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Abstract. This paper presents a new lower bound @f12F /+/d on the maximal number

of Nash equilibria ind x d bimatrix games, a central concept in game theory. The proof
uses an equivalent formulation of the problem in terms of pairs of polytopes difdc2ts

in d-space. It refutes a recent conjecture tiat 2 is an upper bound, which was proved for

d < 4. The first counterexample is a6 game with 75 equilibria. The cade= 5 remains

open. The result carries the lower bound closer to the previously known upper bound of

2.69//d.

1. Introduction

Consider a polytop® in dimensiord with 2d facets which is simple, that is, each vertex
belongs to exactlyd facets ofP. Two verticesx andy of P form acomplementary pair
(x, y) if every facet ofP is incident withx or y. Thed-cube has 2 complementary
vertex pairs. Is this the maximal number among the sirdgb®lytopes with 2 facets?
This fairly natural question seems to be open.

Here, we do not consider this problem but the following variation. Consider two simple
d-polytopesP andQ, each with 2 facets labeled,1 . ., 2d. A vertex of a polytope has
the labels of the facets it lies on. A vertex péit y) of (P, Q) (which is a vertex of the
product polytopeP x Q) is calledcomplementarif every label 1. .., 2d appears as a
label ofx ory. If P andQ are identical and identically labeled, then this is the above
single-polytope problem. IP and Q are equal to thel-cube and identically labeled,
then(P, Q) has 2 ordered pairs of vertices that are complementary.

However, this is not the maximal number. We will show tha®iind Q are equal to
the polar of thed-dimensional cyclic polytope and the labels@fare permuted relative
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to the labels o in a certain way, theqiP, Q) has®((1 + v/2)¢/+/d) complementary
vertex pairs, where 4 +/2 ~ 2.414. Polytopes in dimensiahwith 2d facets have at
mostO(2.69/+/d) vertices, according to the Upper Bound Theorem for polytopes [15].
This is also the maximum number of complementary pairs since every vertex belongs to
at most one such pair. Hence, there is still a gap for the maximum number, but the new
lower bound of 2414%/\/d offers a substantial improvement over the previously known
bound of 2.

The problem of complementary pairs for two polytopes originates fyame theory
in the following form: What is the maximal number Nfash equilibriaof a nondegen-
erated x d bimatrix game? A bimatrix game is a game for two players given by two
(not necessarily square) matrices of equal dimension. The matrix entries represent the
players’ payoffs if player 1 chooses a row and player 2 a column asttaitegy A
(Nash) equilibrium [19] is a pair alandomizedstrategies, one for each player, that are
payoff-maximizing against each other. For each player, the upper envelope of his ex-
pected payoffs for his own strategies (against the randomized strategy of his opponent)
defines a polyhedron [27], [8], [10]. After suitable projective transformation, this is a
polytope, which is simple if the game is nondegenerate. For the resulting two polytopes,
a complementary vertex pair corresponds to an equilibrium of the game.

In this context, thal-cubes arise if each player’s payoff matrix is the identity matrix.
Quint and Shubik [20] conjectured that these are dhe d games with a maximal
number of equilibria. We refute this conjecture tbe= 6 using the polytope approach.

The Quint—Shubik conjecture follows fdr < 3 from the Upper Bound Theorem. This

has been shown fat = 4 in [7] and [14]. The casd = 5 is open. The single-polytope
problem has no game-theoretic interpretation, not even for symmetric games, since the
construction of the two polytopes (see Proposition 2.1 below) differs for the two players.

The Nash equilibrium is the central solution concept for noncooperative games [24].
Algorithms for enumerating equilibria are useful when analyzing such games. The fastest
known algorithms [27], [8], [10] use vertex enumeration for polytopes, and apply even
to degenerate games [29], [6]. In the games we construct here, a large number of vertices
define equilibria, which shows that these algorithms cannot be substantially improved.
Other algorithms for finding equilibria are surveyed in [11] and [26]. Bounds and distri-
butions for certain kinds of equilibria are considered in [23], [12], and [13].

The correspondence between polytope pairs and equilibria of bimatrix games is ex-
plained in Section 2 (for further exposition see [25] and [26]). The construction based
on cyclic polytopes is shown in Section 3. An asymptotic expression for the number of
complementary vertex pairs in this class of examples is derived in Section 4.

2. Game Equilibria and Polytopes

We use the following notation. The transpose of amé@rig B . All vectors are column
vectors. The zero vector @ the vector of all ones i§, their dimension depending on
the context. Inequalities like > 0 between two vectors hold for all components. The
n x nidentity matrix isl,.

Let (A, B) be a bimatrix game, wher@ and B arem x n matrices of payoffs to
player 1 and player 2, respectively. The rows are the pure strategies of player 1 and



New Maximal Numbers of Equilibria in Bimatrix Games 559

the columns are the pure strategies of player 2Znifed strategy for player 1 (ory

for player 2) is a probability distribution on rows (resp. columns), written as a vector
of probabilities. Anequilibriumof the game is a paiix, ¥) of mixed strategies so that
xTAy > xTAy andx "By > x "By for all other mixed strategies andy, respectively.

In equilibrium, player 1 (and similarly player 2) maximizes his expected payasfy
againsty. Equivalently [19], only those rowisthat havemaximumpayoff u can have
positive probabilityk; . This combinatorial condition can be expressed using the following
polyhedra. Let

P={X%veR"xR| x>0, B'x <1, 1"'x =1},

_ ~ - _ _ (2.1
Q={(J,WeR"xR| Ay<1u, y>0, 1Ty =1}.

In Q, for example, the smallest value forgiven y defines the upper envelope of
the expected payoffs for all pure strategies of player 1, given by the rows/ofn
equilibrium, only optimal pure strategiésnay have positive probability, so that either
theith inequality inAy < 1u in the definition ofQ is binding { is optimal), or the
ith inequality inX > 0 in the definition ofP is binding & = 0), or both. Similarly, a
pure strategyj of player 2 is optimal or not played, represented by jttieinequality in
BTx < 1v oriny > 0in the definition ofP or Q that holds as an equality.

For identifying equilibria, it is therefore useful to consider the pure strategies of the
two players atabelsl, ..., m+n numbering then+ n inequalities in the definitions of
P andQ in (2.1). The firsim of these labels represent the pure strategies of player 1, the
secondh those of player 2. Then an equilibrium is a péit ¥) so that(x, v) € P and
(¥, u) € Qforsuitable payoffs andu, and for each label,1. ., m+nthe corresponding
inequality inP or in Q is binding.

The polyhedra in (2.1) can be simplified by normalizing the payoffs to one and
replacing probabilities by arbitrary nonnegative numbers. Let

P={xeR"|x>0, Bx <1},

(2.2)
Q={yeR"|Ay<1 y=>0}

Then
P P, (X, v) — X/v,
Q- Q, (¥,u) = y/u

are projective transformations [30] if the payoff@andu are always positive. For that
purpose, we assume

(2.3)

AandBT are nonnegative and have no zero column. (2.4)

This assumption can be made without loss of generality since a constant can be added to
all payoffs without changing the game in a material way. We could simply assumé that
andB are positive but want to admit examples like= B = I, (if m = n) where some
payoffs are zero. By (2.4R andQ are polytopes (bounded polyhedra). The projective
transformations (2.3) are one-to-one correspondences betwee P — {0} and Q

andQ — {0}, respectively, that preserve binding inequalities (for visualizations see [25]
and [26]). The extra verte@ of P andQ arises as projection “from infinity.”
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A label of a pointinP or Q is a number in 1..., m + n so that the corresponding
inequality in (2.2) is binding. A pai¢x, y) of points inP x Q is calledcomplementary
if every label 1 ..., m+ n appears as a label &for of y. With the exception of0, 0),
complementary pairs define the equilibria of the bimatrix gameB) by renormalizing
x andy to be vectors of probabilities.

Any complementary pair is the convex combinatiorerfremecomplementary pairs
(X, y) wherex is a vertex ofP andy is a vertex ofQ [10], [29], [6], [26]. We consider only
nondegeneratéor “generic”) games where only pairs of vertices can be complementary.
Otherwise, the game may have infinitely many equilibria (as convex combinations of
extreme equilibria). Furthermore, even the number of extreme equilibria may trivially
be very large, for example if all entries Bfare identical (so all vertices &? exceptO
have all but one label) an@ is a polytope with a maximum number of vertices.

A game is called nondegenerate if, against every mixed stratefn player, there
are atmost{i | z > 0}| pure strategies of the opponent that are optimal. This means that
every pointinP has at mogan labels and every point i@ has at most labels. Itis easy to
see that this is equivalent to the following [26]: A binding inequality Foor Q defines
either a facet of that polytope or the empty set, but no other lower-dimensional face;
andP andQ are simple polytopes. Inequalities that are never binding repretéity
dominatedstrategies [24] which are never played in equilibrium, so they can be omitted
from the game. Hence, we assume tAandQ in (2.2) are simple polytopes with facets
labeled 1..., m+ n. For complementary vertex pai(g, y), only the combinatorial
structure of these polytopes matters. The special structure of thenfirstqualities
x > 0 of P and of the second inequalitiesy > 0 of Q is not a restriction, since this
can be achieved by a suitable affine transformation for each polytope, as follows.

Proposition 2.1. Let P be a simple m-polytope and let’ ®e a simple n-polytope
both with m+ n labeled facetswhich have at least one complementary padf, y)
of vertices Then there are mx n matrices A and B defining P and Q @.2), a
permutation of the labels, . .., m+n of P and Q yielding the labels of P and Gand
invertible affine transformations from'B P and from Qto Q thatmapx’, y’) to (0, 0).
Furthermore every complementary vertex pair @', Q") except(x’, y') represents a
Nash equilibrium of the bimatrix gam@, B).

Proof. Permute the labels, 1.., m + n in the same way foP’ and Q" such thatx’
has labels 1L..,m andy has labelam + 1,..., m + n. This does not change the
complementary pairs afP’, Q’). Let

P={zeR™|Cz<p, Dz<q},

whereCz < p represents then inequalities for the facets,1..,mandDz < q the
remainingn inequalities. For the vertex’, we haveCx' = p and Dx’ <  since
P’ is simple. Them binding inequalities fox’ are linearly independent since is a
vertex, saC is invertible andz — x = —Cz+ pis an affine transformation with inverse
z=-Ci(x—p).LetP = {x e R™ | —C~1(x—p) € P’}. Then, withr = q—DC™1p,

P={xeR"| —x<0, —-DCx <r}.
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Corresponding points o and P’ have the same labels. Since the vef@eof P cor-
responds tox’ in P/, 0 < r. Thus, thejth row of —DC~'x < r can be normalized by
multiplication with the scalar irj, so we can assunte= 1. ThenP is defined as in
(2.2) with then x m transposed payoff matri8” = —DC~2. Similarly, we can find
anm x n matrix A so thatQ in (2.2) is an affine transform d@’. The complementary
vertex pairs of(P’, Q") except(x’, y') correspond to the Nash equilibria A, B) by
construction. If desired, a constant can be to the entriédsaofd B to obtain (2.4), which
does not change the combinatorial structur@and Q. O

PolytopesP’ and Q" with general labeling may have no complementary pairs at
all, so this case is explicitly excluded in Proposition 2.1. Interestingly, the number of
complementary pairs afP, Q) in Proposition 2.1 is always even, since the algorithm
by Lemke and Howson [9], [21], [28] connects complementary paif3 inQ by paths
where a given label is missing. It computes one Nash equilibrium of the game when
started from(0, 0).

3. Cyclic Polytopes and a Lower Bound

We specialize the problem of finding nondegenerate n games with a large number
of equilibria to square games wheme = n = d. Then (2.2) defines two simple-
polytopesP andQ with 2d facets. For thel x d game withA = B = |4, both polytopes
P andQ are equal to thd-cube [Q 1]¢ which has 2 vertices, each of which is part of a
complementary pair. The Quint—Shubik conjecture [20] states that this is the maximum
number.

We refute this conjecture fai > 6. Any counterexample yields a counterexample
in higher dimensions, as follows. If the polytope péaR, Q) in dimensiond hasE
complementary pairs, the(P’, Q") with P’ = P x [0,1] andQ’ = Q x [0,1] is a
polytope pair in dimensiod + 1 with 2E complementary pairs. Namely,

P’ = {(X,Xg4+1) € RI X R|X >0, Xg41 >0, B™X <1, Xg41 <1},
+ + +

(3.1)
Q ={(Y,Ya+1) €eRIxR| Ay <1 yg1 <1, y>0, ygs1 >0},

so that any complementary vertex pai;, y) of (P, Q) yields the two complementary
pairs((x, 0), (y, 0)) and((x, 1), (y, 1)) of (P, Q).

Our counterexamples are based on the polars of cyclic polytopes, which have a max-
imum number of vertices. Theolar [30] of a polytopeP that is the convex hull of the
d-vectorscy, . . ., Cy is given by

PAr={xeR%|cx<1 1<i<N]} (3.2)

provided P (and then alsd®?) hasO0 in its interior, which can always be achieved by
translatingP. Any face of P4 of dimensiond — k is defined byk binding inequalities
in (3.2), and corresponds to a face of dimendien 1 of P, given by the convex hull of
the corresponding vertices ofP.

A cyclic polytope G(N) [3], [30] in dimensiond with N vertices is defined as
the convex hull of anyN points on themoment curveu(t) | t € R} in RY, u(t) =
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(t,t2,...,t%7. Any d + 1 points on this curve are affinely independentCgoN) is
simplicial (no facet contains more thanvertices). The particular choice of the points
w(ty), ..., u(ty) on the moment curve does not affect the combinatorial structure of
Cg(N). Assumet; < --- < ty. A set S of d vertices corresponds to a 0-1 string
s =% ---sy Withsg = 1if u(tj) € Sands = 0 otherwise. The hyperpland
through the points irs defines a facet o€4(N) if and only if the strings fulfills the
Gale evennessondition [3], that is, it contains no substrigg - -s; = 01- - - 10 with an
odd number — j — 1 of 1's (like 01110). Otherwise, the two verticest) and . (tj)
would be on opposite sides 6f, since the moment curve changes from one sidd of
to the other at the pointg(tj), i € S. The Gale evenness condition is symmetric with
respect to a cyclic shift of the strirgjif d is even.

The numberd(d, N) of facets ofCq4(N) is the number of the 01 stringdulfilling
the Gale evenness condition.dfis even,d = 2, then eithess starts and ends with an
even number of 1's, and is composed &fubstrings 11 an®l — d 0’s, orsis such a
string withl — 1 substrings 11 and an additional 1 put at each end. Hence,

N —I N—-I-1 N/N-I-1
<I>(2I,N)=( | )+< 1 ):I_( 1 > (3.3)
Similarly, one can show

®2 +1,N) = 2<N _I' h 1).

No d-polytope with N vertices has more facets than the cyclic polyt@hgN),
according to the Upper Bound Theorem for polytopes [15], [18]. Applied to the po-
lars, this implies that nal-polytope with N facets has more thad(d, N) vertices.
Hence, the polytopeP and Q in (2.2) have at mos®(m, m + n) and ®(n, m + n)
vertices, respectively. The bound is stricter for the polytope of smaller dimension since
®(d, N) < &(d + 1, N) if d < N/2. This implies the following bound on the number
of equilibria [7]:

Proposition 3.1. A nondegenerate mn bimatrix gamem < n, has at mos® (m, m+
n) — 1 Nash equilibria

Form = n, ®(n, 2n) grows asymptotically frorm to n + 1 by an average factor
of \/27/4 = 2.598.., much faster than™ We consider more precise asymptotics in
Section 4.

In our construction, we leP = Q = Cy4(2d)2, which are simple polytopes since
Cq4(2d) is simplicial. We consider onlgvendimensiongl. In odd dimension, the poly-
topesP’ andQ’ in (3.1) constructed fronP and Q in the next lower even dimensiah
have a larger number of complementary vertex pairs than those based on the cyclic
polytopes in dimensiod + 1.

So, in the following, observe thdt= 2| is even, there ar = 2d = 4l points on the
moment curve, whose convex hull defirggN), and which, after translation so tHat
is in the interior of that polytope, represent the normal vectors ofabetsof its polar
Cq(N)2 asiin (3.2), which have to be suitably labeled. Furthermore, the facetg bl
define the vertices dP and Q, among which we look for complementary pairs.
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It suffices to look at the representation of these verticeB @ind Q, the facets of
Cq(N), by 0-1 stringss = $,5 - - - SN, for examples = 01101100 ifd = 4, N = 8.
These strings arbalanced that is, contain the same number of O's and 1's, and fulfill
the Gale evenness condition. We can assume that the labeling bf theets of P is
in the order of the positions in this string. The labeling of the facet® a§ given by
a certainpermutationv of {1, ..., N}, such thats defining a vertex ofP is part of a
complementary pair if and only if theomplementarpermuted string

S =505 S

defines a vertex of), that is, fulfills the Gale evenness condition, whére- 1 and
1 = 0. For example, suppose thais the identity permutation. Then fer= 01101100,
5, = 10010011 which does not fulfill Gale evenness, whesgdses fors = 00011110.
For these two strings, the opposite holds when considering the permutation

OB e v
With the identity permutation, the polytopesP and Q do not have more thand2
complementary vertex pairs, since only the stria¢isat are composed of substrings 00
and 11, except at the ends, have the property that atids, fulfill Gale evenness.
However, the permutation in (3.4) leads to a number of complementary vertex pairs
that exceeds®for all evend > 6.

Proposition 3.2. Let §) be the set of balance@-1strings of lengtil composed of
the substring®0, 11,and0110.Let s be any balance@-1 string of length N= 2d,
and let d= 2. Then for the permutation in (3.4), s ands, fulfill the Gale evenness
condition if and only if s S(I) or s = 10s'01for some §¢ S(I — 1).

Proof. Clearly, any strings as described fulfills the Gale evenness condition. The
substrings 00, 11, and 0110smre complemented to 11, 00, and 1001, respectively, and
permuted by to substrings 11, 00, and 0110, respectivelyg,irSimilarly, an initial or
terminal substring 10 or 01 is left as it is, Spalso fulfills Gale evenness. Conversely,
supposses is not of the described form. # starts with the substring 10, remove it. Then
remove repeatedly all initial substrings 00, 11, or 0110 fiort the remainder starts
with 10, 0100, or 0101, the Gale evenness condition fails.ftfiit starts with 0111 (the
only possibility left), it becomes 0100 & so the condition fails there. O

Let E(d) be the number of complementary vertex pairé®f Q) in our construction,
whereP = Q = Cy(2d)* and the labels o are permuted by. By Proposition 3.2,
E(d) is determined by the numbet(l) := |S(l)| of balanced 00-11-0110 strings of
length 4 = 2d, namely

E@)=0()+0od —1). (3.5

Proposition 3.2 can be extended to odd dimension sho®if@ + 1) = 20 (1), but, as
mentioned, this number is smaller than(2l) for the polytopegP’, Q') constructed
in (3.1).
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If a string in S(I) containsk substrings 00, O< k < I, then it contains the same
number of substrings 11 since it is balanced, hrdk substrings 0110. These sub-
strings may be arranged in any manner, with k)! /(k! k! (I —k)!) many possibilities.
Hence,

( + k! L+ k (]
“(')_Zkl Kl (|-k)l=2( K )(k) (3.6)

k=0

The first values ofr (1) are given as follows. The numbeégl) are an asymptotic
approximation that we prove in the next section.

I Jo1 2 3 4 5 6 7 8
s()|1 3 13 63 321 1683 8989 48,639 265729 (3.7)
)| 34 138 655 3304 17226 91653 49,456.6 269,636.8

Our construction produces the first counterexample to the Quint—Shubik conjecture for
d = 6 sinceE(6) = 76 > 2° (alreadyE (4) = 16 = 2*, where the equilibria are quite
different from the game wher& = B = |,). A specific 6x 6 bimatrix game with 75
Nash equilibria using the poinig(t) andu (—t) fort = 1, 2, . .., 6 onthe moment curve,
a translation so that the barycenter of these poir@gfisr polarity), and Proposition 2.1,
is described in [25].

Does the permutation (3.4) yield the maximum number of complementary pairs for
the cyclic polytopes? Trying out afPd)! permutations shows that it does fdr= 6
where the permutation is unique up to the symmetry (cyclic shift and reversal) of the
strings fulfilling the Gale evenness condition. This computation takes houts$06
and therefore was not attempted tbe= 8. We sketch groof that (3.4) is optimal for
d = 6. Any Gale evenness string not2d3) has a substring 011110 0r 01111110 starting
on an even position. For example, it may be 01Kkldfth s = 001100. Consider the
strings 011014 and 001114 which belong taS(3) and which both differ from 011110
in only one label. Hence, these are vertice®dbrming a triangle or “clique” [14]. The
complementary sets of labels for these vertices stlarel labels. The corresponding
d — 1 facets ofQ meet in an edge (if at all) that contains only two verticeQoHence,
aface ofP that is a triangle can have at most two vertices that are part of complementary
pairs, and the two iI5(3) already are, so 011140@s not unless another complementary
pair is sacrificed. Similarly, replacing a substring 01111110 by its neighbors 01111011,
01101111, and 00111111 defines a simplex as a faBevath again only two vertices
that can be part of complementary pairs. So the 00-11-0110 strings indeed yield the
maximum number of complementary pairs tb= 6. It may be interesting to extend
this argument to higher dimensions.

The question for general polytopes remains opendfor 5. Ford = 4, thed-
polytopes characterized in [5] and their triangles show that no polytope pair has more
complementary vertex pairs than the cubes [7].
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4. Asymptotics of Upper and Lower Bounds

In dimensiond, the maximal number of complementary vertex pairs is bounded from
above by®(d, 2d) by the Upper Bound Theorem and from below lbyd) as defined

by (3.5) and (3.6). In order to compare these functions better Witw2 will find
asymptotically equal expressions. Functiohg are called asymptotically equal, de-
notedf (n) ~ g(n) asn — oo, if f(n)/g(n) — 1, thatis, the relative error goes to zero
[4]. We apply Stirling’s formula

n! ~ \/ﬁ(g)n

to the upper bound (d) := &(d, 2d) in (3.3) for everd, which yields

|
- 7)-20)- 33
I 3\ 3Val \ 4

or
[2 J2773° 25981
u) ~ 2,/ — ~ 0.921 4.1

for evend, where 0.921 is replaced hy2/7 ~ 0.798 if d is odd.

Finding a similar asymptotic expression fecl) in (3.6) is more interesting. This
integer sequence has been studied before, as (3.7) looked up in [22] (and its electronic
server, described there) reveal. The numbér) is the number of “King paths on a
chessboard” [16], that is, the number of paths in a two-dimensional integer lattice from
(0, 0) to (n, n) where the allowed steps are one unit right, up, or diagonal (each such
step corresponding to a substring 00, 11, or 0110, respectively). According to [1, p. 81],
o (n) = Py(3) for thenth Legendre polynomiaP, defined explicitly by

P =3 (” ; k) (E) <X - 1>k (4.2)

k=0

[17] or recursively byPy(x) = 1, Py(X) = X, and

Pr(X) = x (2 — %) Pr_1(x) — (l — %) Pr_2(X). (4.3)

The recurrence (4.3) can be verified by (4.2). kot 3, a(n) = P,(3), it can—with
some effort—also be given a combinatorial interpretation in terms of the lattice paths
with diagonal steps. Using the generating function

gy) =Y oMy, (4.4)

n>0

the recurrence (4.3) for = 3 is equivalent to the differential equation

gy)d—6y+y)+g(y)(y—-3)=0
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which, withg(0) = ¢ (0) = 1, has the unique solution

ay) = (4.5

1
J1I-6y+y?2
Regarded as a function on the complex pl&hehe functiong is analytic around the
origin with Taylor coefficientsr (n) as in (4.4). We use a theorem of [2] that shows how
to obtain information about these coefficients from the behaviay af its dominant
singularity (the one with smallest absolute value). For simplicity, we state this theorem
with overly strong assumptions concerning the donaaof the function which we define
here as

A=C—-{zeR|z=>1}.
Theorem 4.1[2, Corollary 2]. Assume that z) is analytic inA and thatas z— 1
in A,
f(2) ~K(@-2,

where K andx are real constantsx not a nonnegative integefhen as n— oo,

n ~ K —a—1
[Z"]1f(2 o n . (4.6)

In (4.6), [2"] f (2) is the Taylor coefficient of" in the expansion off (z), andT is
the Gamma function, wheie(3) = /7. We use Theorem 4.1 far = —3 but have to
normalize the dominant singularity gfy) to one. It is given by the smaller rootof
the rootsr andR of the polynomial 1— 6y + y?,

r=3-2v2, R=3+2V2,

so that

12
9(y) = ( —Y)(R—y) 2 = (r(R - y)(l— %)) .
Letz=y/r,y =rz, sothatg(rz) is defined forz € A and
f@=902)=0C(R-12)1-2)"2~((R-1)21-27"?
asz — 1. Using ¥r = R= (1+ +/2)?, (4.6) yields

N 1+4/2
[Z]f(z)"‘25/47\/ﬁ

ash — oo and, sincegy(y) = f(y/r),
142 (14 /22
iy

The relative error of this approximation is far> 6 less than 2% as (3.7) shows. A
better approximation [2] would introduce factors like + c/n) for a constant so

o(n) ~a(n) .=
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that the relative error is of ordéd(n=2?) rather thanO(n~1), as is known for Stirling’s
formula [4]. We have not investigated this further.

The asymptotic expression becomes simpler when used for the nuf{derof
complementary vertex pairs in (3.5) since+1v/2 appears in the denominator and
cancels. Expressed in termsdyfasd — oo,

3/4 d
2R AtV 0.949—2'4141, (4.7)

vToooJd vd
if d is even, with 0.949 replaced ug%* — 2/%)/ /7 ~ 0.786 if d is odd, using the
construction in (3.1).

As (4.1) and (4.7) show, the numb&rd) of complementary vertex pairs in our
construction is not that far away from the upper bounhd), at least compared with the
previously known lower bound®2We summarize our result, where the upper bound is
due to [7].

E(d) ~

Theorem 4.2. The maximal number of Nash equilibria in a nondegenerate d
bimatrix game is bounded from above byd) — 1 and from below by E) — 1. As
d — oo, asymptotic expressions for(d) and E(d) for even d are(4.1) and (4.7),
respectively
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