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1. Introduction

As a tool for game-theoretic analysis, algorithms for finding Nash equilibria have
found increasing interest (recent surveys are McKelvey and McLennan, 1996, and
von Stengel, 1996). When looking for all Nash equilibria of a game, it is interesting
to know upper bounds on their number to terminate the search, and lower bounds
to know the possible output size of the algorithm. Bounds and distributions for
certain kinds of Nash equilibria are considered by Stanford (1996), McKelvey and
McLennan (1997), and McLennan (1997).

We study the number of equilibria of nondegenerate n × n bimatrix games
(many statements hold also for games that are not square). A trivial upper bound
is 22n , the number of possible supports of mixed strategy pairs. This bound can be
slightly improved to

(
2n
n

)
, which is asymptotically 4n/

√
πn, since in a nondegener-

ate game, both players use the same number of pure strategies in equilibrium, so
any equilibrium support corresponds to an n-subset S of {1, . . . , 2n} defining the
supports S ∩ {1, . . . , n} and {n + 1, . . . , 2n} − S of mixed strategies for player 1
and 2, respectively.

A much better upper bound is
√
27/4

n
/
√
n, approximately 2.6n/

√
n. As ob-

served by Keiding (1997), this can be derived from the Upper Bound Theorem for
polytopes (McMullen, 1970). The polyhedral approach to equilibrium enumeration
is due to Vorob’ev (1958), Kuhn (1961), and Mangasarian (1964), and works even
for degenerate games. An elegant vertex enumeration algorithm for polytopes due
to Avis and Fukuda (1992) has apparently not yet been applied to bimatrix games.

A lower bound for the number of Nash equilibria of nondegenerate n×n bima-
trix games is 2n − 1, which holds for the “coordination game” where both player’s
payoffs are given by the identity matrix. Quint and Shubik (1997) conjectured this
to be the upper bound as well. For n ≤ 3 this follows from the Upper Bound
Theorem. For n = 4 it has been shown by Keiding (1997) using Grünbaum and
Sreedharan’s (1967) characterization of the relevant 4-polytopes, and by McLennan
and Park (1996) using the geometry of 3-space.

However, the Quint–Shubik conjecture is false in general. We show a new
lower bound of about 2.414n/

√
n. Our construction is based on the polars of cyclic

polytopes, which have a simple combinatorial definition (due to Gale, 1963) and a
maximal number of vertices. The inequalities defining these polytopes are permuted
in a certain way to obtain games with asymptotically (1+

√
2)n/

√
n many equilibria,

except for a constant factor. This is not far from the upper bound 2.6n/
√
n and

suggests that vertex enumeration of polytopes is indeed an efficient approach to
equilibrium enumeration.

The complementarity condition for Nash equilibria has a geometric interpreta-
tion with labels for mixed strategies marking the best responses of the other player
(see Shapley, 1974). This subdivision of the mixed strategy sets corresponds to

2



the facets of a polyhedron in one dimension higher, considering the maximum of
the payoff functions. This simplifies a complexity study, and is known similarly for
Voronoi diagrams in computational geometry (see, for example, Mulmuley, 1994).
The polyhedron with the payoff as one unbounded coordinate, in turn, corresponds
to a simpler, bounded polytope where mixed strategies are not normalized. The com-
putational equivalence of these different views is straightforward and well known.
Nevertheless, a geometric interpretation, which we explain in Section 2, may also be
considered helpful.

Another question of general interest may be the definition of a degenerate
game. This is usually stated ad hoc and merely “similarly” to related papers (see
Lemke and Howson, 1964; Shapley, 1974; van Damme, 1987, p. 52; and others).
We have proved elsewhere that these notions are in fact equivalent (von Stengel,
1996), and repeat this theorem here. In Section 2, we clarify and summarize these
polytope-related issues.

The lower bound construction is shown in Section 3. The first interesting case
is a 6× 6 game with 75 Nash equilibria, which we provide explicitly. An asymptotic
expression for the bound is derived in Section 4.

2. Finding equilibria as a polytope problem

We use the following notation. Let (A,B) be a bimatrix game, where A and B are
m×n matrices of payoffs to the row player 1 and the column player 2, respectively.
B⊤ is the matrix B transposed. A vector or matrix with all components zero is
denoted 0. Inequalities like x ≥ 0 between two vectors hold for all components.
The vector (1, . . . , 1)⊤ in IRn is denoted 1n . The n × n identity matrix is In . We
always assume

A and B⊤ are nonnegative and have no zero column. (2.1)

This assumption can be made without loss of generality since a constant can be
added to all payoffs without changing the game in a material way. We could simply
assume that A and B are positive but want to admit examples like A = B = In (if
m = n) where some payoffs are zero.

Consider the two polyhedral sets

P1 = {x ∈ IRm | x ≥ 0, B⊤x ≤ 1n },
P2 = {y ∈ IRn | Ay ≤ 1m, y ≥ 0 }.

(2.2)

The purpose of condition (2.1) is to assure that P1 and P2 are bounded and there-
fore polytopes, that is, bounded intersections of halfspaces. We recall some notions
from polytope theory (see Ziegler, 1995). The vectors z1, . . . , zk are called affinely
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independent iff (if and only if) the vectors
[
z1
1

]
, . . . ,

[
zk
1

]
are linearly independent.

A convex set has dimension d if it has d + 1, but no more, affinely independent
points. A d-polytope is a polytope of dimension d. (P1 has dimension m, P2 has
dimension n.) A face of a polytope P is a subset of P of the form {z ∈ P | cz = p0 }
for a row vector c and scalar p0 where cz ≤ p0 holds for all z in P . A vertex of P
is the unique element of a 0-dimensional face of P . A facet of a d-polytope P is a
face of dimension d− 1. It corresponds to an inequality used in the definition of P
which is binding , that is, it holds as equality, and irredundant, that is, it cannot be
omitted without changing the polytope.

Let ai and bj denote the rows of A and B⊤ ,

A =

 a1
...
am

 , B⊤ =

 b1...
bn

 .
For x ∈ P1 and y ∈ P2 , let

L1(x) = {i | xi = 0} ∪ {m+ j | bjx = 1},
L2(y) = {i | aiy = 1} ∪ {m+ j | yj = 0}.

L1(x) and L2(y) are sets of labels where x or y has a label in {1, . . . ,m+ n} if the
respective inequality in (2.2) is binding. Labels are useful for identifying equilibria.
We call (x, y) an equilibrium of the polytope pair (P1, P2) if x ∈ P1 , y ∈ P2 , and

L1(x) ∪ L2(y) = {1, . . . ,m+ n}. (2.3)

This is justified by the following observation.

Proposition 2.1. Given (2.1), the mixed strategy pair (x, y) is a Nash equilibrium
of the bimatrix game (A,B) iff there is an equilibrium (x, y) of the polytope pair
(P1, P2), (x, y) ̸= (0,0), and x = x · (1/1⊤

mx), y = y · (1/1⊤
n y).

Proof. Clearly, (x, y) is a Nash equilibrium of (A,B) iff, for suitable reals u, v,

1⊤
mx = 1, x ≥ 0, bjx ≤ v (1 ≤ j ≤ n), (2.4)

aiy ≤ u (1 ≤ i ≤ m), 1⊤
n y = 1, y ≥ 0, (2.5)

and
xi > 0 =⇒ aiy = u (1 ≤ i ≤ m),

yj > 0 =⇒ bjx = v (1 ≤ j ≤ n).
(2.6)

Condition (2.6) says that only pure best responses are played with positive prob-
ability. By (2.1), the equilibrium payoffs u, v are positive. With x = x · (1/v),
y = y · (1/u), conditions (2.4), (2.5), and (2.6) imply x ∈ P1 , y ∈ P2 , and (2.3),
respectively. Conversely, any pair (x, y) ̸= (0,0) in P1 × P2 with (2.3) and

v = 1/1⊤
mx, x = x · v, u = 1/1⊤

n y, y = y · u (2.7)

fulfills (2.4), (2.5), and (2.6).
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The vectors x and y in (2.2), which are not normalized, are converted by (2.7)
to mixed strategies x and y and payoffs v, u. This transformation is common, for
example for the algorithm by Lemke and Howson (1964) as described in Wilson
(1992). This algorithm connects the equilibrium (0,0) of (P1, P2) to a Nash equi-
librium along a path of points (x, y) where, say, label 1 may be missing, that is,
{2, . . . ,m + n} ⊆ L1(x) ∪ L2(y). In nondegenerate games, all equilibria of (P1, P2)
are separate endpoints of such Lemke–Howson paths, so their number is even, and
the number of Nash equilibria of (A,B) is odd.
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Figure 2.1. The polyhedron H2 for the game (2.8), and its projection to the set
{ (y, 0) | (y, u) ∈ H2 }. The vertical scale is displayed shorter. The
circled numbers label the facets of H2 and identify pure best responses
of player 1 or unplayed pure strategies of player 2.

For an enumeration of equilibria, Mangasarian (1964) considered the polyhedral
sets defined by (2.4) and (2.5), namely

H1 = {(x, v) | 1⊤
mx = 1, x ≥ 0, B⊤x ≤ 1nv },

H2 = {(y, u) | Ay ≤ 1mu, 1⊤
n y = 1, y ≥ 0 } .

For the game

A =

 0 6
2 5
3 3

 , B =

 1 0
0 2
4 4

 , (2.8)

the set H2 is shown in Figure 2.1. The facets of H2 have labels similar to the
elements of L2(y) labeling the facets of P2 . For identifying equilibria, it suffices to
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consider these labels for the mixed strategies y of player 2, in Figure 2.1 indicated
by the projection (y, 0) of (y, u), and similarly the mixed strategies of player 1.
The resulting subdivision of the mixed strategy sets into best response regions can
be used to visualize Nash equilibria if m,n ≤ 4 (Shapley, 1974), and is called a
Lemke–Howson diagram by Quint and Shubik (1997).

The polyhedra H1 and H2 are by (2.7) in one-to-one correspondence to P1−{0}
and P2 − {0}, respectively. Figure 2.2 shows a geometric interpretation of the
(nonlinear) map (y, u) 7→ y · (1/u), which is a projective transformation (see Ziegler,
1995, Sect. 2.6). The points y in P2−{0} arise as points (y, 1) on the lines connecting
any (y, u) in H2 with (0, 0) in IRn+1 .
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Figure 2.2. The map H2 → P2 , (y, u) 7→ y = y ·(1/u) as a projective transformation

from IRn+1 to the hyperplane {(y, 1) | y ∈ IRn} with projection point
(0, 0). The left hand side shows this for a single component yj of y,
where yj = yj/u. The right hand side shows how P2 arises in this way

from H2 in the example (2.8).

Any equilibrium of (P1, P2) is a convex combination of extreme equilibria (x, y)
where x is a vertex of P1 and y is a vertex of P2 (Mangasarian, 1964; Winkels,
1979; Jansen, 1981). We consider only nondegenerate games where only pairs of
vertices can be equilibria. Otherwise, the game may have infinitely many equilibria
(as convex combinations of extreme equilibria). Furthermore, even the number of
extreme equilibria may trivially be very large, for example if all entries of B are
identical (so all vertices of P1 except 0 have all but one label) and P2 is a polytope
with a maximum number of vertices. Nondegeneracy holds (with probability one)
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for a “generic” game (where each payoff is chosen independently from a continuous
distribution). We use the following definition, where the support of a vector z is

supp(z) = { i | zi ̸= 0 }.

Definition 2.2. A bimatrix game is called nondegenerate if no mixed strategy z of
a player has more than |supp(z)| pure best responses.

Interpreted for the polytopes P1 and P2 , degeneracy has two possible reasons.
The first is a redundancy of the description of the polytope, that is, certain inequal-
ities in (2.2) do not define facets of P1 or P2 . For P2 , say, the inequalities yj ≥ 0 for
j = 1, . . . , n are clearly irredundant, so every equality yj = 1 defines a facet. Using
linear programming duality, it can be shown that an inequality of the form aiy ≤ 1
is redundant for P2 iff the pure strategy i of player 1 is weakly dominated by or
payoff equivalent to a different mixed strategy x of player 1, that is, ai ≤ x⊤A. If the
pure strategy i is strictly dominated (ai < x⊤A for some x), then i is never played
in equilibrium. Redundant inequalities aiy ≤ 1 of this sort can safely be omitted.
However, a weakly but not strongly dominated strategy leads to a degenerate game
(von Stengel, 1996, Theorem 2.8).

The second reason for degeneracy can be recognized from the polytope as a
set. Assume that each inequality defines a facet. Then in a degenerate game, P1

or P2 has a vertex that belongs to more than d facets, where d is the dimension
(m or n) of the polytope. A polytope where each vertex belongs to exactly d facets
is called simple. In the game (2.8), P1 is not simple because its vertex (0, 0, 1/4)

⊤

belongs to four facets. This game is degenerate since the pure strategy 3 of player 1
has two pure best responses. In general, one can show the following (for a proof see
von Stengel, 1996).

Proposition 2.3. Let (A,B) be a bimatrix game and let (2.1) hold. The following
are equivalent:

(a) The game is nondegenerate.

(b) The rows of
[−Im
B⊤

]
corresponding to the labels in L1(x) for any x in P1 are

linearly independent, and the corresponding condition holds for any y in P2 .

(c) P1 and P2 are simple polytopes, and any pure strategy of a player that is
weakly dominated by or payoff equivalent to another mixed strategy is strictly
dominated.

Condition (b) is used by Lemke and Howson (1964). As another equivalent con-
dition for nondegeneracy, Shapley (1974) requests essentially for sets of labels L that
the set {x ∈ P1 | L ⊆ L1(x)} has dimension at most m−|L|, and the corresponding
condition for P2 .
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Finding a nondegenerate game (A,B) with a certain number of Nash equilibria
can be phrased in terms of polytopes alone: Let P1 and P2 be simple polytopes of
dimension m and n, respectively, both with m + n facets labeled 1, . . . ,m + n in
some order. A vertex has the labels of the facets it lies on. A pair (x, y) of vertices
is called an equilibrium of (P1, P2) if x and y together have all labels 1, . . . ,m+ n.
Clearly, this is the situation for P1 and P2 in (2.2). The only special property of
these polytopes is the vertex pair (0,0), which is an equilibrium, and the directions
of the facets meeting there. The latter can be achieved for any polytope by an
affine transformation, which does not change the combinatorial structure (the face
incidences) of the polytope. Except for one equilibrium of (P1, P2) that takes the
role of (0,0), the simple polytopes P1 and P2 and their labeling can be arbitrary:

Proposition 2.4. The following are equivalent:

(a) There is a nondegenerate m×n bimatrix game (A,B) with E Nash equilibria.

(b) There are simple polytopes P1 and P2 of dimension m and n, respectively, both
with m + n facets labeled 1, . . . ,m + n, so that (P1, P2) has E + 1 equilibria
(completely labeled vertex pairs), E ≥ 0.

Proof. It remains to show that (b) implies (a). Let P ′
1 and P ′

2 be simple polytopes
of dimension m and n, respectively, each with m+n labeled facets. By assumption,
(P ′

1, P
′
2) has at least one equilibrium (x′, y′). We permute the labels 1, . . . ,m + n

(in the same way for P ′
1 and P ′

2) such that x′ has labels 1, . . . ,m and y′ has labels
m+ 1, . . . ,m+ n, which does not change the equilibria of (P ′

1, P
′
2). Let

P ′
1 = {z ∈ IRm | Cz ≤ p, Dz ≤ q }

where Cz ≤ p represents the m inequalities for the facets 1, . . . ,m and Dz ≤ q the
remaining n inequalities. For the vertex x′ , we have Cx′ = p and Dx′ < q since P ′

1 is
simple. The m binding inequalities for x′ are linearly independent, so C is invertible
and z 7→ x = −Cz + p is an affine transformation with inverse z = −C−1(x − p).
Let P1 = {x ∈ IRm | −C−1(x− p) ∈ P ′

1}. Then, with r = q −DC−1p,

P1 = {x ∈ IRm | −x ≤ 0, −DC−1x ≤ r }.

Corresponding points of P1 and P ′
1 have the same labels. Since the vertex 0 of

P1 corresponds to x′ in P ′
1 , 0 < r. Thus, the jth row of −DC−1x ≤ r can be

normalized by multiplication with the scalar 1/rj , so we can assume r = 1n . Then
P1 is defined as in (2.2) with the n × m transposed payoff matrix B⊤ = −DC−1 .
Similarly, we can find an m× n matrix A so that P2 in (2.2) is an affine transform
of P ′

2 . If desired, a constant can be to the entries of A and B to obtain (2.1), which
does not change the combinatorial structure of P1 and P ′

1 (see Figure 2.2). The
game (A,B) is nondegenerate by Proposition 2.3.
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As mentioned, the Lemke–Howson paths show that the number of equilibria of
a polytope pair (P1, P2) is even. For general polytopes, it is possible that (P1, P2)
has no equilibria, so this case is explicitly excluded in Proposition 2.4(b).

3. Using cyclic polytopes

By Proposition 2.4, nondegenerate games with many equilibria correspond to pairs
(P1, P2) of simple polytopes with many equilibria. Every vertex is part of at most
one equilibrium, so we look for polytopes with many vertices. For the n × n game
with A = B = In , both polytopes P1 and P2 in (2.2) are equal to the unit cube
[0, 1]n which has 2n vertices and where every vertex is part of an equilibrium. The
Quint–Shubik conjecture states that 2n is the maximum number of equilibria of a
polytope pair (P1, P2) for an n× n game.

Our construction, which refutes this conjecture, is based on the polars of cyclic
polytopes, which have a maximum number of vertices. For any subset P of IRd , its
polar P∆ (see Ziegler, 1995, Section 2.3) is defined by

P∆ = {y ∈ IRd | y⊤x ≤ 1 for all x ∈ P }.

Suppose P is a polytope with 0 in its interior. Then

P = {x ∈ IRd | c⊤i x ≤ 1, 1 ≤ i ≤ N } (3.1)

for suitable d-vectors c1, . . . , cN . Then P∆ is the convex hull of these vectors
c1, . . . , cN , so P∆ is a polytope. Furthermore, P∆ has 0 in its interior, and P∆∆ =
P . Suppose further that no inequality cix

⊤ ≤ 1 in (3.1) can be omitted. Then it
defines a facet of P , and ci is a vertex of P∆ . More generally, any face of P of
dimension d − k is defined by k binding inequalities in (3.1), and corresponds to
a face of dimension k − 1 of P∆ , given by the convex hull of the k corresponding
vertices of P∆ . The polytope P is simple (no vertex of P belongs to more than d
facets) iff its polar P∆ is simplicial (no facet of P∆ contains more than d vertices).
We obtain a simple polytope P with N facets and V vertices as the polar Q∆ of a
simplicial polytope Q with N vertices and V facets (after possibly translating Q so
that 0 is an interior point).

The cyclic polytope Cd(N) (see Ziegler, 1995, p. 14) in dimension d with
N vertices is defined as the convex hull of any N points on the moment curve
{µ(t) | t ∈ IR} in IRd , µ(t) = (t, t2, . . . , td)⊤ . Any d + 1 points on this curve
are affinely independent, so Cd(N) is simplicial. The particular choice of the ver-
tices µ(t1), . . . , µ(tN) does not affect the combinatorial structure of the polytope
Cd(N). Assume t1 < · · · < tN . A set S of d vertices corresponds to a 0-1 string
s = s1s2 . . . sN with si = 1 if µ(ti) ∈ S and si = 0 otherwise. The hyperplane H
through the points in S defines a facet of Cd(N) iff the string s fulfills the Gale
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evenness condition (Gale, 1963), that is, it contains no substring si . . . sj = 01 · · · 10
with an odd number i − j − 1 of 1’s (like 01110). Otherwise, if i − j − 1 was odd
(with si = sj = 0, si+1 = · · · = sj−1 = 1), then the two vertices µ(ti) and µ(tj)
would be on opposite sides of H , since the moment curve changes from one side of
H to the other at the points µ(ti), i ∈ S .

We will use this representation of the facets of Cd(N) by 0-1 strings. Since
the 1’s in these strings come in pairs (except possibly at the beginning or end),
the number Φ(d,N) of these strings is determined as follows. Suppose d is odd,

d = 2l + 1. Then l pairs of 1’s and N − d 0’s can be arranged in
(
l+N−d

l

)
many

ways, and the remaining 1 be put at the beginning or end, to obtain the string s, so

Φ(2l + 1, N) = 2

(
N − l − 1

l

)
. (3.2)

If d is even, d = 2l, then either s starts and ends with an even number of 1’s, and is
composed of l substrings 11 and N−d 0’s, or s is such a string with l−1 substrings
11 and an additional 1 put at each end. Hence,

Φ(2l, N) =

(
N − l

l

)
+

(
N − l − 1

l − 1

)
=

N

l

(
N − l − 1

l − 1

)
. (3.3)

No d-polytope with N vertices has more facets than the cyclic polytope Cd(N),
according to the Upper Bound Theorem for polytopes (McMullen, 1970; for a self-
contained proof see Mulmuley, 1994). Applied to the polars, this implies that no
d-polytope with N facets has more than Φ(d,N) vertices. Hence, the polytopes P1

and P2 in (2.2) have at most Φ(m,m + n) and Φ(n,m + n) vertices, respectively.
The bound is stricter for the polytope of smaller dimension since (3.2) and (3.3)
imply Φ(d,N) < Φ(d + 1, N) if d < N/2. Thus, we can state the following bound
on the number of equilibria, as observed by Keiding (1997):

Proposition 3.1. A nondegenerate m × n bimatrix game, m ≤ n, has at most
Φ(m,m+ n)− 1 Nash equilibria.

For m = n, Φ(n, 2n) grows asymptotically from n to n+1 by a factor
√
27/4 =

2.598..., much faster than 2n . We consider more precise asymptotics in Section 4.

For the rest of the paper, m = n = d. Let P∆
1 = P∆

2 = Cd(2d). In this polar
version of the equilibrium problem, both P∆

1 and P∆
2 have N = 2d vertices which

are labeled 1, . . . , N . Every equilibrium is a pair of facets of P∆
1 and P∆

2 such that
the labels of the vertices incident to these facets form the set {1, . . . , N}.

It suffices to look at the combinatorial definition of these facets. A facet of
P∆
1 corresponds to a certain 0-1 string s = s1s2 . . . sN , for example s = 01101100 if

d = 4, N = 8. These strings are balanced, that is, contain the same number of 0’s
and 1’s, and fulfill the Gale Evenness condition. We can assume that the labeling
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of the N vertices of P∆
1 is in the order of the positions in this string. The labeling

of the vertices of P∆
2 is given by a certain permutation ν of 1, . . . , N , such that s

(defining a facet of P∆
1 ) is part of an equilibrium iff the complementary permuted

string
sν := sν(1)sν(2) . . . sν(N)

defines a facet of P∆
2 , that is, fulfills the Gale Evenness condition, where 0 = 1

and 1 = 0. For example, suppose that ν is the identity permutation. Then for
s = 01101100, sν = 10010011 which does not fulfill Gale Evenness, whereas sν does
for s = 00011110. For these two strings s, the opposite holds when considering the
permutation

ν(i) =
{
i− 1 if i is even
i+ 1 if i is odd,

1 ≤ i ≤ N. (3.4)

With the identity permutation ν , the two cyclic polytopes P∆
1 and P∆

2 do not have
more than 2d equilibria, since only the strings s that are composed of substrings
00 and 11, except at the ends, have the property that both s and sν fulfill Gale
Evenness. However, the permutation ν in (3.4) leads to a number of equilibria that
exceeds 2d for d = 6 and all d ≥ 8.

Proposition 3.2. Let S(l) be the set of balanced 0-1 strings of length 4l composed
of the substrings 00, 11, and 0110. Let s be any balanced 0-1 string of length N = 2d.
Then for the permutation ν in (3.4), s and sν fulfill the Gale Evenness condition iff

(a) if d = 2l: s ∈ S(l) or s = 10s′01 for some s′ ∈ S(l − 1),

(b) if d = 2l + 1: s = 10s′ or s = s′01 for some s′ ∈ S(l).

Proof. Clearly, any string s in (a) or (b) fulfills the Gale Evenness condition. The
substrings 00, 11, and 0110 in s are complemented to 11, 00, and 1001, respectively,
and permuted by ν to substrings 11, 00, and 0110, respectively, in sν . Similarly, an
initial or terminal substring 10 or 01 is left as it is, so sν also fulfills Gale Evenness.
Conversely, suppose s is not of the described form. If s starts with the substring
10, remove it. Then, remove repeatedly all initial substrings 00, 11, or 0110 from s.
If the remainder starts with 10, 0100, or 0101, the Gale Evenness condition fails
for s. If it starts with 0111 (the only possibility left), it becomes 0100 in sν so the
condition fails there.

Let E(d) be the number of equilibria in our construction, where P∆
1 = P∆

2 =
Cd(2d) and the labels of P∆

2 are permuted by ν . By Proposition 3.2, E(d) is
determined by the number σ(l) := |S(l)| of balanced 00-11-0110 strings of length
4l = 2d, namely

E(2l) = σ(l) + σ(l − 1), E(2l + 1) = 2σ(l). (3.5)

If a string in S(l) contains k substrings 00, 0 ≤ k ≤ l, then it contains the same num-
ber of substrings 11 since it is balanced, and l−k substrings 0110. These substrings
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may be arranged in any manner, with (l + k)!/(k! k! (l − k)!) many possibilities.
Hence,

σ(l) =
l∑

k=0

(l + k)!

k! k! (l − k)!
=

l∑
k=0

(
l + k

k

)(
l

k

)
. (3.6)

The first values of σ(l) are given as follows. The numbers σ̃(l) are an asymptotic
approximation that we will prove in the next section.

l 0 1 2 3 4 5 6 7 8

σ(l) 1 3 13 63 321 1683 8989 48639 265729

σ̃(l) 3.4 13.8 65.5 330.4 1722.6 9165.3 49456.6 269636.8

(3.7)

Our construction produces the first counterexample to the Quint–Shubik conjecture
for d = 6 since E(6) = 76 > 26 (already E(4) = 16 = 24 , where the equilibrium
supports are quite different from the game where A = B = I4). In general, E(d) >
2d for all d ≥ 8.

A specific 6× 6 bimatrix game with 75 Nash equilibria is obtained as follows.
The 12 points µ(t) on the moment curve in IR6 for t = −6,−5, . . . ,−1 and t =
1, . . . , 6 determine the vertices of a cyclic polytope C6(12), which is translated to
have 0 in its interior, here chosen to coincide with the barycenter of the vertices.
The polar is defined by 12 inequalities, which for P2 are pairwise interchanged (the
first and second inequality, third and forth, and so on), according to ν in (3.4). The
affine transformation in the proof of Proposition 2.4 is applied to represent P1 and
P2 as in (2.2). Multiplying all payoffs by 1584 to obtain integers gives

A =



9504 −660 19976 −20526 1776 −8976

−111771 31680 −130944 168124 −8514 52764

397584 −113850 451176 −586476 29216 −178761

171204 −45936 208626 −263076 14124 −84436

1303104 −453420 1227336 −1718376 72336 −461736

737154 −227040 774576 −1039236 48081 −300036


,

B =



72336 48081 29216 14124 1776 −8514

−461736 −300036 −178761 −84436 −8976 52764

1227336 774576 451176 208626 19976 −130944

−1718376 −1039236 −586476 −263076 −20526 168124

1303104 737154 397584 171204 9504 −111771

−453420 −227040 −113850 −45936 −660 31680


.

12



The obvious open question is if this construction produces d × d games with
a maximum number of equilibria (for d = 6 and d ≥ 8). The cyclic polytopes are
plausible candidates because they have a maximum number of vertices. However,
not all of their vertices can be part of equilibria. For d ≤ 6, a check by computer
shows that among all permutations ν , the one in (3.4) maximizes the number of
equilibria. It is not the only such permutation, but all others produce very similar
sets of equilibria. For d = 6, the second largest number of equilibria that occurs
is 60. Permutations that yield no equilibria exist as well. Checking larger dimensions
is difficult because of the enormous growth of the number (2d)! of permutations.
The case d = 6 was checked in 12 hours on a workstation, d = 7 would take 390
times longer than that (changing from 12! to 14! permutations and from 112 to
240 vertices of Cd(2d)). The required computing effort for a brute-force check is
too large for d > 7. While the cyclic polytopes with their regular structure might
eventually permit a proof that the above construction is optimal, other polytopes
with many vertices may be very difficult to examine.

4. Asymptotics of upper and lower bounds

A nondegenerate d × d game has as most Φ(d, 2d) − 1 many Nash equilibria by
Proposition 3.1 and may have E(d) − 1 many as defined by (3.5) and (3.6). In
order to compare these functions better with 2d , we will find asymptotically equal
expressions. Functions f, g are called asymptotically equal, denoted f(n) ∼ g(n)
as n → ∞, if f(n)/g(n) → 1, that is, the relative error goes to zero (a very
accessible introduction to asymptotics and generating functions is Graham, Knuth,
and Patashnik, 1991). We apply Stirling’s formula

n! ∼
√
2πn

(
n

e

)n

to the upper bound U(d) := Φ(d, 2d) in (3.2) and (3.3), which yields

U(2l) = 2

(
3l − 1

l

)
= 2

2l

3l

(
3l

l

)
∼ 2

3

√
3

πl

(
27

4

)l

,

U(2l + 1) = 2

(
3l + 1

l

)
= 2

3l + 1

2l + 1

(
3l

l

)
∼ 3

2

√
3

πl

(
27

4

)l

.

Expressed in terms of d,

U(d) ∼


2

√
2

3π

√
27/4

d

√
d

≈ .921
2.5981d√

d
, d even√

2

π

√
27/4

d

√
d

≈ .798
2.5981d√

d
, d odd.

(4.1)
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Finding a similar asymptotic expression for σ(l) in (3.6) is more interesting.
This integer sequence has been studied before, as (3.7) looked up in Sloane and
Plouffe (1995) (and its electronic server, described there) reveal. The number σ(n)
is the number of “King paths on a chessboard” (Moser, 1955), that is, the number
of paths in a two-dimensional integer lattice from (0, 0) to (n, n) where the allowed
steps are one unit right, up, or diagonal (each such step corresponding to a substring
00, 11, or 0110, respectively). According to an exercise in Comtet (1974, p. 81),
σ(n) = Pn(3) for the nth Legendre polynomial Pn defined explicitly by

Pn(x) =
n∑

k=0

(
n+ k

k

)(
n

k

)(
x− 1

2

)k

(4.2)

(Moser and Zayachkowski, 1961) or recursively by P0(x) = 1, P1(x) = x and

Pn(x) = x (2− 1/n)Pn−1(x) − (1− 1/n)Pn−2(x) . (4.3)

The recurrence (4.3) can be verified by (4.2). For x = 3, σ(n) = Pn(3), it can –
with some effort – also be given a combinatorial interpretation in terms of the lattice
paths with diagonal steps. Using the generating function

g(y) =
∑
n≥0

σ(n) yn, (4.4)

the recurrence (4.3) for x = 3 is equivalent to the differential equation

g′(y)(1− 6y + y2) + g(y)(y − 3) = 0

which, with g(0) = σ(0) = 1, has the unique solution

g(y) =
1√

1− 6y + y2
. (4.5)

Regarded as a function on the complex plane C, the function g is analytic around
the origin with Taylor coefficients σ(n) as in (4.4). We use a theorem by Flajolet
and Odlyzko (1990) that shows how to obtain information about these coefficients
from the behavior of g at its dominant singularity (the one with smallest absolute
value). For simplicity, we state this theorem with overly strong assumptions, which
hold here, concerning the domain of the function; [1,∞) denotes the set of all reals z
with z ≥ 1.

Theorem 4.1. (Flajolet and Odlyzko, 1990, Corollary 2.) Assume that f(z) is
analytic in C− [1,∞), and that as z → 1 in C,

f(z) ∼ K (1− z)α

14



where K and α are real constants, α not a positive integer. Then, as n → ∞,

[zn]f(z) ∼ K

Γ(−α)
n−α−1. (4.6)

In (4.6), [zn]f(z) is the Taylor coefficient of zn in the expansion of f(z), and
Γ is the Gamma function, where Γ(1/2) =

√
π. We use Theorem 4.1 for α = −1/2

but have to normalize the dominant singularity of g(y) to one. It is given by the
smaller root r of the roots r and R of the polynomial 1− 6y + y2 ,

r = 3− 2
√
2, R = 3 + 2

√
2,

so that
g(y) =

(
(r − y)(R− y)

)−1/2
=
(
r (R− y)(1− y/r)

)−1/2
.

Let z = y/r, y = rz ,

f(z) = g(rz) =
(
r (R− rz)(1− z)

)−1/2
∼
(
r (R− r)

)−1/2
(1− z)−1/2

as z → 1. Using 1/r = R = (1 +
√
2)2 , (4.6) yields

[zn]f(z) ∼ 1 +
√
2

25/4
√
πn

as n → ∞ and, since g(y) = f(y/r),

σ(n) ∼ σ̃(n) :=
1 +

√
2

25/4
√
π

(1 +
√
2)2n√
n

. (4.7)

The relative error of this approximation is for n ≥ 6 less than two percent, as (3.7)
shows. A better approximation would introduce factors like (1+ c/n) for a constant
c so that the relative error is of order O(n−2) rather than O(n−1) (as it is known
for Stirling’s formula, see Graham et al., 1991), which we have not investigated.

The asymptotic expression becomes simpler when used for the number E(d) of
equilibria in (3.5) since 1 +

√
2 appears in the denominator and cancels. Expressed

in terms of d, as d → ∞,

E(d) ∼



√
2
√
2

π

(1 +
√
2)d√

d
≈ .949

2.414d√
d

, d even√√
2

π

(1 +
√
2)d√

d
≈ .671

2.414d√
d

, d odd.

(4.8)

As in (4.1), the numerical constants are rounded (with
√
27/4

d
in (4.1) rounded up

to 2.5981d so that the upper bound U(d) is asymptotically true).

As (4.1) and (4.8) show, the number E(d) of equilibria in our construction is
not that far away from the upper bound U(d), at least compared with the previously
known lower bound 2d . We summarize our result (where the upper bound is due to
Keiding, 1997).
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Theorem 4.2. The possible number of Nash equilibria in a nondegenerate d × d
bimatrix game is asymptotically, as d → ∞, bounded from above by U(d) in (4.1)
and from below by E(d) in (4.8).
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