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Rank-1 Games With Exponentially Many Nash
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Abstract

The rank of a bimatrix game(A,B) is the rank of the matrixA + B. We give a
construction of rank-1 games with exponentially many equilibria, which answers an
open problem by Kannan and Theobald (2010).
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Finding a Nash equilibrium of a bimatrix game is a PPAD-complete problem (Chen and
Deng, 2006). For that reason, classes of bimatrix games where a Nash equilibrium can be
found more easily are of some interest. An equilibrium of a zero-sum game(A,B) where
A+B is the all-zero matrix can be found in polynomial time by solving a linear program.
As a generalization, Kannan and Theobald (2010) defined therank of a bimatrix game
(A,B) as the rank of the matrixA+B, and give a polynomial-time algorithm to find an
approximate equilibrium of a game of fixed rank. They asked (Open Problem 9) if a rank-
1 game may possibly have only a polynomial number of Nash equilibria. This is not the
case, according to the following theorem.

Theorem 1 Let p > 2 and let (A,B) be the n×n bimatrix game with entries of A

ai j =











2pi+ j if j > i

p2i if j = i

0 if j < i

(1)

for 1 ≤ i, j ≤ n, and B = A⊤. Then A+B is of rank 1, and (A,B) is a nondegenerate
bimatrix game with 2n −1 many Nash equilibria.
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Proof. By (1), A + B = αβ⊤ with the n components of the column vectorsα and β
defined byαi = pi andβ j = 2p j for 1≤ i, j ≤ n, soA+B is of rank 1.

Let y be any mixed strategy of the column player and letS be the support ofy, that
is, S = { j | y j > 0}. Consider any rowi and letT = { j ∈ S | j > i}. Then, becauseA is
upper triangular, the expected payoff againsty in row i is

(Ay)i = aiiyi + ∑
j∈T

ai jy j . (2)

Supposei 6∈ S. If T is empty, then(Ay)i = 0< (Ay)1, otherwise lett = minT and note that
for j ∈ T we haveai j = 2pi+ j < p1+i+ j ≤ pt+ j ≤ at j, so(Ay)i < (Ay)t. Hence, no rowi
outsideS is a best response toy. Similary, because the game is symmetric, any column
that is a best response to a strategyx of the row player belongs to the support ofx. So no
mixed strategy has more pure best responses than the size of its support, that is, the game
is nondegenerate (von Stengel, 2002). Moreover, if(x,y) is a Nash equilibrium of(A,B),
thenx andy have equal supports.

For any nonempty subsetS of {1, . . . ,n}, we construct a mixed strategyy with sup-
portS so that(y,y) is a Nash equilibrium of(A,B). This implies that the game has 2n −1
many Nash equilibria, one for each support setS. The equilibrium condition holds if
(Ay)i = u for i ∈ S with equilibrium payoffu, because then(Ay)i < u for i 6∈ S as shown
above. We start withs = maxS, where(Ay)s = assys = u, by fixing u as some positive
constant (e.g.,u = 1), which determinesys. Onceyi is known for all i ∈ S (andyi = 0
for i 6∈ S), we scaley andu by multiplication with 1/∑i∈S yi so thaty becomes a mixed
strategy. Assume thati ∈ S andT = { j ∈ S | j > i} 6= /0 and assume thatyk has been found
for all k in T so that(Ay)k = u for all k in T , which is true forT = {s}. Then, as shown
above,∑ j∈T ai jy j < ∑ j∈T at jy j = (Ay)t = u for t =minT , soyi is determined by(Ay)i = u
in (2), andyi > 0. By induction, this determinesyi for all i in S, and after re-scaling gives
the desired equilibrium strategyy.

Adsul, Garg, Mehta, and Sohoni (2011) showed how to find in polynomial time an
exact Nash equilibrium of a rank-1 game, which is of the form(A,−A+ αβ⊤) with
suitable column vectorsα ∈R

m andβ ∈R
n. They proved that a mixed strategy pair(x,y)

is a Nash equilibrium of this game if and only if for some suitable realλ the equation
x⊤α = λ holds and(x,y) is a Nash equilibrium of the game(A,−A+1λβ⊤), where1
is the all-one vector; this equilibrium can be found as the solution to a linear program
parameterized byλ . Their algorithm uses binary search forλ combined with solving the
parameterized LP.

The exponential number of Nash equilibria of the game in Theorem 1 shows that the
path that follows the solutions of the parameterized LP withparameterλ has an exponen-
tial number of intersections with the hyperplane defined byx⊤α = λ . Hence, that path
has exponentially many line segments. Murty (1980) describes a parameterized LP with
such an exponentially long path of length 2n. His LP is of the form

maximizec⊤z subject toAz ≥ b+1λ , z ≥ 0 (3)

with A as in (1) with p = 1, and the vectorsc and b in R
n given by c j = 4n− j and

bi = −2n−i for 1≤ i, j ≤ n. The payoffs for the game in Theorem 1 have been inspired
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by Murty’s example, but are not systematically constructedfrom it; at the point of this
writing, it is not even clear how to get a game with that many equilibria from Murty’s
result.

For specific instances of the game in Theorem 1 one can choosep = 3 or p = 4 in
(1) and divide all payoffs byp2 (or let the rows and columns be numbered from 0 ton−1
rather than 1 ton). In the construction of mixed strategiesy with supportS described in the
proof, starting withu = ps then gives integer values foryi for i ∈ S which are afterwards
re-scaled. Verifying the equilibria of these games was aided by the webpage of Savani
(2012).

The number of 2n −1 Nash equilibria of ann× n bimatrix game is large, the same
as that of the coordination game where both players have the identity matrix (which has
maximal rank). Quint and Shubik (1997) even conjectured this to be the maximum possi-
ble number (always considering nondegenerate games), which is true forn ≤ 4 (Keiding,
1997; McLennan and Park, 1999). However, this conjecture was refuted by von Stengel
(1999) who constructed a 6×6 game with 75 equilibria, and more generallyn×n games
with asymptotically more than 2.4n equilibria. Quint and Shubik (2002) showed that a
game(A,A) where both players have identical payoffs has at most 2n −1 equilibria. A
symmetric game(A,A⊤) of sizen× n, as considered in Theorem 1, has at most 2n −1
symmetric equilibria, because an equilibrium is uniquely determined by the pair of sup-
ports for the two strategies. However, the number of possibly nonsymmetric equilibria of
a symmetric game is not bounded by 2n −1, as the following simple argument based on
a standard symmetrization shows. Suppose(A,B) is ann×n bimatrix game with positive

payoff matrices and more than 2n equilibria, and letC =

(

0 A
B⊤ 0

)

. Then for anypair

of equilibria(x,y), (x′,y′) of (A,B), one obtains an equilibrium((x̂, ŷ′),(x̂′, ŷ)) of (C,C⊤)
where ˆx, x̂′, ŷ, and ˆy′ are scaled versions ofx, x′, y, andy′, respectively, so that the respec-
tive optimal payoffs ofAŷ andB⊤x̂′ coincide, and similarly those ofB⊤x̂ andAŷ′. Then
(C,C⊤) is of size 2n×2n and has more than(2n)2 many equilibria, as claimed.

Hence, it is an open question if there are nondegeneraten×n games of rank 1 with
more than 2n many Nash equilibria.
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