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This is a collection of ten invited articles on the computation of Nash equilibria in
finite games. Three (by Ruchira Datta, Jean-Jacques Herings and Ronald Peeters, and
Tim Roughgarden) are longer surveys, the others present new research. All contri-
butions attempt to make the material accessible and interesting to the non-specialist.
The collection reflects in equal measure the state of research, as well as providing an
exposition of the main ideas and questions of the field. The articles are also bridged
by a unity of ideas that appear in many places.

The topic of this collection is a computational problem: given a game in some finite
description, find its Nash equilibria; or, a more modest task: find one Nash equilib-
rium of the game. These questions pose highly interesting challenges for economics,
mathematics, and computer science.

For the applied economist, noncooperative games are a modeling tool, with the
Nash equilibrium as the central solution concept. Interpreting and discussing a Nash
equilibrium is essential for the model, but the equilibrium has to be found first, which
often takes a substantial amount of the analysis. A computer program for this analysis
should save time and allow for more detailed modeling.

Why should the applied economist, as a modeler and user of game theory, care
about algorithms? It seems easy just to convert the equilibrium problem to a suitable
optimization problem, run some mathematical software on it, and use the solution. The
problem is that such a “black box algorithm” is unlikely to work on all but the small-
est cases. Any algorithm that “scales” reasonably well in allowing for more detailed
games as input, and still finishes in reasonable time, must exploit the mathematical
structure of the problem.
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2 B. von Stengel

The mathematical structure of Nash equilibria is described and used in many of
the papers in this collection: polyhedral geometry for two-player games, polynomial
algebra for multi-player games, and the topology of the equilibrium correspondence
between games and mixed-strategy profiles that underlies homotopy and other algo-
rithms for finding equilibria.

Like many other topics in mathematical economics, equilibrium computation is a
source of beautiful mathematical problems. These problems deserve attention from
the perspective of good mathematical taste, and are most satisfactorily understood and
solved in that way.

For the computer scientist, equilibrium computation belongs to the booming field of
algorithmic game theory which, half a century after John von Neumann pioneered both
game theory and software-driven computing, brings these two areas back together. To
a large extent, algorithmic game theory is motivated by the advent of the internet as
the new computing environment. Game theory is the method of choice to study its
economic implications and decentralized growth and use.

As Christos Papadimitriou writes in his enthusiastic foreword to a recent textbook
on algorithmic game theory (Nisan, Roughgarden, Tardos, and Vazirani 2007), equi-
librium computation has been one of the earliest research goals of algorithmic game
theory. One of the most basic questions is: given a bimatrix game with integer payoffs,
find one Nash equilibrium of the game. In a spectacular sequence of papers (summa-
rized in Daskalakis, Goldberg, and Papadimitriou 2006, and Chen and Deng 2006), it
was recently shown that this problem is “PPAD-complete”, that is, in a certain sense
“as hard” as solving many other, seemingly harder, problems related to equilibria, for
example finding an approximate fixed point of a Brouwer function. In his contribution,
Roughgarden (2010) explains this result and many others.

We give a brief outline of the articles in alphabetical order of the authors.
In Avis et al. (2010), David Avis, Gabe Rosenberg, Rahul Savani, and Bernhard

von Stengel treat the problem of finding all equilibria of a two-player game in strategic
form. The presented methods have the potential to be extended to more general game
descriptions, for example games in extensive form. The paper explains two known
algorithms and some extensions, one of them based on vertex enumeration with
“lexicographic reverse search” (Avis 2006), the other the “enumeration of extreme
equilibria” by Audet, Hansen, Jaumard, and Savard (2001).

The basic “best response condition” for mixed-strategy equilibria due to Nash
(1951) states that a mixed strategy is a best response to the profile of the strategies of
the other players if and only if each pure strategy that is played with positive proba-
bility is a best response. The payoffs to the best-response pure strategies are maximal
and therefore equal to each other, which leads to equations and inequalities; these are
linear in a two-player game. The stage before solving these constraints is combina-
torial: what is the set of pure strategies that a player should mix? Avis et al. explain
their algorithms using the known “best response polyhedra” and their face structure,
and report on computational experiments.

An algorithm that only finds at least one equilibrium, not all of them, is much more
likely to finish in reasonable time for larger games than an algorithm that finds all
equilibria. The classic algorithm to find one equilibrium of a bimatrix game is due to
Lemke and Howson (1964). It is one of the methods compared by Anne Balthasar in
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Computation of Nash equilibria in finite games 3

Balthasar (2010). The Lemke–Howson algorithm has been the inspiration for many
other methods that follow a path of strategy profiles that are “almost” equilibria. The
algorithm is started by considering a pure strategy of one player, for definiteness say
row 1 of the row player, and the (generically unique) pure best response of the other
player. Unless this is already an equilibrium, it is not row 1 that is, in turn, a best
response, but some other row whose probability is now increased, until an additional
column becomes a best response, and is again increased; in this process, pure strat-
egies may also be omitted as best responses when they reach zero probability. This
continues until row 1 is no longer played or becomes a best response, resulting in an
equilibrium.

A more flexible algorithm due to van den Elzen and Talman (1991) has an arbitrary
mixed strategy pair as a starting point which is used throughout the computation for
reference. Balthasar observes that it is not identical to the Lemke–Howson method
when started from the same pure strategy pair. However, both algorithms are special
cases of the much more general Global Newton method due to Govindan and Wilson
(2003). Moreover, the latter generalizes the “tracing procedure” for games with any
number of players. In addition, despite its flexibility, there are games where certain
equilibria will not be found generically by the van den Elzen–Talman algorithm.

In her survey article (Datta 2010), Ruchira Datta explains computational methods
based on computer algebra that find Nash equilibria of a game with any finite num-
ber of players. Nash’s best-response condition imposes equality constraints on the
expected payoffs to a player for the pure strategies in his equilibrium support. If the
game has more than two players, multiple equations of this kind give rise to equations
with polynomials of arbitrarily high degree. Combined with the inequalities for the
unplayed strategies, a game defines a semi-algebraic set, defined by the solutions to
equations and inequalities between polynomials with rational coefficients. In an earlier
important paper, Datta (2003) has shown that any semi-algebraic set can be encoded
as the set of Nash equilibria of a suitable game. This illustrates the difficulty of the
problem of finding Nash equilibria, but also demonstrates that computer systems for
manipulating polynomial equations are the adequate tool for it.

Datta describes how to construct certain special games and explains how to find
all the complex roots of the corresponding polynomial systems, including all the
Nash equilibria. These special solutions can then be used with polyhedral homotopy
continuation to find all the complex roots of the polynomial systems for arbitrary
generic games. “Gröbner bases” are useful for solving these polynomial systems and
for obtaining geometric information about how the solution set varies with the payoff
functions. Datta takes the reader carefully through each step in this development, and
illustrates the use of existing computer algebra systems with specific examples.

In Govindan and Wilson (2010), Hari Govindan and Bob Wilson describe a decom-
position algorithm for finding an approximate equilibrium of an N -player game.
A central coordinator is introduced as an additional player to an N -player game,
who receives a mixed strategy from each player and suggests a new profile of strat-
egies back to them. An equilibrium is reached when the player’s responses agree
with the strategies proposed. The computational advantage of this decomposition is
that it replaces the multilateral interaction among the N players by N bilateral inter-
actions, one between each player and the coordinator. Two-player interactions are
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algorithmically much more amenable, because any path-following is along straight
lines, in discrete “pivoting” steps that jump from one end of a line segment to the
other.

Govindan and Wilson use an elegant method inspired by the triangulation of a cube
in arbitrary dimension due to Kuhn (1960). In turn, the triangulation itself is used to
triangulate a simplex, or any product of simplices such as the product of the players’
strategy sets. Based on this triangulation, an equilibrium strategy profile of the decom-
posed game is found for the desired accuracy. The path-following along simplices in the
triangulation is a variant of the algorithm by Lemke and Howson (1964) and its exten-
sion to more general linear complementarity problems (Lemke 1965; Eaves 1971).

Jean-Jacques Herings and Ronald Peeters give a survey of homotopy methods to
compute equilibria (Herings and Peeters 2010). The idea behind the homotopy prin-
ciple is that the given game that defines the equilibrium problem is transformed to
another “starting” game where an equilibrium is easily found. This starting game is
then continuously transformed into the original game while maintaining the equi-
librium. This equilibrium follows a path that ends at an equilibrium of the given
game. The fixed-point theorem of Browder (1960) asserts that this principle works.
Herings and Peeters explain carefully the mathematical assumptions and the unifying
view provided by the homotopy principle. They use this view to present algorithms
for bimatrix games and for games with any number of players, including their own
important method (Herings and Peeters 2001).

Ravi Kannan and Thorsten Theobald provide a very interesting hierarchy of bim-
atrix games (Kannan and Theobald 2010). It begins at zero-sum games, which are
easy to solve, and ends at general bimatrix games. In each hierarchy class, the payoff
matrix of one player can be generic, but the payoff matrix of the other player is related
to the first via the fixed rank of the sum of the two payoff matrices. This rank is zero
for zero-sum games, and maximal for general bimatrix games. Kannan and Theobald
show that for games with constant rank, an ε-approximate equilibrium can be found
in time that is polynomial in the size of the game and in 1/ε. Their paper raises also
many intriguing open problems related to this hierarchy of games.

Peter Bro Miltersen and Troels Bjerre Sørensen show how to compute a quasi-
perfect equilibrium of a two-player game in extensive form in Miltersen and Sørensen
(2010). Quasi-perfect equilibria are an attractive refinement concept because they are
sequential (Kreps and Wilson 1982) and normal-form perfect. For extensive games,
methods that use the strategic form are not suitable for larger games because a player
typically has exponentially many strategies in the size of the game. A method to com-
pute directly with the extensive game was suggested by Wilson (1972), and employed
by Koller and Megiddo (1992) in a polynomial-time algorithm that finds an equilib-
rium of a zero-sum extensive game. A better strategic description that has the same
size as the game tree had been found by Romanovskii (1962). However, this work was
overlooked in the English-speaking literature and rediscovered by von Stengel (1996)
as the “sequence form” of an extensive game. Miltersen and Sørensen adapt the algo-
rithm of Lemke (1965) to the sequence form with a symbolic perturbation that leads
to optimal behavior even off the equilibrium path. This is important, for example, for
applications in artificial intelligence where a poker playing program should exploit
mistakes of an opponent who does not play optimally.
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Tim Roughgarden’s survey (Roughgarden 2010) is directed at readers with a back-
ground in economics. Computational complexity deals with the intrinsic difficulty of
solving a computational problem. A main tool is that of a polynomial-time reduction
which allows to show that one problem is at least as hard as another one. This is
vividly and clearly explained in the article by means of examples from economics.
Roughgarden gives a nonstandard but accessible definition of the important complex-
ity class NP (which gives rise to the term “NP-complete”). Namely, problems in NP
are defined as search problems rather than mere decision problems: the computation is
meant to provide a solution to the problem (or state that none exists) rather than merely
say “yes” or “no” whether a solution exists. This is important for finding equilibria
which always exist, so that the decision problem is uninteresting.

In his very original and interesting survey, Roughgarden explains the role of equi-
librium computation in two complexity classes of search problems: finding a pure-
strategy equilibrium in a congestion game belongs to the class PLS for “polynomial
local search”, and finding a mixed equilibrium of a bimatrix game to the class PPAD
for “polynomial parity argument with direction” (an example of such a parity argument
is the Lemke–Howson algorithm, which was extended to N -player games by Wilson
1971). Moreover, both of these equilibrium problems are complete for the respective
class. The PPAD-completeness of finding an approximate Nash equilibrium of a three-
player game (Daskalakis et al. 2006) and even of a two-player game (Chen and Deng
2006) was an unexpected recent result that received much attention. Roughgarden’s
paper is a good entry point to that literature.

Eilon Solan and Nicolas Vieille (Solan and Vieille 2010) are concerned with the
computability of strategies in stochastic games. They extend work by Chatterjee,
Majumdar, and Henzinger (2008) who have shown that the value of zero-sum games
can be found in exponential time. The paper is a technical deconstruction of the proof
by Mertens and Neyman (1981) that shows that stochastic games have a value. It
shows that the ε-optimal strategy constructed in the proof of Mertens and Neyman
is computable. Solan and Vieille construct formulas that approximate the “Puiseux
series” representation of uniform strategies in discounted games by constructing the
leading exponent and leading coefficient of the Pusieux series. Their main algorithmic
tool is the theory of the reals, which is decidable. This article should stimulate further
interest in computational issues in the theory of stochastic games.

In Turocy (2010), Ted Turocy applies the concept of logit quantal response equi-
librium (McKelvey and Palfrey 1995) to games in extensive form. A logit quantal
response equilibrium is parameterized by a scalar precision parameter. Varying this
parameter defines a branch of the quantal response equilibrium correspondence. The
limit of any such branch, as the parameter tends to infinity, is a Nash equilibrium of
the game. Turocy shows that this can be used to compute a sequential equilibrium
(Kreps and Wilson 1982) of an extensive game. The computational performance is
documented by a number of examples. Quantal response equilibria have been used to
explain the behavior of subjects in experiments. The Gambit game-solving software
(McKelvey, McLennan, and Turocy 2008) was initiated by the late Richard McKelvey
and by Andy McLennan in order to find equilibria of games used in such experiments.
Ted Turocy is currently the main programmer and maintainer of Gambit. His article
is a most fitting theoretical contribution to the subject.
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6 B. von Stengel

A number of thanks and apologies are in order at the conclusion of this editorial
project. First, my apologies to those working in the field who have not been invited to
contribute a paper. Given the space restrictions, this was necessary to achieve a certain
breadth and variety of the contributions. I hope these colleagues will enjoy reading
the articles in this collection.

I thank Roko Aliprantis for inviting and trusting me to manage this project. The
authors have to be thanked for their outstanding cooperation and their patience. Early
contributors had to wait for more than a year before getting feedback on their revised
articles, and then responded gracefully and in time for the final deadline. I thank the
many unnamed referees for their detailed and helpful responses and comments, some
of them at very short notice. I would also like to take this opportunity to thank Bob
Wilson, who is not only a pioneer of auction theory and game theory but also of equi-
librium computation. Bob Wilson is a phenomenal supporter of young researchers
in their careers, including mine, and of many much younger authors of the articles
represented here.
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