y2 y3 y4

(x1, y1)
(x1, y2)

(x2, y2)
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11

11
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0
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0
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0 0 0

Fig. 3 Left Incidence matrix of a bipartite graph R of extreme equilibria, with its maximal cliques. Right
Geometry of the two equilibrium components. One of them is the union of the three maximal Nash subsets
{x1} × conv {y1, y2}, conv {x1, x2, x3} × {y2}, and conv {x2, x3} × conv {y2, y3}, and the other consists
of a single vertex pair (x4, y4)
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obtained as connected components of the bipartite graph R above, which are found
by a straightforward graph search algorithm (e.g., Cormen et al. 2001).

Algorithm 2 (Clique—Equilibrium components) Input: All pairs (x, y) of extreme
equilibria. Output: All components of Nash equilibria, given as unions of maximal
Nash subsets. Method: Consider the set of extreme equilibria as a bipartite graph R.
Each connected component C of R defines an equilibrium component; enumerate the
maximal cliques of C , which define the maximal Nash subsets.

All maximal complete bipartite subgraphs of R can be found by a variant of the
elegant clique enumeration algorithm by Bron and Kerbosch (1973). An implementa-
tion of the Clique Algorithm 2 by von Stengel (1998) is used in the computer systems
of McKelvey et al. (2007); Canty (2003), and Savani (2005).

In the rest of paper, we are concerned with algorithms for finding all extreme
equilibria, which define the input for the Clique Algorithm 2.

5 Vertices and pivoting

We consider algorithms for enumerating the extreme equilibria of a bimatrix game.
These are vertex pairs of polyhedra derived from the payoff matrices. The algorithms
use standard techniques for representing polyhedra as they are known from linear
programming. For easy reference and in order to explain the details of our algorithms,
we summarize these methods in this section (see also Chvátal 1983).

The inequalities defining a polyhedron are converted to equations with the help of
nonnegative slack variables, and vertices are represented as basic feasible solutions to
these equations. Moving from one vertex to another along an edge of the polyhedron is
done by the algebraic operation of pivoting. Pivoting is used by the simplex algorithm
for solving a linear program, and by the algorithm of Lemke and Howson (1964) for
finding one equilibrium of a bimatrix game.

Consider a polyhedron such as Q = {y ∈ R
n | Ay ≤ q, y ≥ 0} for an m × n

matrix A and m-vector q. Then y ∈ Q if and only if there exists a vector of slack
variables r ∈ R

m so that

Ay + r = q, y ≥ 0, r ≥ 0. (10)

The system (10) is of the form

Cz = q (11)

for a matrix C , right-hand side q, and a vector z of nonnegative variables. The matrix
C has full row rank, so that q always belongs to the space spanned by the columns C j

of C . A basis β is given by a basis {C j | j ∈ β} of this column space, so that the square
matrix Cβ formed by these columns is invertible. The corresponding basic solution
is the unique vector zβ = (z j ) j∈β with Cβ zβ = q, where the variables z j for j in β

are called basic variables, and z j = 0 for all nonbasic variables z j for j �∈ β, which
implies (11). If this solution also fulfills z ≥ 0, then the basis β is called feasible. If β
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is a basis for (11), then the corresponding basic solution can be read directly from the

equivalent system C−1
β Cz = C−1

β q, called a tableau, because the columns of C−1
β C

for the basic variables form the identity matrix. The tableau and thus (11) is equivalent
to the system, also called a dictionary,

zβ = C−1
β q −

∑

j �∈β

C−1
β C j z j (12)

which shows how the basic variables depend on the nonbasic variables.
The basic feasible solutions to (11) represent the vertices of the polyhedron, for the

following reason. Setting any variables z j in (11) to zero defines a face of the poly-
hedron. If these variables are the nonbasic variables of a basic feasible solution, that
face contains only a single point of the polyhedron, which is therefore a vertex. Con-
versely, consider a vertex of the polyhedron, given by a vector z in (11). The vertex is a
zero-dimensional face, defined by the binding inequalities that correspond to the zero
components of z. The positive components of z define linearly independent columns of
C , because otherwise it is easy to see that there would be additional positive solutions
for the same binding inequalities, so that the face would not be zero-dimensional. The
linearly independent columns can be extended with suitable additional columns C j

(for which z j = 0) to form a basis. In a degenerate basic feasible solution, some basic
variables are zero; the respective vertex can typically be represented by more than one
degenerate basis. If all basic variables are positive, the basis is called nondegenerate.

We use algorithms that move from one vertex of a polyhedron to another vertex
along an edge. This corresponds to a change of the basis β in (12) known as pivoting.
Thereby, a nonbasic variable z j for some j not in β enters and a basic variable zi for
some i in β leaves the set of basic variables. The pivot step is possible if and only if
the coefficient of z j in the i th row of the current tableau is nonzero, and is performed
by solving the i th equation for z j and then replacing z j by the resulting expression in
each of the remaining equations.

For a given entering variable z j , the leaving variable is chosen to preserve feasi-
bility of the basis. Let the components of C−1

β q be qi and of C−1
β C j be ci j , for i ∈ β.

Then the largest value of z j such that in (12) zβ = C−1
β q − C−1

β C j z j is nonnegative
is given by

min{ qi/ci j | i ∈ β, ci j > 0 }. (13)

This is called a minimum ratio test. If i in β achieves the minimum in (13), then zi

can be chosen as a leaving variable. After pivoting, the new basis is β ∪ { j} − {i}.
The minimum in (13) may be zero, if the current basis β is degenerate and qi = 0

for some i ∈ β with ci j > 0. Then the pivoting step changes the basis but not the
basic feasible solution z, so the corresponding vertex stays the same.

If the minimum in (13) is not unique, two (or more) variables can leave the basis,
but only one variable does. The other variable stays basic and becomes zero after the
pivoting step, so that the new basis is degenerate.
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The lexicographic method extends the minimum ratio test (13) in such a way that
the leaving variable is always unique, even in degenerate cases. The method simulates
an infinitesimal perturbation of the right-hand side q of the given linear system (11)
and works as follows. For any ε ≥ 0, consider the system

Cz = q + (ε1, . . . , εm)� (14)

which is equal to (11) for ε = 0 and which is a perturbed system for ε > 0. Let β be
a basis for this system with basic solution

zβ = C−1
β q + C−1

β · (ε1, . . . , εm)� = q + C−1
β · (ε1, . . . , εm)� (15)

and z j = 0 for j �∈ β. It is easy to see that zβ is positive for all sufficiently small ε if
and only if all rows of the matrix [q, C−1

β ] are lexico-positive, that is, the first nonzero
component of each row is positive. Then β is called a lexico-positive basis. This holds
in particular for q > 0 when β is a nondegenerate basis for the unperturbed system.
Because C−1

β has no zero row, any feasible basis for the perturbed system is non-
degenerate. In consequence, the leaving variable for the perturbed system is always
unique. It is determined by the lexico-minimum ratio test which is a straightforward
extension of (13) (see Chvátal 1983 or von Stengel 2002, p. 1741). Pivoting with the
lexico-minimum ratio test moves from one lexico-positive basis to another. It uses
only the entries of C−1

β and does not need an actual perturbation with positive ε.
Our algorithms use exact arithmetic with integers of arbitrary precision, which

avoids rounding errors of floating-point arithmetic. We use integer pivoting, which
is superior to using fractions of integers (rational arithmetic) because their cancel-
ation requires greatest common divisor computations which tend to take the bulk of
computation time. In integer pivoting, the dictionary (12) is stored with all numbers
multiplied by the determinant of Cβ , so that (by Cramer’s rule) these numbers are
integers if the entries of C are integers; the determinant is stored separately. Pivoting
is done by row operations on the system followed by a division by the old determinant,
which always produces integers (see Avis 2000, Sect. 7 or Azulay and Pique 2001).
In that way, the dictionary entries are kept from growing indefinitely.

6 Finding all extreme equilibria using vertex enumeration

We first describe a straightforward method to generate all extreme equilibria, which
define the input to the Clique Algorithm 2.

Algorithm 3 (Enumerating and matching vertices of both polytopes) Input: Bimatrix
game (A, B). Output: All extreme equilibria (x, y). Method: Enumerate all vertices
x of P − {0} and y of Q − {0} in (7), and output every completely labeled pair (x, y).

Enumerating all vertices of a polytope is an important, well-studied and difficult
problem in polyhedral computation. It is still unknown if it is possible to do this effi-
ciently in general, i.e., in time polynomial in both the input and output size. Two basic
ways to solve this problem are by the double description method (see Motzkin et al.
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1953; Fukuda and Prodon 1996) and by pivoting (see Chvátal 1983; Avis and Fukuda
1992). Both methods have their strengths and weaknesses, as is discussed in detail
in Avis et al. (1997). As either method may be used for Algorithm 3, we give a few
remarks here.

Double description methods tend to work well for highly degenerate polyhedra,
especially those with relatively few vertices. These polyhedra cause pivoting meth-
ods to behave very badly. A drawback is that a large amount of memory may be
required for intermediate steps, even when the output size is small. When the output
size is large, this can cause the program to run out of memory. We remark that the
polytopes P and Q may have as many as (m + n)�m/2� and (m + n)�n/2� vertices,
respectively.

General pivoting methods may use large amounts of memory also, but this problem
has been eliminated in the reverse search algorithm of Avis and Fukuda (1992). This
uses space proportional only to the input size, i.e. O(mn), and produces the output
as a stream that need not be saved, or can be saved off-line. These properties will be
exploited in the lrsNash Algorithm 4 to be presented later. The problems associated
with degenerate polyhedra have been overcome to some extent in the lexicographic
reverse search algorithm lrs (Avis 2000, 2006).

Consider the polytope P as defined in (7). It has a known vertex 0, which is the
unique point of P at which the linear objective function x �→ −1�x is maximized.
The simplex algorithm for maximizing this linear function computes from any ver-
tex of P a path of pivoting steps to 0. With a deterministic pivoting rule, that path
is unique. In lrs, that pivoting rule chooses as entering variable the variable with
the least index (i.e., smallest subscript) that improves the objective function, and the
leaving variable via the lexicographic rule described after (15). (In contrast, the earlier
reverse search by Avis and Fukuda (1992) used Bland’s least-index rule for the leaving
variable.)

The unique paths of simplex steps from the vertices of P to 0 define a tree with
root 0. For the polytope P resulting from the example (5), as in the top right picture
of Fig. 1, that tree is shown on the left in Fig. 4. The lrs algorithm explores this tree
by traversing the edges in the reverse direction using a depth-first search, which in the
example outputs the vertices in the order 0, a, c, b, d, e. For a given vertex u of P , the

P

b d

0

c ea

a

d
e

c

b

0

P

Fig. 4 Left Tree of simplex steps for maximizing −1�x on the polytope P for the example (5). Right The
corresponding reverse search tree
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children v of u in the tree are found by considering possible reverse pivots from u to
v and then checking if the simplex rule would actually move from v to u.

The simplex method moves from basis to basis, but several degenerate bases may
represent the same vertex, which should be output only once. For a given vertex, it is
straightforward to determine if a given basis β that represents it is lexicographically
smallest, that is, there is no basis β ′ representing the vertex with j ∈ β ′ −β and j < i
for all i ∈ β − β ′ (Avis 2000, Prop. 5.1). Moreover, that lexicographically smallest
basis is also lexico-positive (Avis 2000, Prop. 5.2). The vertex is only output when
this lexicographically smallest basis is encountered, so there are no duplicate vertices
in the output list.

When using lrs for enumerating the vertices x of P (and similarly of Q) in
Algorithm 3, the missing labels k of x can be identified from the positive slack vari-
ables (which are only visible as xk > 0 when k ∈ M , but not when k ∈ N ) via the
printslack option of lrs. This allows a straightforward implementation of Algo-
rithm 3 with lrs, which is used in the website of Savani (2005). For each vertex, its
set of labels is stored as a pattern of m + n bits. For each vertex x of P , the matching
vertices y of Q are searched linearly to find the equilibria (x, y). If P has p and Q
has q vertices, this matching process takes time O(pq), but it tends to be negligible
in comparison to enumerating the vertices in the first place, unless p and q are very
large. The space required is proportional to p + q, the output size of the two vertex
enumeration problems, both of which must be completely solved.

The following algorithm lrsNash has several advantages over Algorithm 3. Firstly
it requires that only one of the two vertex enumeration problems needs to be com-
pletely solved. Since P and Q need not be related in any way, one of them may well
be easier than the other in terms of vertex enumeration. Secondly, the new algorithm
requires only memory proportional to the input size O(mn) rather than the output
size O(p + q), which as we saw may be super-exponential in m and n. Thirdly, the
equilibria are produced as a stream while the vertex enumeration is being performed,
so useful output may be obtained even when a complete enumeration of all equilibria
is not tractable. Fourthly, it does not require a separate matching process.

The lrsNash Algorithm 4 enumerates the vertices x of only one polytope, say P .
The set K of labels of x defines a set L = (M ∪ N ) − K of labels missing from x
that a vertex y of Q must have in order to obtain an equilibrium (x, y). The labels in
L define the face Q(L) of Q according to (9). If the game is nondegenerate, then, by
Remark 1, |K | = m and |L| = n and Q(L) is either empty or a single vertex of Q. If
the game is degenerate, then it is possible that |L| < n so that Q(L) may be a polytope
of higher dimension, although typically still of much smaller dimension than Q. If
Q(L) is not empty, it has a vertex that can be used as a starting point for enumerating
its vertices with lrs.

Algorithm 4 (lrsNash) Input: Bimatrix game (A, B). Output: All extreme equilibria
(x, y). Method: For each vertex x of P − {0} and set L of labels missing from x ,
(a) determine whether Q(L) is empty or else find a vertex of Q(L), and then
(b) enumerate the vertices y of Q(L) and output (x, y).

The lrsNash Algorithm 4 is implemented as the method nash of the lrs pro-
gram (Avis 2006). We explain the implementation of part (a), where we assume some
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familiarity with linear programming terminology (see, for example, Chvátal 1983).
A standard way to solve (a) is the phase-1 simplex method. However, we use a spe-
cialized approach which is adapted to the use of lrs for enumerating the vertices of P
and is therefore very fast.

We distinguish two types of dictionaries. A full dictionary as in (12) is an equivalent
way of representing all linear constraints that define Q. The corresponding basis does
not have to be feasible. We identify the variables of the dictionary with the elements
of M ∪ N . A reduced dictionary represents Q(L), where all variables in L are fixed
at zero. If these are nonbasic variables, the corresponding columns are omitted (so
the reduced dictionary no longer represents the full information about Q). If a basic
variable belongs to L and is therefore fixed at zero, this means that the respective row
of the reduced dictionary has all coefficients and right-hand side zero; that row is then
omitted. (A zero row cannot appear in a full dictionary because the system has full
row rank.)

A vertex x of P defines a set L of missing labels. In order to create the reduced
dictionary that represents Q(L), we first create a full dictionary where as many ele-
ments of L as possible become nonbasic variables. This is done by starting with some
full dictionary for Q and pivoting iteratively a basic variable in L out of the basis
using any entering column that does not belong to L . The pivot element can be any
nonzero coefficient because the dictionary does not have to be feasible. Let D(L) be
any full dictionary so that the nonbasic variables contain a maximal subset of L (often
L itself).

When using lrs to enumerate the vertices x of P (with missing label set L), the
next vertex x ′ (with missing label set L ′) is often adjacent to x . In that case, the full
dictionary D(L ′) is usually quickly obtained from D(L). Moreover, lrs keeps a cache
for storing previous vertices x to speed up backtracking, and lrsNash also caches
the corresponding full dictionaries D(L). This creates the main speedup compared to
using a standard phase-1 simplex method for part (a) of the lrsNash Algorithm 4.

After obtaining a full dictionary D(L) (which is saved for finding the next dictio-
nary D(L ′) as described), it is converted to a reduced dictionary that represents Q(L)

by eliminating all columns that belong to L , and afterwards omitting any zero rows,
which may include further elements of L . Suppose some element of L is basic in the
reduced dictionary. Then in that row, all coefficients of nonbasic variables (none of
which belongs to L) are zero, because otherwise the basic variable could have been
pivoted out. Hence the basic variable is always equal to the constant in that row, which
is nonzero (otherwise the entire row would have been omitted), and the set Q(L) is
empty. Hence, we can assume that the reduced dictionary has no variable in L , so that
the set of its feasible solutions is Q(L).

The nondegenerate case is that |L| = n and the reduced dictionary has no nonbasic
columns at all. Then Q(L) is nonempty if and only if the basic solution is feasible,
which is then the unique vertex in Q(L). In general, the reduced dictionary may have
some nonbasic variables. If the basic solution is feasible, it defines a vertex of Q(L).
Otherwise, lrs finds such a vertex, or determines that the system is infeasible, with
the dual simplex method. This completes part (a). Because the reduced dictionary has
typically low dimension, this part is negligible compared to the enumeration of the

123



Enumeration of Nash equilibria 25

vertices of P . Finally, given a vertex of Q(L), a standard run of lrs solves part (b) of
Algorithm 4.

In the lrsNash Algorithm 4, the roles of P and Q can be exchanged, which we
call lrsNash�. The running time of lrs is determined by the number of feasible bases,
so enumerating the vertices of P is faster if P is the polytope with fewer bases. This
is usually, but not always, the polytope of smaller dimension, that is, for the player
with fewer strategies. A feature of lrs is that it can rapidly provide an unbiased esti-
mate of the number of feasible bases of a given polyhedron, and this can be used as a
preprocessing step to choose the polytope that plays the role of P in Algorithm 4.

In terms of running time, part (a) can typically be done quickly, as mentioned after
Algorithm 4. Part (b) is necessary because it produces the equilibria, so their number is
always relevant for the running time. If Q has much more feasible bases than P , only
a fraction of them are visited by lrsNash, which is then much better than Algorithm 3
because the overall running time only depends on the enumeration of the vertices of P .

A bimatrix game may have an exponential number of equilibria. For example,
the coordination game where each payoff matrix is the n × n identity matrix has
2n − 1 equilibria; n × n games with more than 2.4n equilibria are described by von
Stengel (1999). Hence, enumerating all equilibria cannot be done in a running time
that is polynomial in the input size. A running time that is polynomial in the output
size cannot be expected either, because this would give a polynomial-time algorithm
that decides if a game has a unique Nash equilibrium, which is an NP-hard problem
(Gilboa and Zemel 1989). Algorithm 4 is however space efficient if lrs is used to do the
vertex enumeration. It requires only O(mn) space to produce the possibly exponential
number of equilibria, output as a duplicate-free stream.

Algorithms 3 and 4 can be extended so that only equilibria with a given minimum
payoff, say u for player 1 and v for player 2, are enumerated. When enumerating all
vertices of polytope P , say, with lrs, this is done by terminating the reverse search
at vertices x where the objective function −1�x is less than −1/v. One way to do
this would be to add the additional constraint 1�x ≤ 1/v to the definition of P(K ).
However this would mean that additional vertices would now be produced which are
not vertices of P(K ). They would need to be skipped, and the added constraint would
create many unnecessary pivots. Fortunately the structure of the reverse search tree
can be exploited. From the description given earlier in this section, we see that the
value of the objective function is maximized at the root, and decreases monotonically
along any path in the tree. We simply truncate the tree whenever a pivot would lead to a
vertex that violates the constraint. A similar method is used in the vertex enumeration
of Q(L). Clearly the game may not have any equilibria with payoffs satisfying given
bounds, and deciding whether such equilibria exist is NP-complete (Gilboa and Zemel
1989).

7 The modified EEE algorithm

Audet et al. (2001) describe an algorithm they call EEE for “Enumeration of Extreme
Equilibria”. The algorithm initially traverses a binary search tree. Each node of the
search tree represents a pair of parameterized linear programs where certain pure
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strategies are constrained either to have probability zero or to be a best response. The
two children of a node are obtained by forcing either constraint for an additional pure
strategy. If the added constraint results in an infeasible system, the search terminates,
which hopefully happens as early as possible. If all pure strategies are either best
responses or have zero probability, the resulting solution is an extreme equilibrium.
In a degenerate game, an additional search is needed at this stage to find all extreme
equilibria.

We present two modifications of the original EEE algorithm by Audet et al. (2001).
The first was implemented as an extension of work by Rosenberg (2005), the second
is new and has not yet been implemented. Both algorithms are relatively similar and
differ from EEE in how they handle degenerate games. We will explain the algorithms
in geometric terms, rather than as finding alternate solutions to pairs of parameter-
ized linear programs, which clarifies their connection to Algorithms 3 and 4. We also
specify each algorithm concisely as a recursive depth-first search. Audet et al. (2001)
allow for other traversals of the search tree, even though their implementation is also
a depth-first search. Further implementation issues are discussed in Sect. 8.

The EEE algorithm uses the polyhedra P and Q in (4). (It could also be imple-
mented using the polytopes P and Q in (7).) In the course of the computation, certain
inequalities that define P and Q in (4) are forced to be binding, represented by sets of
labels K and L , which are subsets of M ∪ N . In analogy to (9), let

P(K ) = { (x, v) ∈ P | ∀i ∈ K ∩ M : xi = 0, ∀ j ∈ K ∩ N : (B�x) j = v },
Q(L) = { (y, u) ∈ Q | ∀i ∈ L ∩ M : (Ay)i = u, ∀ j ∈ L ∩ N : y j = 0 }.

(16)

A node of the search tree of the algorithm is defined by disjoint sets of labels K , L so
that the faces P(K ) and Q(L) are not empty. In addition to K and L , a node stores
witnesses x and y so that (x, v) is a vertex of P(K ) and (y, u) is a vertex of Q(L)

for suitable scalars v, u. These scalars are uniquely determined by x and y as the
best-response payoffs against x and y, respectively.

Suppose (K , L , x, y) represents a node of the search tree so that |K ∪ L| < m +n.
Then a new label h not in K ∪ L is selected and added to either K or L , which defines
the two children of that node. However, if the resulting face P(K ∪{h}) or Q(L ∪{h})
is empty, the respective child is omitted and the search tree pruned at that point.

The root of the search tree is given by K = L = ∅ and vertices (x, v) of P and
(y, u) of Q, respectively. The root has level zero, and the level of any other node is
one more than the level of its parent. (The level of a node is one less than the search
depth in Audet et al. (2001) who start with the root at depth one.) At level m + n,
the label sets K , L fulfill K ∪ L = M ∪ N , so that the witness pair (x, y) defines
an equilibrium. In a nondegenerate game, all equilibria are obtained in this way. This
is not the case in general, because P(K ) and Q(L) may not be singletons, and an
additional enumeration of vertices is required.

The first variant of the EEE algorithm is as follows. Its details, in particular the
selection of the added label h, are explained afterwards.
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Fig. 5 The recursive visit method used in the EEE-m Algorithm 5

Algorithm 5 (EEE-m—Modified EEE) Input: Bimatrix game (A, B). Output: All
extreme equilibria (x, y). Method: Implicit depth-first search on a binary tree by choos-
ing any vertices (x, v) of P and (y, u) of Q, and calling visit (∅,∅, x, y) with the
recursive visit method in Fig. 5.

Algorithm 5 is based on the visit method, which is a standard recursive depth-
first exploration of a search tree. A node (K , L , x, y) of the search tree corresponds
to a call to the visit method, and its children correspond to the two recursive calls
(if they take place) in lines 4 and 6, respectively. The level of the node is given by
|K ∪ L|. At level m + n, no further recursion takes place, and the method performs
the “else” part in lines 8–9.

Line 2 of the visit method asks for the selection of a label h, which is added to
K or L in lines 4 and 6, respectively. Following Audet et al. (2001), h is chosen as
follows. Consider the slack vectors s = 1v − B�x and r = 1u − Ay. First, suppose
that (x, y) is not an equilibrium of the game. Then there is a label h so that xhrh > 0
(that is, h ∈ M) or yhsh > 0 (that is, h ∈ N ), and h is chosen so that xhrh or yhsh

is maximal among these products, with smallest such h in case of ties. Suppose that
product is xhrh , so that adding h to K means forcing the equation xh = 0 when chang-
ing from the face P(K ) to its subface P(K ∪ {h}), and adding h to L means forcing
the equation rh = 0 when changing from the face Q(L) to its subface Q(L ∪ {h}).
With this heuristic choice of h, it is hoped to prune the search tree early when the
smaller face P(K ∪ {h}) or Q(L ∪ {h}) is found to be empty.

If (x, y) is already an equilibrium, then xhrh = 0 and yhsh = 0 for all h in M ∪ N .
Then any h not in K ∪ L is selected, and one can use the same witness for one of the
children in the search tree. For example, if xh = 0, then adding h to K means x is
already a witness for the face P(K ∪ {h}). However, then typically rh > 0 holds and
forcing rh = 0 requires a new witness y′ for the face Q(L ∪{h}) corresponding to the
other child, if it exists, and (x, y′) may no longer be an equilibrium. In short, during
the search it is irrelevant whether the witness pair (x, y) is an equilibrium.

Lines 3–4 and 5–6 of visit describe the branchings to the two children during
the search. In line 3 of visit, a vertex (x ′, v′) of P(K ∪ {h}) is found using the
previous vertex (x, v) of P(K ). This vertex (x, v) corresponds to a basic feasible
solution with a dictionary that represents P where all variables in K are nonbasic.
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By omitting these nonbasic columns altogether, we obtain a reduced dictionary that
represents P(K ), as explained after Algorithm 4. Adding the constraint xh = 0 (if
h ∈ M) or sh = 0 (if h ∈ N , with s = 1v − B�x) means driving that variable xh or sh

out of the basis, so that the variable becomes nonbasic and its column can be omitted
from the reduced dictionary so that it represents P(K ∪ {h}). If this is not possible,
the system is usually infeasible. The only exception is if the variable corresponds to
an all-zero row of the reduced dictionary, in which case that row is omitted. This
is analogous to the discussion following Algorithm 4. In line 5 of visit , a vertex
(y′, u′) of Q(L ∪ {h}) is found analogously.

As described so far, the search for a witness x ′ stops at the first vertex (x ′, v′) found
on the face P(K ∪ {h}), which suffices for the algorithm to work. Audet et al. (2001)
maximize an objective function subject to the constraints that define P(K ∪{h}). Their
objective function is x ′�(Ay)−v′ (using the other witness y), and similarly (x� B)y′−
u′ to find a vertex (y′, u′) of Q(L ∪ {h}) in line 5 of visit , in order to “guide” the
computation towards equilibria (x, y), where the sum x�(Ay) + (x� B)y − u − v

of these two objective functions is zero and therefore maximal. Section 8 reports on
computational experiments that compare this pair of objective functions by Audet et
al. (2001) with other possibilities.

In a nondegenerate game, no vertex of P has more than m labels, and no vertex
of Q has more than n labels. Hence, the condition |K ∪ L| = m + n that reaches
the final “else” part in lines 7–9 of visit (K , L , x, y) occurs only when |K | = m
and |L| = n. Then it suffices to output the unique equilibrium (x, y) at this terminal
node of the search tree. Indeed, then the enumerations in line 8 are trivial because then
P(K ) = {(x, v)} and Q(L) = {(y, u)}.

For degenerate games, we give an example that shows that we need the enumeration
in line 8 of visit . Consider the degenerate game (A, B) defined by

A =
[

2 5
2 5

]

, B =
[

3 4
5 4

]

. (17)

The polyhedra P and Q are shown in Fig. 6. The polyhedron P has three verti-
ces (x1, x2, v), namely (1, 0, 4) with label set {2, 4}, and (1/2, 1/2, 4) with label

P

v

x2

5
4
3

0

0 1

4

2

3

1 4

1

3Q

y4

u

10

0

2

5
2

Fig. 6 The polyhedra P and Q for the degenerate game (17), and its extreme equilibria
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set {3, 4}, and (0, 1, 5) with label set {1, 3}. The polyhedron Q has only two vertices
(y3, y4, v), namely (1, 0, 2) with label set {1, 2, 4}, and (0, 1, 5) with label set {1, 2, 3}.
The game has four extreme equilibria: The two pure equilibria ((1, 0), (0, 1)) and
((0, 1), (1, 0)) shown as pairs of triangles and pentagons, respectively, in Fig. 6, and
two equilibria ((1/2, 1/2), (1, 0)) and ((1/2, 1/2), (0, 1)) that use the mixed strategy
of player 1, indicated by the square in P paired with either square in Q. The maxi-
mal Nash subsets (see Prop. 4) of the game are conv {(1, 0), (1/2, 1/2)} × {(0, 1)},
{(1/2, 1/2)} × conv {(1, 0), (0, 1)}, and conv {(1/2, 1/2), (0, 1)} × {(1, 0)}.

The only two-element sets K so that P(K ) is not empty are {2, 4}, {3, 4}, and
{1, 3}, which define the three vertices of P(K ). Then the last level 4 of the search
tree is reached for L = {1, 3}, {1, 2}, and {2, 4}, respectively. For L = {1, 3} and
L = {2, 4}, the corresponding face Q(L) is a vertex; these two pairs (K , L) give the
pure-strategy equilibria. For K = {3, 4}, x = (1/2, 1/2), and L = {1, 2}, however,
Q(L) is a higher-dimensional face, an edge of Q. Only one of its vertices gives a
witness y, for example y = (1, 0). Hence, outputting only the equilibrium (x, y) at
this stage would miss the equilibrium (x, y′) for the other vertex y′ of Q(L), in the
example y′ = (0, 1), so the enumeration in line 8 of visit is needed.

The necessity of doing additional enumeration after reaching level m + n of the
search tree was already observed by Audet et al. (2001); we discuss their implemen-
tation of this stage in Sect. 8. The following proposition asserts that Algorithm 5 is
correct, which is slightly more involved than the original correctness proof of Audet
et al. (2001) for their EEE algorithm which does not test for the conditions |K | < m
and |L| < n in lines 3 and 5 of the visit method.

Proposition 5 Algorithm 5 enumerates all extreme Nash equilibria of the game.

Proof Let (x, y) be an extreme equilibrium, with vertices (x, v) of P and (y, u) of
Q. Let Kx and L y be the sets of labels of x and y, respectively. We claim that there
are disjoint sets K and L so that |K | = m, |L| = n, and K ⊆ Kx and L ⊆ L y (note
that K and L need not define bases that represent the vertices). Namely, the set M ∪ N
is the disjoint union of Kx − L y , Kx ∩ L y and L y − Kx . With k = |Kx − L y | and
l = |L y − Kx |, we have k ≤ m because |L y | ≥ n and l ≤ n because |Kx | ≥ m.
Partition Kx ∩ L y arbitrarily into sets K ′ and L ′ of sizes m − k and n − l, respectively.
Then the claim holds with K = (Kx − L y) ∪ K ′ and L = (L y − Kx ) ∪ L ′.

Then (x, v) and (y, u) are vertices of the faces P(K ) and Q(L), respectively, so
these two faces are nonempty, and the two vertices are found in line 8 of the visit
method in Fig. 5. ��

Because of the size constraints |K | < m and |L| < n in lines 3 and 5 of the
visit method in Fig. 5, the enumeration in line 8 is reached only for sets K , L with
|K | = m and |L| = n. This has the advantage that even when only one of the polyhe-
dra P or Q is simple and has no redundant inequalities due to weakly dominated or
payoff equivalent pure strategies, as in Fig. 6, the list of extreme equilibria is free of
duplicates:

Proposition 6 If P or Q are nondegenerate in the sense that no vertex of P has more
than m labels or no vertex of Q has more than n labels, then the extreme equilibria
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are enumerated without the need to check for duplicates in lines 8–9 of the visit
method.

Proof Suppose that P is nondegenerate as described; the case for Q is analogous.
Then P(K ) in line 8 of the visit method consists of a single vertex (x, v) because
|K | = m, so distinct sets K will produce distinct equilibria (x, y). ��

As the proof of Prop. 6 shows, an even weaker condition is that P(K ) (or cor-
respondingly Q(L)) is a singleton for any m-element set K encountered during the
search. A sufficient condition for this is that all m basic variables are positive in the
reduced dictionary that represents P(K ). As long as this holds for all bases found for
either polyhedron, one can omit the search for duplicates in line 9 of visit .

The tests for |K | < m and |L| < n in lines 3 and 5 of visit are new. In the
original EEE algorithm of Audet et al. (2001), larger sets K or L are considered until
K ∪ L = M ∪ N . This may lead to unnecessary duplicates: In the example (17), all
equilibria are found again with the sets K , L of labels K = {4}, L = {1, 2, 3}, and
K = {3}, L = {1, 2, 4}, as Fig. 6 shows.

We now give another version of EEE that handles the problem of degenerate games
in a different manner. In this version we allow the set K to exceed m elements.

Algorithm 6 (EEE-2—Modified EEE, version 2) Identical to Algorithm 5, except that
the visit method is replaced by the visit′ method in Fig. 7.

Note that if P is nondegenerate as in Prop. 6 (in particular if the game is nondegen-
erate), then the label set K cannot contain more than m labels and P(K ) is a singleton,
so that the EEE-2 Algorithm 6 behaves identically to the EEE-m Algorithm 5. In the
game (17), the two algorithms behave differently when A and B are interchanged,
that is, when the polyhedra in Fig. 6 switch roles; for simplicity, assume we switch
the names P and Q in that figure but keep the labels. Then the only cases where K in
line 8 of visit′ is the set of all labels of a vertex (of the right polyhedron in Fig. 6)
is for K = {1, 2, 3}, L = {4} and K = {1, 2, 4}, L = {3}. Then the enumeration
in line 9 of visit′ produces each extreme equilibrium exactly once. The following
proposition asserts that this is the case in general.

Proposition 7 Algorithm 6 enumerates all extreme Nash equilibria of the game with-
out duplicates.

Fig. 7 The recursive visit′ method used in Algorithm 6
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Proof Let (x, y) be an extreme equilibrium, so that (x, v) and (y, u) are vertices of P
and Q, respectively, with equilibrium payoffs v and u. Let K be the complete set of
labels of x , so that P(K ) = {(x, v)}. Now L = (M ∪ N )− K , so L is the set of labels
missing from x . All labels in L are labels of y because (x, y) is an equilibrium. There-
fore the face Q(L) of Q contains (y, u) and is not empty, and lines 7–9 of visit′
are reached with parameters K and L . Then the vertex (y, u) of Q(L) is found in
line 9, and (x, y) is output. Because K is the set of all labels of x , the enumeration
in lines 9 is performed at most once for each vertex x of P . Therefore, if the vertex
enumeration of Q(L) produces vertices without repetition, e.g. by using lrs, then the
equilibria (x, y) are also output without repetition. ��

Like the lrsNash Algorithm 4, the EEE-2 Algorithm 6 is space efficient if lrs is
used to enumerate vertices. The search tree has depth m + n, so an efficient imple-
mentation may need to cache up to this many dictionaries, each of size O(mn). The
vertex enumeration in line 9 requires an additional O(mn) space.

We conclude with an improvement of Algorithm 6 omitted initially for simplicity.
If {(x ′, v′)} = P(K ∪{h}) in lines 3–4 ofvisit′ , then there is no need for subsequent
branching in lines 1–6. We may add all labels of x ′ to K , set L to be the remaining
labels, set x = x ′ and go directly to line 8. Note that Q(L) may in this case be empty,
in which case no output is produced. If x ′ is a highly degenerate vertex, this eliminates
unnecessarily creating a large subtree at the current node. However, this shortcut to
the search may create duplicate outputs, because the complete label set for x ′ may
now be produced in different ways. It is therefore necessary to modify line 8 so that
vertex enumeration is only done once for each vertex x , which requires maintaining a
list of such vertices. This in turn means that the algorithm is no longer space efficient,
as this list may have exponential size.

Detecting the condition {(x ′, v′)} = P(K ∪ {h}) depends on the implementation.
If we have an explicit reduced dictionary that represents P(K ∪ {h}), this condition
happens when the dictionary has no cobasic columns.

Finally, the EEE-2 Algorithm 6 is not symmetric between the two players. Imple-
mentations and tests, which have yet to be done, should show which order of players
is best, and how the algorithm competes with the EEE-m Algorithm 5.

8 Implementation and computational experiments

In this section, we discuss aspects of the implementations of the EEE algorithm by
Audet et al. (2001) and Rosenberg (2005), and its modification in Algorithm 5. We
report on the empirical performance of these variants for some instances of games.

We also describe results of computational experiments that compare the EEE algo-
rithm (its original version EEE-o as well as EEE-m) with the lrsNash Algorithm 4. Both
algorithms have their strengths and weaknesses: EEE is not very suitable for degen-
erate games, already acknowledged as a possibility by Audet et al. (2001). However,
for larger nondegenerate games, in particular square games, it scales better than an
algorithm based on vertex enumeration such as lrsNash.

The implementation of the EEE algorithm by Audet et al. (2001) uses the com-
mercial CPLEX solver for linear programs. It uses floating-point arithmetic, which
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Fig. 8 Recursive multiway method that implements the vertex enumeration in line 8 of visit in Fig. 5
by Audet et al. (2001) and Rosenberg (2005)

may produce rounding errors. Equalities are assumed to hold whenever the compared
numbers differ by less than 10−5, so the computation is not exact. In contrast, Rosen-
berg (2005) has implemented the EEE algorithm as a stand-alone program in Java
with exact arithmetic and integer pivoting (see the end of Sect. 5).

Both Audet et al. (2001) and Rosenberg (2005) use multiway branching as an
implementation of the vertex enumeration in line 8 of the visit method in Fig. 5.
This is shown as the recursive method multiway in Fig. 8. The vectors s and r of
slack variables in line 2 are already stored in the reduced dictionaries that represent
P(K ) and Q(L), and are also available when using CPLEX. The possible indices h
in lines 3 and 6 are positive basic variables of these dictionaries, and therefore not
elements of K ∪ L . When all cobasic variables have been eliminated from the reduced
dictionary, the recursion is terminated immediately in the implementation by Rosen-
berg (2005) which has explicit access to the dictionary. This is slightly faster than the
method of Audet et al. (2001) which terminates after unsuccessfully trying to set all
positive basic variables to zero at that point.

The multiway branching in Fig. 8 is an extension of the binary branching in
visit. In effect, it is a brute-force and inefficient implementation of the vertex enu-
meration required in line 8 of visit. This is probably one of the reasons that EEE
performs poorly on degenerate games, as shown in the comparison of running times1

in Table 1. For payoff matrices with a density 0.2 of nonzero entries, EEE-o may
perform very badly on some instances. For EEE-m, the tests |K | < m and |L| < n
in lines 3 and 5 of visit improve this behavior, which is still much worse than that
of lrsNash for these game sizes. In a future implementation, line 8 of visit should
be performed by a call to lrs, which so far has not happened because of the different
programming languages (Java and C) used for the two programs. These also affect the
running times to some extent.

For random games with full payoff matrices, which are in most cases nondegen-
erate, the EEE algorithm behaves better and scales well, as shown in Table 2. The
original EEE algorithm EEE-o is then identical to EEE-m. The lrsNash Algorithm 4

1 Tests were run on a standard 32-bit processor with 1.2 GHz clockspeed, provided by the “Amazon Elastic
Compute Cloud” webservice, http://aws.amazon.com/.
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Table 1 Average running times in seconds for degenerate games obtained by sparse payoff matrices

Size 5 × 5 5 × 10 5 × 15 5 × 20 5 × 25 5 × 30 10 × 10 10 × 15

Sparse payoff matrices, nonzero with density 0.5

#NE 6.3 5.6 12.8 9.6 7.1 18.1 6.8 9.5

EEE-m 0.30 0.02 0.45 0.31 0.30 1.14 0.17 0.69

EEE-o 0.54 0.03 1.23 0.44 0.32 2.89 0.14 0.77

lrsNash 0.01 0.03 0.03 0.04 0.07 0.11 0.30 1.43

lrsNash� 0.01 0.04 0.24 1.08 3.43 8.47 0.31 5.01

Sparse payoff matrices, nonzero with density 0.2

#NE 13.3 38.3 27.7 36.1 51.9 35.0 334.6 1967.3

EEE-m 0.05 0.24 3.14 0.26 9.84 25.07 26.94 388.98

EEE-o 0.09 13.63 10.83 1.23 44.33 148.41 3,183.81 1,658.49

lrsNash 0.02 0.02 0.03 0.03 0.05 0.05 0.21 0.75

lrsNash� 0.01 0.04 0.11 0.32 1.43 3.44 0.25 1.75

Depending on the game size, around ten random games were tested for each size and density. #NE is the
average number of extreme Nash equilibria, EEE-o is the original EEE algorithm without the tests |K | < m

and |L| < n in lines 3 and 5 of the visit method in Fig. 5, and lrsNash� is the lrsNash Algorithm 4 with
P and Q interchanged

becomes inferior to EEE when each player has 15 or more strategies. For these games,
the algorithm works better on the polytope P with fewer vertices, which is here the
polytope of lower dimension. This is demonstrated by the entries for lrsNash�, which
uses the higher-dimensional polytope, for games of size 10 × n. For square games,
either polytope can be chosen, but the choice typically affects the running time; we
also tested sizes 15 × 15 and 20 × 20, and observed that the running time often differs
by a factor of two or more. Current computers are often dual- or quad-core with several
processors that can be used simultaneously. These can work on the same game with
different algorithms in parallel, canceling the other computations when the first one
finishes. This has been implemented for lrsNash and lrsNash�, and is available from
the lrs website (Avis 2006). The space efficiency of the EEE-m Algorithm 4 means
that there is little competition for memory or other resources, and the parallel version
indeed runs in the shorter of the two running times.

As mentioned in Sect. 7, Audet et al. (2001) consider linear programs parameterized
by x and y, with an objective function to find new vertices (x ′, v′) of P(K ∪ {h}) and
(y′, u′) of Q(L∪{h}) in lines 3 and 5, respectively, of thevisit method. Table 3 com-
pares various objective functions; the “guessing game” and “dollar game” are defined
in Rosenberg (2005, pp. 41–43). The first line in Table 3 gives the original objective
function. A motivation for that choice is that the sum of the objective functions for the
two polyhedra is indeed maximized at an equilibrium, when the two duality gaps of the
parameterized linear programs are both zero. The visit method would also run with
an objective function that finds the lowest point on the upper envelope (minimizing
v′ and u′, respectively) or when only looking for any feasible vertex with a constant
objective function. Indeed, this provides a slight speedup for games that have many
equilibria, as in the last column in Table 3. However, for games with fewer equilibria,
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Table 2 Average running times in seconds for nondegenerate games with random full matrices

Size 5 × 5 5 × 10 5 × 15 5 × 20 5 × 25 5 × 30

#NE 3.0 3.6 7.4 9.0 7.6 14.4

EEE-m 0.06 0.05 0.51 0.94 1.66 3.24

lrsNash 0.01 0.03 0.04 0.04 0.08 0.11

Size 10 × 10 10 × 15 10 × 20 10 × 25 10 × 30

#NE 11.2 20.0 30.0 31.6 34.5

EEE-m 1.18 1.68 5.00 10.19 21.79

lrsNash 0.35 1.38 3.20 5.24 9.75

lrsNash� 0.32 6.42 90.81 466.01 3079.38

Size 15 × 15 15 × 20 15 × 25 15 × 30

#NE 36.6 55.8 117.8 174.8

EEE-m 10.21 31.88 137.18 398.09

lrsNash 50.28 199.26 651.26 772.83

lrsNash� 42.20

Size 20 × 20 20 × 25 20 × 30

#NE 140.7 320.2 651.0

EEE-m 299.40 1,728.48 8,341.56

lrsNash 5,628.06 23,154.05 ∞
lrsNash� 4,836.70

Size 25 × 25 25 × 30

#NE 354.0 327

EEE-m 6,309.72 19,000.81

lrsNash ∞ ∞
Typically ten games were tested per size, fewer for large sizes. Tests showing ∞ were canceled because
they took longer than about a day

Table 3 Running times in seconds for various objective functions to determine the vertices (x ′, v′) in line 3
and (y′, u′) in line 5 of the visit method in Fig. 5

Objective function Objective function Random Guessing Dollar
for finding for finding (average) game game
(x ′, v′) ∈ P(K ∪ {h}) (y′, u′) ∈ Q(L ∪ {h}) 17 × 17 22 × 22 15 × 15

45.8 NE 3 NE 211 NE

Max x ′� Ay − v′ Max x� By′ − u′ 36.25 9.03 93.38

Max −v′ Max −u′ 70.00 37.48 52.53

0 0 84.80 40.23 72.30

Max x ′�(A + B)y − v′ Max x�(A + B)y′ − u′ 28.45 6.55 98.82

or random games, the original objective functions are better. Compared to that, the
last line in the figure shows even better objective functions x ′�(A + B)y − v′ and
x�(A + B)y′ − u′ which seem to guide the search towards vertex pairs with good
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payoffs for both players; maximizing the sum of these two functions also closes the
duality gaps. This last objective function is used in the computational experiments in
Tables 1 and 2.

9 Further work and open questions

The algorithms that we have described in Sect. 6 and Sect. 7 work for two-player
games in strategic form. In general, one may consider “constrained” bimatrix games
where the set of strategies of a player is not a simplex but a polytope defined by
more complex linear constraints. One such description is the “sequence form” that
allows an efficient representation of behavior strategies of a game in extensive form
(von Stengel 1996). An enumeration of equilibria based on this description should
be possible by extending the presented algorithms. Crucially, there is typically more
than one equality constraint that defines a player’s strategy space. In consequence (by
using linear programming duality), there will be more than one unbounded payoff
variable. This is one of the reasons why we have studied the EEE algorithm using
unbounded polyhedra and not polytopes. Equilibrium enumeration for constrained
bimatrix games has been studied by Audet et al. (2006, 2009) and is also a topic for
future work.

As the computational experiments show, the running times for equilibrium enu-
meration are exponential, so that the sizes of games that can be solved soon hit a limit.
An alternative to enumeration is the simpler problem of finding one Nash equilibrium.
This can addressed by the algorithm of Lemke and Howson (1964), which seems to be
efficient in practice. Apart from finding one equilibrium, the modeller is typically also
interested in its uniqueness. An algorithm that is not guaranteed to find all equilibria
can decide uniqueness only in the negative by finding a second equilibrium if there is
one. However, if many starting points always lead to the same equilibrium, this may
be considered sufficient reason to accept it as “the” equilibrium that players are likely
to play in practice. For this purpose, an algorithm with a large choice of starting points
is desirable, such as the algorithm by van den Elzen and Talman (1991).

Even if many starting points are attempted, the path-following methods by
Lemke and Howson (1964) and van den Elzen and Talman (1991) only find equilibria
of positive index (for a definition of the index see Shapley (1974) or, for example,
von Schemde and von Stengel 2008). Negatively indexed equilibria can be found as
soon as one has found two different positively index equilibria, by following the path
backwards from one such equilibrium with the starting point that led to the other equi-
librium. This may still fail to find all equilibria. At any rate, this approach has to our
knowledge not yet been implemented.

Another useful feature would be to output the index of an equilibrium component,
as additional information provided by the Clique Algorithm 2. This is nontrivial in
degenerate games. It would be nice to compute the index lexicographically, that is, by
means of symbolic, and not actual, perturbation techniques.

The Clique Algorithm 2 represents equilibrium components via their maximal Nash
subsets, as the convex hull of their extreme equilibria. For a highly degenerate game,
the definition by inequalities of the facets of P and Q that define the maximal Nash
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subset may be of use. This representation is immediate, but it is useful in order to
answer, for example, the query as to which component a given equilibrium belongs.

A shortcoming of many published algorithms for equilibrium computation is that
they have been implemented ad hoc, to demonstrate some computational experiments,
but not robustly for public use. The lrs program by Avis (2000, 2006) is under constant
development to be as useful as possible. We hope to make the algorithms presented in
this paper easily available and convenient to use for the community.
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