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Abstract

The rank of a bimatrix gaméA,B) is the rank of the matribA + B. We give a
construction of rank-1 games with exponentially many egué, which answers an
open problem by Kannan and Theobald (2010).
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Finding a Nash equilibrium of a bimatrix game is a PPAD-costplproblem (Chen and
Deng, 2006). For that reason, classes of bimatrix gamesanhiash equilibrium can be
found more easily are of some interest. An equilibrium of @zam gaméA, B) where
A+ Bis the all-zero matrix can be found in polynomial time by sofya linear program.
As a generalization, Kannan and Theobald (2010) definedathieof a bimatrix game
(A,B) as the rank of the matriA + B, and give a polynomial-time algorithm to find an
approximate equilibrium of a game of fixed rank. They askeggi©Problem 9) if a rank-
1 game may possibly have only a polynomial number of Nashliegai This is not the
case, according to the following theorem.

Theorem 1 Let p> 2 and let (A, B) be the n x n bimatrix game with entries of A

2+ ifj>i
aj=4p?  ifj=i (1)
0 ifj <i

for 1<i,j<n,and B=A". Then A+ B is of rank 1, and (A,B) is a nondegenerate
bimatrix game with 2" — 1 many Nash equilibria.
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Proof. By (1), A+B = ap’ with the n components of the column vectoes and 3
defined bya; = p' andBj = 2p’ for 1 <i, j <n, soA+Bis of rank 1.

Let y be any mixed strategy of the column player and3éke the support of, that
is, S= {j | y; > 0}. Consider any rowand letT = {j € S| j > i}. Then, becausA is
upper triangular, the expected payoff agaynst row i is

(AY)i = aiyi+ Y aijy;j. 2)
jgr Vi

Suppose ¢ S. If T is empty, ther{Ay); = 0 < (Ay)1, otherwise let = minT and note that
for j € T we haveg;j = 2p'*1 < pMi+) < pi*l < &, so(Ay)i < (Ay):. Hence, no row
outsideSis a best response to Similary, because the game is symmetric, any column
that is a best response to a strat&gyf the row player belongs to the supporbofSo no
mixed strategy has more pure best responses than the stgzesopport, that is, the game
is nondegenerate (von Stengel, 2002). Moreovék, if) is a Nash equilibrium ofA, B),
thenx andy have equal supports.

For any nonempty subs8tof {1,...,n}, we construct a mixed strategywith sup-
portSso that(y,y) is a Nash equilibrium ofA, B). This implies that the game ha82 1
many Nash equilibria, one for each support SetThe equilibrium condition holds if
(Ay)i = ufor i € Swith equilibrium payoffu, because thefAy); < u for i ¢ Sas shown
above. We start witls = maxS, where(Ay)s = asys = U, by fixing u as some positive
constant (e.g.u = 1), which determinegs. Oncey; is known for alli € S(andy; =0
fori ¢ S, we scaley andu by multiplication with 1/ ¥i-syi so thaty becomes a mixed
strategy. Assume that SandT ={j € S| j > i} # 0 and assume thgt has been found
for all kin T so that(Ay)x = u for all kin T, which is true forT = {s}. Then, as shown
abovey jctajyj < Yjer @jYj = (Ay)r = ufort =minT, soy; is determined byAy); = u
in (2), andy; > 0. By induction, this determingg for all i in S, and after re-scaling gives
the desired equilibrium strategy ]

Adsul, Garg, Mehta, and Sohoni (2011) showed how to find irynarial time an
exact Nash equilibrium of a rank-1 game, which is of the fqWn—A+ aB’) with
suitable column vectors € R™andf € R". They proved that a mixed strategy peairy)
is a Nash equilibrium of this game if and only if for some shiéarealA the equation
x"a = A holds and(x,y) is a Nash equilibrium of the gam@, —A+1AB "), wherel
is the all-one vector; this equilibrium can be found as thieitsan to a linear program
parameterized by . Their algorithm uses binary search foicombined with solving the
parameterized LP.

The exponential number of Nash equilibria of the game in Té@ol shows that the
path that follows the solutions of the parameterized LP wahameteA has an exponen-
tial number of intersections with the hyperplane defineckby = A. Hence, that path
has exponentially many line segments. Murty (1980) dessridbparameterized LP with
such an exponentially long path of length Blis LP is of the form

maximizec'z subjecttoAz>b+1A, z>0 (3)

with A as in (1) withp = 1, and the vectors andb in R" given bycj = 4" and
bi = —2""' for 1 <i, j < n. The payoffs for the game in Theorem 1 have been inspired
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by Murty’s example, but are not systematically construdtedh it; at the point of this
writing, it is not even clear how to get a game with that manyildgria from Murty’s
result.

For specific instances of the game in Theorem 1 one can ctpes8 or p=4in
(1) and divide all payoffs by? (or let the rows and columns be numbered from 6ol
rather than 1 tm). In the construction of mixed strategiewith supportSdescribed in the
proof, starting withu = p® then gives integer values fgr for i € Swhich are afterwards
re-scaled. Verifying the equilibria of these games wasdioe the webpage of Savani
(2012).

The number of 2— 1 Nash equilibria of am x n bimatrix game is large, the same
as that of the coordination game where both players haveldrgity matrix (which has
maximal rank). Quint and Shubik (1997) even conjecturesitinbe the maximum possi-
ble number (always considering nondegenerate games)hughiue forn < 4 (Keiding,
1997; McLennan and Park, 1999). However, this conjecturenetuted by von Stengel
(1999) who constructed a>66 game with 75 equilibria, and more generally n games
with asymptotically more than.2" equilibria. Quint and Shubik (2002) showed that a
game(A,A) where both players have identical payoffs has at mBst 2 equilibria. A
symmetric game(A,A") of sizen x n, as considered in Theorem 1, has at mdst- 24
symmetric equilibria, because an equilibrium is uniquedyetmined by the pair of sup-
ports for the two strategies. However, the number of pogsibhsymmetric equilibria of
a symmetric game is not bounded bBYy-21, as the following simple argument based on
a standard symmetrization shows. Supp@s®) is ann x n bimatrix game with positive

0 A .
BT O)' Then for anypair

of equilibria(x,y), (X,y') of (A, B), one obtains an equilibriurt(x,¥), (¥,¥)) of (C,C")
wherex; X, y, andy’ are scaled versions &f X, y, andy’, respectively, so that the respec-

tive optimal payoffs ofAy andB' % coincide, and similarly those &' andAy. Then
(C,CT) is of size 21 x 2n and has more thaf2")? many equilibria, as claimed.

payoff matrices and more thaf! 2quilibria, and leC = (

Hence, it is an open question if there are nondegenearate games of rank 1 with
more than 2 many Nash equilibria.
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