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Abstract. This paper presents a new lower bound of 2.414d/
√

d on the maximal number
of Nash equilibria ind × d bimatrix games, a central concept in game theory. The proof
uses an equivalent formulation of the problem in terms of pairs of polytopes with 2d facets
in d-space. It refutes a recent conjecture that 2d−1 is an upper bound, which was proved for
d ≤ 4. The first counterexample is a 6×6 game with 75 equilibria. The cased = 5 remains
open. The result carries the lower bound closer to the previously known upper bound of
2.6d/
√

d.

1. Introduction

Consider a polytopeP in dimensiond with 2d facets which is simple, that is, each vertex
belongs to exactlyd facets ofP. Two verticesx andy of P form acomplementary pair
(x, y) if every facet ofP is incident withx or y. The d-cube has 2d complementary
vertex pairs. Is this the maximal number among the simpled-polytopes with 2d facets?
This fairly natural question seems to be open.

Here, we do not consider this problem but the following variation. Consider two simple
d-polytopesP andQ, each with 2d facets labeled 1, . . . ,2d. A vertex of a polytope has
the labels of the facets it lies on. A vertex pair(x, y) of (P, Q) (which is a vertex of the
product polytopeP× Q) is calledcomplementaryif every label 1, . . . ,2d appears as a
label of x or y. If P andQ are identical and identically labeled, then this is the above
single-polytope problem. IfP and Q are equal to thed-cube and identically labeled,
then(P, Q) has 2d ordered pairs of vertices that are complementary.

However, this is not the maximal number. We will show that ifP andQ are equal to
the polar of thed-dimensional cyclic polytope and the labels ofQ are permuted relative
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to the labels ofP in a certain way, then(P, Q) has2((1+√2)d/
√

d) complementary
vertex pairs, where 1+ √2 ≈ 2.414. Polytopes in dimensiond with 2d facets have at
mostO(2.6d/

√
d) vertices, according to the Upper Bound Theorem for polytopes [15].

This is also the maximum number of complementary pairs since every vertex belongs to
at most one such pair. Hence, there is still a gap for the maximum number, but the new
lower bound of 2.414d/

√
d offers a substantial improvement over the previously known

bound of 2d.
The problem of complementary pairs for two polytopes originates fromgame theory

in the following form: What is the maximal number ofNash equilibriaof a nondegen-
erated × d bimatrix game? A bimatrix game is a game for two players given by two
(not necessarily square) matrices of equal dimension. The matrix entries represent the
players’ payoffs if player 1 chooses a row and player 2 a column as hisstrategy. A
(Nash) equilibrium [19] is a pair ofrandomizedstrategies, one for each player, that are
payoff-maximizing against each other. For each player, the upper envelope of his ex-
pected payoffs for his own strategies (against the randomized strategy of his opponent)
defines a polyhedron [27], [8], [10]. After suitable projective transformation, this is a
polytope, which is simple if the game is nondegenerate. For the resulting two polytopes,
a complementary vertex pair corresponds to an equilibrium of the game.

In this context, thed-cubes arise if each player’s payoff matrix is the identity matrix.
Quint and Shubik [20] conjectured that these are thed × d games with a maximal
number of equilibria. We refute this conjecture ford ≥ 6 using the polytope approach.
The Quint–Shubik conjecture follows ford ≤ 3 from the Upper Bound Theorem. This
has been shown ford = 4 in [7] and [14]. The cased = 5 is open. The single-polytope
problem has no game-theoretic interpretation, not even for symmetric games, since the
construction of the two polytopes (see Proposition 2.1 below) differs for the two players.

The Nash equilibrium is the central solution concept for noncooperative games [24].
Algorithms for enumerating equilibria are useful when analyzing such games. The fastest
known algorithms [27], [8], [10] use vertex enumeration for polytopes, and apply even
to degenerate games [29], [6]. In the games we construct here, a large number of vertices
define equilibria, which shows that these algorithms cannot be substantially improved.
Other algorithms for finding equilibria are surveyed in [11] and [26]. Bounds and distri-
butions for certain kinds of equilibria are considered in [23], [12], and [13].

The correspondence between polytope pairs and equilibria of bimatrix games is ex-
plained in Section 2 (for further exposition see [25] and [26]). The construction based
on cyclic polytopes is shown in Section 3. An asymptotic expression for the number of
complementary vertex pairs in this class of examples is derived in Section 4.

2. Game Equilibria and Polytopes

We use the following notation. The transpose of a matrixB is B>. All vectors are column
vectors. The zero vector is0, the vector of all ones is1, their dimension depending on
the context. Inequalities likex ≥ 0 between two vectors hold for all components. The
n× n identity matrix isIn.

Let (A, B) be a bimatrix game, whereA and B arem× n matrices of payoffs to
player 1 and player 2, respectively. The rows are the pure strategies of player 1 and
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the columns are the pure strategies of player 2. Amixed strategȳx for player 1 (orȳ
for player 2) is a probability distribution on rows (resp. columns), written as a vector
of probabilities. Anequilibriumof the game is a pair(x̄, ȳ) of mixed strategies so that
x̄>Aȳ ≥ x>Aȳ andx̄>Bȳ ≥ x̄>By for all other mixed strategiesx andy, respectively.

In equilibrium, player 1 (and similarly player 2) maximizes his expected payoffx̄>Aȳ
againstȳ. Equivalently [19], only those rowsi that havemaximumpayoff u can have
positive probabilitȳxi . This combinatorial condition can be expressed using the following
polyhedra. Let

P̄ = {(x̄, v) ∈ Rm × R | x̄ ≥ 0, B> x̄ ≤ 1v, 1> x̄ = 1},
Q̄ = {(ȳ,u) ∈ Rn × R | Aȳ ≤ 1u, ȳ ≥ 0, 1> ȳ = 1}. (2.1)

In Q̄, for example, the smallest value foru given ȳ defines the upper envelope of
the expected payoffs for all pure strategies of player 1, given by the rows ofAȳ. In
equilibrium, only optimal pure strategiesi may have positive probability, so that either
the i th inequality in Aȳ ≤ 1u in the definition ofQ̄ is binding (i is optimal), or the
i th inequality inx̄ ≥ 0 in the definition ofP̄ is binding (̄xi = 0), or both. Similarly, a
pure strategyj of player 2 is optimal or not played, represented by thej th inequality in
B> x̄ ≤ 1v or in ȳ ≥ 0 in the definition ofP̄ or Q̄ that holds as an equality.

For identifying equilibria, it is therefore useful to consider the pure strategies of the
two players aslabels1, . . . ,m+n numbering them+n inequalities in the definitions of
P̄ andQ̄ in (2.1). The firstm of these labels represent the pure strategies of player 1, the
secondn those of player 2. Then an equilibrium is a pair(x̄, ȳ) so that(x̄, v) ∈ P̄ and
(ȳ,u) ∈ Q̄ for suitable payoffsv andu, and for each label 1, . . . ,m+n the corresponding
inequality in P̄ or in Q̄ is binding.

The polyhedra in (2.1) can be simplified by normalizing the payoffs to one and
replacing probabilities by arbitrary nonnegative numbers. Let

P = {x ∈ Rm | x ≥ 0, B>x ≤ 1},
Q = {y ∈ Rn | Ay≤ 1, y ≥ 0}. (2.2)

Then

P̄→ P, (x̄, v) 7→ x̄/v,

Q̄→ Q, (ȳ,u) 7→ ȳ/u
(2.3)

are projective transformations [30] if the payoffsv andu are always positive. For that
purpose, we assume

A andB> are nonnegative and have no zero column. (2.4)

This assumption can be made without loss of generality since a constant can be added to
all payoffs without changing the game in a material way. We could simply assume thatA
andB are positive but want to admit examples likeA = B = In (if m= n) where some
payoffs are zero. By (2.4),P andQ are polytopes (bounded polyhedra). The projective
transformations (2.3) are one-to-one correspondences betweenP̄ and P − {0} and Q̄
andQ− {0}, respectively, that preserve binding inequalities (for visualizations see [25]
and [26]). The extra vertex0 of P andQ arises as projection “from infinity.”
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A label of a point inP or Q is a number in 1, . . . ,m+ n so that the corresponding
inequality in (2.2) is binding. A pair(x, y) of points inP× Q is calledcomplementary
if every label 1, . . . ,m+ n appears as a label ofx or of y. With the exception of(0,0),
complementary pairs define the equilibria of the bimatrix game(A, B) by renormalizing
x andy to be vectors of probabilities.

Any complementary pair is the convex combination ofextremecomplementary pairs
(x, y)wherex is a vertex ofP andy is a vertex ofQ [10], [29], [6], [26]. We consider only
nondegenerate(or “generic”) games where only pairs of vertices can be complementary.
Otherwise, the game may have infinitely many equilibria (as convex combinations of
extreme equilibria). Furthermore, even the number of extreme equilibria may trivially
be very large, for example if all entries ofB are identical (so all vertices ofP except0
have all but one label) andQ is a polytope with a maximum number of vertices.

A game is called nondegenerate if, against every mixed strategyz of a player, there
are at most|{i | zi > 0}| pure strategies of the opponent that are optimal. This means that
every point inP has at mostm labels and every point inQ has at mostn labels. It is easy to
see that this is equivalent to the following [26]: A binding inequality forP or Q defines
either a facet of that polytope or the empty set, but no other lower-dimensional face;
andP andQ are simple polytopes. Inequalities that are never binding representstrictly
dominatedstrategies [24] which are never played in equilibrium, so they can be omitted
from the game. Hence, we assume thatP andQ in (2.2) are simple polytopes with facets
labeled 1, . . . ,m+ n. For complementary vertex pairs(x, y), only the combinatorial
structure of these polytopes matters. The special structure of the firstm inequalities
x ≥ 0 of P and of the secondn inequalitiesy ≥ 0 of Q is not a restriction, since this
can be achieved by a suitable affine transformation for each polytope, as follows.

Proposition 2.1. Let P′ be a simple m-polytope and let Q′ be a simple n-polytope,
both with m+ n labeled facets, which have at least one complementary pair(x′, y′)
of vertices. Then there are m× n matrices A and B defining P and Q in(2.2), a
permutation of the labels1, . . . ,m+n of P′ and Q′ yielding the labels of P and Q, and
invertible affine transformations from P′ to P and from Q′ to Q that map(x′, y′) to(0,0).
Furthermore, every complementary vertex pair of(P′, Q′) except(x′, y′) represents a
Nash equilibrium of the bimatrix game(A, B).

Proof. Permute the labels 1, . . . ,m+ n in the same way forP′ and Q′ such thatx′

has labels 1, . . . ,m and y′ has labelsm + 1, . . . ,m + n. This does not change the
complementary pairs of(P′, Q′). Let

P′ = {z ∈ Rm | Cz≤ p, Dz≤ q },

whereCz ≤ p represents them inequalities for the facets 1, . . . ,m and Dz ≤ q the
remainingn inequalities. For the vertexx′, we haveCx′ = p and Dx′ < q since
P′ is simple. Them binding inequalities forx′ are linearly independent sincex′ is a
vertex, soC is invertible andz 7→ x = −Cz+ p is an affine transformation with inverse
z= −C−1(x−p). Let P = {x ∈ Rm | −C−1(x−p) ∈ P′}. Then, withr = q−DC−1 p,

P = {x ∈ Rm | −x ≤ 0, −DC−1x ≤ r }.
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Corresponding points ofP and P′ have the same labels. Since the vertex0 of P cor-
responds tox′ in P′, 0 < r . Thus, thej th row of−DC−1x ≤ r can be normalized by
multiplication with the scalar 1/r j , so we can assumer = 1. Then P is defined as in
(2.2) with then × m transposed payoff matrixB> = −DC−1. Similarly, we can find
anm× n matrix A so thatQ in (2.2) is an affine transform ofQ′. The complementary
vertex pairs of(P′, Q′) except(x′, y′) correspond to the Nash equilibria of(A, B) by
construction. If desired, a constant can be to the entries ofA andB to obtain (2.4), which
does not change the combinatorial structure ofP andQ.

PolytopesP′ and Q′ with general labeling may have no complementary pairs at
all, so this case is explicitly excluded in Proposition 2.1. Interestingly, the number of
complementary pairs of(P, Q) in Proposition 2.1 is always even, since the algorithm
by Lemke and Howson [9], [21], [28] connects complementary pairs inP× Q by paths
where a given label is missing. It computes one Nash equilibrium of the game when
started from(0,0).

3. Cyclic Polytopes and a Lower Bound

We specialize the problem of finding nondegeneratem× n games with a large number
of equilibria to square games wherem = n = d. Then (2.2) defines two simpled-
polytopesP andQ with 2d facets. For thed×d game withA = B = Id, both polytopes
P andQ are equal to thed-cube [0,1]d which has 2d vertices, each of which is part of a
complementary pair. The Quint–Shubik conjecture [20] states that this is the maximum
number.

We refute this conjecture ford ≥ 6. Any counterexample yields a counterexample
in higher dimensions, as follows. If the polytope pair(P, Q) in dimensiond has E
complementary pairs, then(P′, Q′) with P′ = P × [0,1] and Q′ = Q × [0,1] is a
polytope pair in dimensiond + 1 with 2E complementary pairs. Namely,

P′ = {(x, xd+1) ∈ Rd × R | x ≥ 0, xd+1 ≥ 0, B>x ≤ 1, xd+1 ≤ 1},
Q′ = {(y, yd+1) ∈ Rd × R | Ay≤ 1, yd+1 ≤ 1, y ≥ 0, yd+1 ≥ 0}, (3.1)

so that any complementary vertex pair(x, y) of (P, Q) yields the two complementary
pairs((x,0), (y,0)) and((x,1), (y,1)) of (P′, Q′).

Our counterexamples are based on the polars of cyclic polytopes, which have a max-
imum number of vertices. Thepolar [30] of a polytopeP that is the convex hull of the
d-vectorsc1, . . . , cN is given by

P1 = {x ∈ Rd | c>i x ≤ 1, 1≤ i ≤ N}, (3.2)

providedP (and then alsoP1) has0 in its interior, which can always be achieved by
translatingP. Any face ofP1 of dimensiond − k is defined byk binding inequalities
in (3.2), and corresponds to a face of dimensionk− 1 of P, given by the convex hull of
the correspondingk vertices ofP.

A cyclic polytope Cd(N) [3], [30] in dimensiond with N vertices is defined as
the convex hull of anyN points on themoment curve{µ(t) | t ∈ R} in Rd, µ(t) =
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(t, t2, . . . , td)>. Any d + 1 points on this curve are affinely independent, soCd(N) is
simplicial (no facet contains more thand vertices). The particular choice of the points
µ(t1), . . . , µ(tN) on the moment curve does not affect the combinatorial structure of
Cd(N). Assumet1 < · · · < tN . A set S of d vertices corresponds to a 0–1 string
s = s1s2 · · · sN with si = 1 if µ(ti ) ∈ S and si = 0 otherwise. The hyperplaneH
through the points inS defines a facet ofCd(N) if and only if the strings fulfills the
Gale evennesscondition [3], that is, it contains no substringsi · · · sj = 01· · ·10 with an
odd numberi − j − 1 of 1’s (like 01110). Otherwise, the two verticesµ(ti ) andµ(tj )

would be on opposite sides ofH , since the moment curve changes from one side ofH
to the other at the pointsµ(ti ), i ∈ S. The Gale evenness condition is symmetric with
respect to a cyclic shift of the strings if d is even.

The number8(d, N) of facets ofCd(N) is the number of the 0–1 stringss fulfilling
the Gale evenness condition. Ifd is even,d = 2l , then eithers starts and ends with an
even number of 1’s, and is composed ofl substrings 11 andN − d 0’s, or s is such a
string withl − 1 substrings 11 and an additional 1 put at each end. Hence,

8(2l , N) =
(

N − l

l

)
+
(

N − l − 1

l − 1

)
= N

l

(
N − l − 1

l − 1

)
. (3.3)

Similarly, one can show

8(2l + 1, N) = 2

(
N − l − 1

l

)
.

No d-polytope with N vertices has more facets than the cyclic polytopeCd(N),
according to the Upper Bound Theorem for polytopes [15], [18]. Applied to the po-
lars, this implies that nod-polytope with N facets has more than8(d, N) vertices.
Hence, the polytopesP and Q in (2.2) have at most8(m,m+ n) and8(n,m+ n)
vertices, respectively. The bound is stricter for the polytope of smaller dimension since
8(d, N) < 8(d + 1, N) if d < N/2. This implies the following bound on the number
of equilibria [7]:

Proposition 3.1. A nondegenerate m×n bimatrix game, m≤ n, has at most8(m,m+
n)− 1 Nash equilibria.

For m = n, 8(n,2n) grows asymptotically fromn to n + 1 by an average factor
of
√

27/4 = 2.598..., much faster than 2n. We consider more precise asymptotics in
Section 4.

In our construction, we letP = Q = Cd(2d)1, which are simple polytopes since
Cd(2d) is simplicial. We consider onlyevendimensionsd. In odd dimension, the poly-
topesP′ andQ′ in (3.1) constructed fromP andQ in the next lower even dimensiond
have a larger number of complementary vertex pairs than those based on the cyclic
polytopes in dimensiond + 1.

So, in the following, observe thatd = 2l is even, there areN = 2d = 4l points on the
moment curve, whose convex hull definesCd(N), and which, after translation so that0
is in the interior of that polytope, represent the normal vectors of thefacetsof its polar
Cd(N)1 as in (3.2), which have to be suitably labeled. Furthermore, the facets ofCd(N)
define the vertices ofP andQ, among which we look for complementary pairs.
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It suffices to look at the representation of these vertices ofP and Q, the facets of
Cd(N), by 0–1 stringss = s1s2 · · · sN , for examples = 01101100 ifd = 4, N = 8.
These strings arebalanced, that is, contain the same number of 0’s and 1’s, and fulfill
the Gale evenness condition. We can assume that the labeling of theN facets ofP is
in the order of the positions in this string. The labeling of the facets ofQ is given by
a certainpermutationν of {1, . . . , N}, such thats defining a vertex ofP is part of a
complementary pair if and only if thecomplementarypermuted string

s̄ν := s̄ν(1)s̄ν(2) · · · s̄ν(N)
defines a vertex ofQ, that is, fulfills the Gale evenness condition, where0̄ = 1 and
1̄= 0. For example, suppose thatν is the identity permutation. Then fors= 01101100,
s̄ν = 10010011 which does not fulfill Gale evenness, whereass̄ν does fors= 00011110.
For these two stringss, the opposite holds when considering the permutation

ν(i ) =
{

i − 1 if i is even,
i + 1 if i is odd,

1≤ i ≤ N. (3.4)

With the identity permutationν, the polytopesP and Q do not have more than 2d

complementary vertex pairs, since only the stringss that are composed of substrings 00
and 11, except at the ends, have the property that boths and s̄ν fulfill Gale evenness.
However, the permutationν in (3.4) leads to a number of complementary vertex pairs
that exceeds 2d for all evend ≥ 6.

Proposition 3.2. Let S(l ) be the set of balanced0–1strings of length4l composed of
the substrings00, 11,and0110.Let s be any balanced0–1string of length N= 2d,
and let d= 2l . Then for the permutationν in (3.4), s ands̄ν fulfill the Gale evenness
condition if and only if s∈ S(l ) or s= 10s′01 for some s′ ∈ S(l − 1).

Proof. Clearly, any strings as described fulfills the Gale evenness condition. The
substrings 00, 11, and 0110 ins are complemented to 11, 00, and 1001, respectively, and
permuted byν to substrings 11, 00, and 0110, respectively, ins̄ν . Similarly, an initial or
terminal substring 10 or 01 is left as it is, sos̄ν also fulfills Gale evenness. Conversely,
supposes is not of the described form. Ifs starts with the substring 10, remove it. Then
remove repeatedly all initial substrings 00, 11, or 0110 froms. If the remainder starts
with 10, 0100, or 0101, the Gale evenness condition fails fors. If it starts with 0111 (the
only possibility left), it becomes 0100 in̄sν so the condition fails there.

Let E(d) be the number of complementary vertex pairs of(P, Q) in our construction,
whereP = Q = Cd(2d)1 and the labels ofQ are permuted byν. By Proposition 3.2,
E(d) is determined by the numberσ(l ) := |S(l )| of balanced 00–11–0110 strings of
length 4l = 2d, namely

E(2l ) = σ(l )+ σ(l − 1). (3.5)

Proposition 3.2 can be extended to odd dimension showingE(2l + 1) = 2σ(l ), but, as
mentioned, this number is smaller than 2· E(2l ) for the polytopes(P′, Q′) constructed
in (3.1).
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If a string in S(l ) containsk substrings 00, 0≤ k ≤ l , then it contains the same
number of substrings 11 since it is balanced, andl − k substrings 0110. These sub-
strings may be arranged in any manner, with(l + k)!/(k! k! (l − k)!)many possibilities.
Hence,

σ(l ) =
l∑

k=0

(l + k)!

k! k! (l − k)!
=

l∑
k=0

(
l + k

k

)(
l

k

)
. (3.6)

The first values ofσ(l ) are given as follows. The numbers̃σ(l ) are an asymptotic
approximation that we prove in the next section.

l 0 1 2 3 4 5 6 7 8

σ(l ) 1 3 13 63 321 1683 8989 48,639 265,729

σ̃ (l ) 3.4 13.8 65.5 330.4 1722.6 9165.3 49,456.6 269,636.8

(3.7)

Our construction produces the first counterexample to the Quint–Shubik conjecture for
d = 6 sinceE(6) = 76> 26 (alreadyE(4) = 16= 24, where the equilibria are quite
different from the game whereA = B = I4). A specific 6× 6 bimatrix game with 75
Nash equilibria using the pointsµ(t)andµ(−t) for t = 1,2, . . . ,6 on the moment curve,
a translation so that the barycenter of these points is0 (for polarity), and Proposition 2.1,
is described in [25].

Does the permutation (3.4) yield the maximum number of complementary pairs for
the cyclic polytopes? Trying out all(2d)! permutations shows that it does ford = 6,
where the permutation is unique up to the symmetry (cyclic shift and reversal) of the
strings fulfilling the Gale evenness condition. This computation takes hours ford = 6
and therefore was not attempted ford = 8. We sketch aproof that (3.4) is optimal for
d = 6. Any Gale evenness string not inS(3) has a substring 011110 or 01111110 starting
on an even position. For example, it may be 011110s with s = 001100. Consider the
strings 011011s and 001111s which belong toS(3) and which both differ from 011110s
in only one label. Hence, these are vertices ofP forming a triangle or “clique” [14]. The
complementary sets of labels for these vertices shared − 1 labels. The corresponding
d− 1 facets ofQ meet in an edge (if at all) that contains only two vertices ofQ. Hence,
a face ofP that is a triangle can have at most two vertices that are part of complementary
pairs, and the two inS(3) already are, so 011110s is not unless another complementary
pair is sacrificed. Similarly, replacing a substring 01111110 by its neighbors 01111011,
01101111, and 00111111 defines a simplex as a face ofP with again only two vertices
that can be part of complementary pairs. So the 00–11–0110 strings indeed yield the
maximum number of complementary pairs ford = 6. It may be interesting to extend
this argument to higher dimensions.

The question for general polytopes remains open, ford ≥ 5. For d = 4, thed-
polytopes characterized in [5] and their triangles show that no polytope pair has more
complementary vertex pairs than the cubes [7].
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4. Asymptotics of Upper and Lower Bounds

In dimensiond, the maximal number of complementary vertex pairs is bounded from
above by8(d,2d) by the Upper Bound Theorem and from below byE(d) as defined
by (3.5) and (3.6). In order to compare these functions better with 2d, we will find
asymptotically equal expressions. Functionsf, g are called asymptotically equal, de-
noted f (n) ∼ g(n) asn→∞, if f (n)/g(n)→ 1, that is, the relative error goes to zero
[4]. We apply Stirling’s formula

n! ∼
√

2πn
(n

e

)n

to the upper boundU (d) := 8(d,2d) in (3.3) for evend, which yields

U (2l ) = 2

(
3l − 1

l

)
= 2

2l

3l

(
3l

l

)
∼ 2

3

√
3

π l

(
27

4

)l

or

U (d) ∼ 2

√
2

3π

√
27/4

d

√
d
≈ 0.921

2.5981d

√
d

(4.1)

for evend, where 0.921 is replaced by
√

2/π ≈ 0.798 if d is odd.
Finding a similar asymptotic expression forσ(l ) in (3.6) is more interesting. This

integer sequence has been studied before, as (3.7) looked up in [22] (and its electronic
server, described there) reveal. The numberσ(n) is the number of “King paths on a
chessboard” [16], that is, the number of paths in a two-dimensional integer lattice from
(0,0) to (n,n) where the allowed steps are one unit right, up, or diagonal (each such
step corresponding to a substring 00, 11, or 0110, respectively). According to [1, p. 81],
σ(n) = Pn(3) for thenth Legendre polynomialPn defined explicitly by

Pn(x) =
n∑

k=0

(
n+ k

k

)(
n

k

)(
x − 1

2

)k

(4.2)

[17] or recursively byP0(x) = 1, P1(x) = x, and

Pn(x) = x

(
2− 1

n

)
Pn−1(x)−

(
1− 1

n

)
Pn−2(x). (4.3)

The recurrence (4.3) can be verified by (4.2). Forx = 3, σ(n) = Pn(3), it can—with
some effort—also be given a combinatorial interpretation in terms of the lattice paths
with diagonal steps. Using the generating function

g(y) =
∑
n≥0

σ(n) yn, (4.4)

the recurrence (4.3) forx = 3 is equivalent to the differential equation

g′(y)(1− 6y+ y2)+ g(y)(y− 3) = 0



566 B. von Stengel

which, withg(0) = σ(0) = 1, has the unique solution

g(y) = 1√
1− 6y+ y2

. (4.5)

Regarded as a function on the complex planeC, the functiong is analytic around the
origin with Taylor coefficientsσ(n) as in (4.4). We use a theorem of [2] that shows how
to obtain information about these coefficients from the behavior ofg at its dominant
singularity (the one with smallest absolute value). For simplicity, we state this theorem
with overly strong assumptions concerning the domain1of the function which we define
here as

1 = C− {z ∈ R | z≥ 1}.

Theorem 4.1[2, Corollary 2]. Assume that f(z) is analytic in1 and that, as z→ 1
in 1,

f (z) ∼ K (1− z)α,

where K andα are real constants, α not a nonnegative integer. Then, as n→∞,

[zn] f (z) ∼ K

0(−α)n
−α−1. (4.6)

In (4.6), [zn] f (z) is the Taylor coefficient ofzn in the expansion off (z), and0 is
the Gamma function, where0( 1

2) =
√
π . We use Theorem 4.1 forα = − 1

2 but have to
normalize the dominant singularity ofg(y) to one. It is given by the smaller rootr of
the rootsr andR of the polynomial 1− 6y+ y2,

r = 3− 2
√

2, R= 3+ 2
√

2,

so that

g(y) = ((r − y)(R− y))−1/2 =
(

r (R− y)

(
1− y

r

))−1/2

.

Let z= y/r , y = rz, so thatg(rz) is defined forz ∈ 1 and

f (z) = g(rz) = (r (R− rz)(1− z))−1/2 ∼ (r (R− r ))−1/2(1− z)−1/2

asz→ 1. Using 1/r = R= (1+√2)2, (4.6) yields

[zn] f (z) ∼ 1+√2

25/4
√
πn

asn→∞ and, sinceg(y) = f (y/r ),

σ(n) ∼ σ̃ (n) := 1+√2

25/4
√
π

(1+√2)2n

√
n

.

The relative error of this approximation is forn ≥ 6 less than 2% as (3.7) shows. A
better approximation [2] would introduce factors like(1 + c/n) for a constantc so
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that the relative error is of orderO(n−2) rather thanO(n−1), as is known for Stirling’s
formula [4]. We have not investigated this further.

The asymptotic expression becomes simpler when used for the numberE(d) of
complementary vertex pairs in (3.5) since 1+ √2 appears in the denominator and
cancels. Expressed in terms ofd, asd→∞,

E(d) ∼ 23/4

√
π

(1+√2)d√
d

≈ 0.949
2.414d

√
d
, (4.7)

if d is even, with 0.949 replaced by(29/4 − 27/4)/
√
π ≈ 0.786 if d is odd, using the

construction in (3.1).
As (4.1) and (4.7) show, the numberE(d) of complementary vertex pairs in our

construction is not that far away from the upper boundU (d), at least compared with the
previously known lower bound 2d. We summarize our result, where the upper bound is
due to [7].

Theorem 4.2. The maximal number of Nash equilibria in a nondegenerate d× d
bimatrix game is bounded from above by U(d) − 1 and from below by E(d) − 1. As
d → ∞, asymptotic expressions for U(d) and E(d) for even d are(4.1) and (4.7),
respectively.
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