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Abstract. The set of all Nash equilibria of a non-cooperative game with
more than two players is defined by equations and inequalities between
nonlinear polynomials, which makes it challenging to compute. This paper
presents an algorithm that computes this set for the simplest game with
more than two players with arbitrary (possibly non-generic) payoffs, which
has not been done before. We give new elegant formulas for completely
mixed equilibria, and compute visual representations of the best-response
correspondences and their intersections, which define the Nash equilibrium
set. These have been implemented in Python and will be part of a public
web-based software for automated equilibrium analysis. For small games,
which are often studied in economic models, a complete Nash equilibrium
analysis is desirable and should be feasible. This project demonstrates the
difficulties of this task and offers pathways for extensions to larger games.

Keywords: Equilibrium enumeration · Nash equilibrium · Three-player
game.

1 Introduction

Game theory provides mathematical models for multiagent interactions. The
primary solution concept is Nash equilibrium and its refinements (e.g., perfect
equilibrium, [12]) or generalizations such as correlated equilibrium (which arises
from regret-based learning algorithms). Already for two-player games, finding
just one Nash equilibrium is PPAD-hard [3,5]. However, this “intractability” of
the Nash equilibrium concept applies to large games. Many games that are used
as economic models are small, with less than a few dozen payoff parameters,
and often given in extensive form as game trees. It would be desirable to have
a complete analysis of all Nash equilibria of such a game, in order to study the
implications of the model. Such a complete analysis is known for two-player
games. Their Nash equilibria can be represented as unions of “maximal Nash
subsets” [14]. These are maximally “exchangeable” Nash equilibrium sets, that
is, products of two polytopes of mixed strategies that are mutual best responses.
Their non-disjoint unions form the topologically connected components of Nash
equilibria, and are computed by the lrsnash algorithm of Avis, Rosenberg, Savani,
and von Stengel [1], which works well for games with up to about twenty
strategies per player.



2 Sahar Jahani and Bernhard von Stengel

For games with more than two players, the set of all Nash equilibria cannot
be described in such a way, because it is determined by equations and inequalities
between nonlinear polynomials. The Gambit software package [10] provides
access to polynomial solvers in order to compute Nash equilibria for generic
games. “Generic” means that the payoffs do not represent edge cases, for example
when (11) below reads as “0 = 0”. The edge cases can be encoded as the zeros of
a suitable polynomial in the game parameters and form a set of measure zero.
Generic games have only finitely many equilibrium points. Non-generic games
can have infinite set of equilibria.

However, rather remarkably, there is to our knowledge no algorithm that
computes (in some description) the entire set of Nash equilibria for even the
simplest game with more than two players if the game is non-generic, which
naturally occurs for games in extensive form, such as “Selten’s horse” [12]; see
Section 4.3 below.

This paper describes an algorithm that computes the entire set of Nash
equilibria for arbitrary 2 × 2 × 2-games, that is, three-player games where every
player has two strategies. These are the simplest games with more than two
players that do not have a special structure (such as being a polymatrix game
arising from pairwise interactions, see [8]). While this seems like a straightforward
task, it is already challenging in its complexity.

One contribution of this paper is to reduce this complexity by carefully
preserving the symmetry among the players, and a judicious use of intermediate
parameters (equation (6) in Section 4) derived from the payoffs. We determine a
quadratic equation (see (11)) that has a regular structure using determinants (not
known to us before), which also implies that a generic 2× 2× 2 game has at most
two completely mixed equilibria (shown much more simply than in [4] or [9]).
The standard approach to manipulating such complicated algebraic expressions
is to use a computer algebra system [6].

As a “binary” game with only two pure strategies per player, the equilibria
of a 2 × 2 × 2 game can be visualized in a cube, but this needs some 3D graphics
to be accessible (our graphics can be “moved in 3D”). We think that good
visualizations of the geometry of equilibrium solutions of a game are important
for understanding them, and their possible structure (both for applications of
and research in game theory).

We present our algorithm in two parts: Identifying partially mixed equilibria
(on the faces or edges of the cube) which arise from two-player equilibria where
the third player plays a pure strategy that remains optimal; this part has a
straightforward generalization to larger numbers of strategies for the three
players, and may be practically very useful, certainly for a preliminary analysis.
The second part is to look for completely mixed equilibria, which is challenging
and does not generalize straightforwardly. A substantial part of the code, which
we cannot describe in full because it involves a large number of case distinctions,
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deals systematically with the degenerate cases (which do arise in game trees
even when payoffs are generic).

2 General form of the game

The following table describes the general form of a three-player game in which
each player has two strategies:

I
II

1 − 𝑝

𝑝

1 − 𝑞 𝑞

0 0
0 𝑎

0 0

𝐴 𝐵
0 𝑐

0 0

Front: 1 − 𝑟

III

Up:

Down:

Left: Right:

I
II

1 − 𝑝

𝑝

1 − 𝑞 𝑞

0 0
0 𝑏

𝛼 𝛾

𝐶 𝐷
0 𝑑

𝛽 𝛿

Back: 𝑟

III

Up:

Down:

Left: Right:

(1)

This game is played by player I, II, III choosing (simultaneously) their second
strategy with probability 𝑝, 𝑞, 𝑟, respectively. Player I chooses a row, either Up
or Down (abbreviated U and D), player II chooses a column, either Left or
Right (abbreviated L and R), and player III chooses a panel, either Front or Back
(abbreviated F and B). The strategy names are also chosen to remember the
six faces of the three-dimensional unit cube of mixed-strategy profiles (𝑝, 𝑞, 𝑟),
shown in Figure 1.

𝑝

𝑞
𝑟

ULF

DLF

DRF

DRB

URB

ULB

DLB

URF

Fig. 1: Cube of mixed-strategy probabilities (𝑝, 𝑞, 𝑟) drawn as in (1) down, right,
and backwards.
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Each of the eight cells in (1) has a payoff triple (𝑇, 𝑡, 𝜏) to the three players,
with the payoffs to player I, II, III in upper case, lower case, and Greek letters,
respectively. The payoffs in (1) are staggered and shown in color to distinguish
them more easily between the players.

The payoffs have been normalized so that each player’s first pure strategy
has payoff zero throughout. (Zero is the natural “first” number, as in 0 and 1
for the two strategies of each player, or for the payoffs.) This normalization is
obtained by subtracting a suitable constant from the player’s payoffs for each
combination of opponent strategies (e.g., each column for player I). This does
not affect best responses [13, p. 239f]. With this normalization, the first strategy
of each player gives always expected payoff zero.

For each player’s second strategy, the expected payoffs are as follows:

player I : 𝑆(𝑞, 𝑟) = (1 − 𝑞)(1 − 𝑟)𝐴 + 𝑞(1 − 𝑟) 𝐵 + (1 − 𝑞)𝑟 𝐶 + 𝑞𝑟 𝐷,
player II : 𝑠(𝑟, 𝑝) = (1 − 𝑟)(1 − 𝑝) 𝑎 + 𝑟(1 − 𝑝) 𝑏 + (1 − 𝑟)𝑝 𝑐 + 𝑟𝑝 𝑑,
player III : 𝜎(𝑝, 𝑞) = (1 − 𝑝)(1 − 𝑞) 𝛼 + 𝑝(1 − 𝑞) 𝛽 + (1 − 𝑝)𝑞 𝛾 + 𝑝𝑞 𝛿,

(2)

so the three players can be treated symmetrically. The cyclic shift among 𝑝, 𝑞, 𝑟
in (2), and corresponding choice of where to put 𝑏 and 𝑐 and 𝛽 and 𝛾 in (1), will
lead to more symmetric solutions.

The mixed-strategy profile (𝑝, 𝑞, 𝑟) is a mixed equilibrium if each player’s
mixed strategy is a best response against the other players’ strategies. That best
response is a pure (deterministic) strategy, unless the two pure strategies have
equal expected payoffs [11]. Hence, 𝑝 is a best response of player I to (𝑞, 𝑟) if the
following conditions hold:

𝑝 = 0 ⇔ 𝑆(𝑞, 𝑟) ≤ 0
𝑝 ∈ [0, 1] ⇔ 𝑆(𝑞, 𝑟) = 0
𝑝 = 1 ⇔ 𝑆(𝑞, 𝑟) ≥ 0 .

(3)

Similarly, 𝑞 is a best response of player II to (𝑟, 𝑝) and 𝑟 is a best response of
player III to (𝑝, 𝑞) if and only if

𝑞 = 0 ⇔ 𝑠(𝑟, 𝑝) ≤ 0
𝑞 ∈ [0, 1] ⇔ 𝑠(𝑟, 𝑝) = 0
𝑞 = 1 ⇔ 𝑠(𝑟, 𝑝) ≥ 0

𝑟 = 0 ⇔ 𝜎(𝑝, 𝑞) ≤ 0
𝑟 ∈ [0, 1] ⇔ 𝜎(𝑝, 𝑞) = 0
𝑟 = 1 ⇔ 𝜎(𝑝, 𝑞) ≥ 0 .

(4)

For each player I, II, or III, the triples (𝑝, 𝑞, 𝑟) that fulfill the respective conditions
for 𝑝, 𝑞, or 𝑟 in (3) or (4) define the best-response correspondence of that player, a
subset of the cube [0, 1]3. The set of Nash equilibria is the intersection of these
three sets. The best-response correspondence for player I, for example, has one
of the following forms, as shown in Figure 2:
(a) If 𝐴 = 𝐵 = 𝐶 = 𝐷 = 0, then 𝑆(𝑞, 𝑟) = 0 for all 𝑞, 𝑟 ∈ [0, 1] and player I’s

best-response correspondence is the entire cube [0, 1]3.
(b) If 𝐴, 𝐵, 𝐶, 𝐷 < 0, then 𝑆(𝑞, 𝑟) < 0 for all (𝑞, 𝑟) ∈ [0, 1]2 and strategy U strictly

dominates D, so that player I will always play U, and the game reduces
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(a) (b) (c)

Fig. 2: Different forms of best-response correspondence.

to a two-player game between players II and III. The same happens when
𝐴, 𝐵, 𝐶, 𝐷 > 0, in which case D strictly dominates U. In these two cases
the best-response correspondence of player I is the upwards “U face” or
downwards “D face” of the cube (as in Figure 2(b)), respectively.

(c) In all other cases, the best response of player I to (𝑞, 𝑟) is sometimes U
and sometimes D. The best-response correspondence of player I is then a
surface that consists of subsets of the U or D face according to (3), which are
connected by vertical parts, as in Figure 2(c) where player I is indifferent
between U and D. Figure 3 shows a generic example.

The Nash equilibria of a game can be divided to two categories, based on
which strategies are used:
• partially mixed equilibria in which at least one player plays a pure strategy

(including pure equilibria where all the players play pure strategies). These
equilibria are on the faces of the cube.

• completely mixed equilibria in which none of the players plays a pure strategy.
These equilibria are in the interior of the cube.

In order to find all the equilibria in these games, we can divide the procedure
into two parts:
(i) Find the partially mixed (including pure) equilibria.
(ii) Find the completely mixed equilibria.

We use different methods for each part. The union of the answers will be the
set of all equilibria of the game.

3 Partially mixed equilibria

In an equilibrium, each player’s strategy is a best response to the other players’
strategies. In a partially mixed equilibrium, at least one player plays a pure
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strategy. All partially mixed equilibria are thus identified via six subgames. In
each subgame we fix the strategy 𝑠𝑖 of one player 𝑖 = 1, 2, 3 to be 0 or 1. Fixing
one player’s strategy gives a 2 × 2 game for which we compute all equilibria.
Then, for each equilibrium component of the subgame, given by the profile 𝑠−𝑖
of strategies of the other two players, we check if it is the best response for the
fixed player 𝑖 and if it is, this means it is a partially mixed equilibrium (PMNE)
of the game. Algorithm 1 gives a simplified pseudo-code.

Algorithm 1 Finding partially mixed equilibria
Input: payoff matrix of a 2 × 2 × 2 game
Output: its set of partially mixed Nash equilibria
PMNE← ∅
for each player 𝑖 do

for 𝑠𝑖 ∈ {0, 1} do
SG← 2 × 2 game when player 𝑖 plays 𝑠𝑖
cand← all Nash equilibria of SG ⊲ using lrsNash algorithm
for each 𝑠−𝑖 ∈ cand do ⊲ strategy pair of the other two players

if𝑈𝑖(𝑠𝑖 , 𝑠−𝑖) ≥ 𝑈𝑖(1 − 𝑠𝑖 , 𝑠−𝑖) then ⊲𝑈𝑖 is the utility function for player 𝑖
add (𝑠𝑖 , 𝑠−𝑖) to PMNE

return PMNE

Algorithm 1 also applies when cand is an infinite set of equilibria of the
2 × 2 subgame. Such a set can contain line segments or be equal to the whole
facet of the cube. Then the output of Algorithm 1 is the intersection of the
best-response surface of player 𝑖 with cand. This intersection is computed as
follows: Equilibrium segments of a 2 × 2 game can be only horizontal or vertical;
then the strategy of one player is constant throughout the segment and just one
variable changes. Furthermore, the intersection of an entire facet of the cube with
the best-response surface has parameterized borders that are lines or hyperbola
arcs (see Section 4.2).

4 Completely mixed equilibria

In this section, we assume that all the partially mixed equilibria are found
using the previous algorithm. Here, we focus on finding the completely mixed
equilibria. First, we find these equilibria algebraically by solving the best-response
equations. Second, we display each player’s best-response correspondence as a
surface, and the intersection of these surfaces will also show the equilibria.
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Fig. 3: Example of best-response surfaces of a game with two completely mixed
equilibria and one partially mixed equilibrium, marked as black dots. (The actual
display can be 3D-animated and handled interactively.)

4.1 Finding the completely mixed equilibria algebraically

We focus on player I using (3); the consideration for players II and III is analogous.
We will show that the indifference equation 𝑆(𝑞, 𝑟) = 0, which by (3) is necessary
for player I to be able to mix (0 < 𝑝 < 1), defines either a line or a (possibly
degenerated) hyperbola, using possibly both branches.

Generically, the intersection of the three best-response surfaces is a finite
set of points. However, certain kinds of degeneracy may occur, which leads to
infinite components of Nash equilibria.

For our algebraic approach, we rewrite (2) as

𝑆(𝑞, 𝑟) = 𝐴 + 𝐾𝑞 + 𝐿𝑟 + 𝑀𝑞𝑟
𝑠(𝑟, 𝑝) = 𝑎 + 𝑘𝑟 + 𝑙𝑝 + 𝑚𝑟𝑝
𝜎(𝑝, 𝑞) = 𝛼 + 𝜅𝑝 + 𝜆𝑞 + 𝜇𝑝𝑞

(5)
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with
𝐾 = 𝐵 − 𝐴, 𝐿 = 𝐶 − 𝐴, 𝑀 = 𝐴 − 𝐵 − 𝐶 + 𝐷,
𝑘 = 𝑏 − 𝑎, 𝑙 = 𝑐 − 𝑎, 𝑚 = 𝑎 − 𝑏 − 𝑐 + 𝑑,
𝜅 = 𝛽 − 𝛼, 𝜆 = 𝛾 − 𝛼, 𝜇 = 𝛼 − 𝛽 − 𝛾 + 𝛿.

(6)

The expressions in (5) are linear in each of 𝑝, 𝑞, 𝑟, and we consider when they
are equal to zero, which defines the indifference surfaces:

𝐴 + 𝐾𝑞 + (𝐿 +𝑀𝑞)𝑟 = 0
𝑎 + 𝑙𝑝 + (𝑘 + 𝑚𝑝)𝑟 = 0
𝛼 + 𝜅𝑝 + (𝜆 + 𝜇𝑝)𝑞 = 0.

(7)

We first eliminate 𝑟 by multiplying the first equation in (7) with (𝑘 +𝑚𝑝) and the
second with −(𝐿 +𝑀𝑞) and adding them, which gives

(𝐴 + 𝐾𝑞)(𝑘 + 𝑚𝑝) − (𝐿 +𝑀𝑞)(𝑎 + 𝑙𝑝) = 0 (8)

or, using determinants,���� 𝐴 𝐿
𝑎 𝑘

���� + ���� 𝐴 𝐿
𝑙 𝑚

���� 𝑝 + ���� 𝐾 𝑀
𝑎 𝑘

���� 𝑞 + ���� 𝐾 𝑀
𝑙 𝑚

���� 𝑝𝑞 = 0. (9)

In the same way, we eliminate 𝑞 by multiplying the last equation in (7) with���� 𝐾 𝑀
𝑎 𝑘

���� + ���� 𝐾 𝑀
𝑙 𝑚

���� 𝑝 and (9) with −(𝜆 + 𝜇𝑝) and addition, which gives(���� 𝐾 𝑀
𝑎 𝑘

���� + ���� 𝐾 𝑀
𝑙 𝑚

���� 𝑝) (𝛼 + 𝜅𝑝) − (���� 𝐴 𝐿
𝑎 𝑘

���� + ���� 𝐴 𝐿
𝑙 𝑚

���� 𝑝) (𝜆 + 𝜇𝑝) = 0 (10)

or (verified by expanding each 3 × 3 determinant in the last column)������ 𝐴 𝐿 𝛼
𝐾 𝑀 𝜆
𝑎 𝑘 0

������ + ©­«
������ 𝐴 𝐿 𝛼
𝐾 𝑀 𝜆
𝑙 𝑚 0

������ +
������ 𝐴 𝐿 𝜅
𝐾 𝑀 𝜇
𝑎 𝑘 0

������ª®¬ 𝑝 +
������ 𝐴 𝐿 𝜅
𝐾 𝑀 𝜇
𝑙 𝑚 0

������ 𝑝2 = 0. (11)

Unless it states 0 = 0, the quadratic equation (11) has at most two solutions
for 𝑝, which have to belong to [0, 1] to represent a mixed equilibrium strategy of
player I. Substituted into the linear equation (9) for 𝑞 and the second equation
in (7) for 𝑟, this then determines 𝑞 and 𝑟 uniquely unless one of the equations
has no or infinitely many solutions. If 𝑞 and 𝑟 belong to [0, 1], these determine
mixed equilibria. They are completely mixed if 𝑝, 𝑞, 𝑟 are all strictly between 0
and 1. Moreover, a generic 2 × 2 × 2 game has therefore at most two completely
mixed equilibria (as proved in much more complicated ways by [4] and [9]).

The system (5) can be solved in exactly the same manner to derive a quadratic
equation for 𝑞, where in (5), we only need to move the first equation into last
position and change 𝐴, 𝑎, 𝛼 to 𝑎, 𝛼, 𝐴 respectively, and similarly for the other
letters. Then (11) becomes������ 𝑎 𝑙 𝐴

𝑘 𝑚 𝐿
𝛼 𝜅 0

������ + ©­«
������ 𝑎 𝑙 𝐴
𝑘 𝑚 𝐿
𝜆 𝜇 0

������ +
������ 𝑎 𝑙 𝐾
𝑘 𝑚 𝑀
𝛼 𝜅 0

������ª®¬ 𝑞 +
������ 𝑎 𝑙 𝐾
𝑘 𝑚 𝑀
𝜆 𝜇 0

������ 𝑞2 = 0. (12)
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Similarly, the quadratic equation for 𝑟 states������ 𝛼 𝜆 𝑎
𝜅 𝜇 𝑙
𝐴 𝐾 0

������ + ©­«
������ 𝛼 𝜆 𝑎
𝜅 𝜇 𝑙
𝐿 𝑀 0

������ +
������ 𝛼 𝜆 𝑘
𝜅 𝜇 𝑚
𝐴 𝐾 0

������ª®¬ 𝑟 +
������ 𝛼 𝜆 𝑘
𝜅 𝜇 𝑚
𝐿 𝑀 0

������ 𝑟2 = 0. (13)

As before, in the generic case, any of the up to two solutions 𝑞 to (12) determines
𝑟 and 𝑝. Similarly, any of the up to two solutions 𝑟 to (13) determines 𝑝 and 𝑞.

If 𝑝, 𝑞, 𝑟 are the solutions to (11), (12), (13) in a completely mixed equilibrium,
they may be irrational numbers. They can be output as approximate floating-
point numbers or symbolically with square roots as algebraic numbers (assuming
rational payoffs as inputs).

The conditions (11), (12), (13) are all necessary when each player is required
to be indifferent between his pure strategies. However, they may hold trivially
in the form 0 = 0, which may indicate infinite solution sets; an example is (11)
for case (a) when 𝐴 = 𝐾 = 𝐿 = 𝑀 = 0. Furthermore, even if (11) has two real
solutions 𝑝, say, then for one or both choices of 𝑝 the third equation in (7) may
state 0 = 0 and then 𝑞 is not determined; one would expect that this implies that
(12) states 0 = 0 as well. A further source of infinite solutions may be that some
solutions for 𝑝, 𝑞, or 𝑟 are 0 or 1, because then the respective player plays a pure
strategy and does not have to be indifferent. This should come up in the analysis
of the partially mixed equilibria in the previous section.

Other than these quadratic equations, we can acquire more information
about the game by studying the relation between any two variables. Using (5),
we can write each variable as a function of the other variable. So, from 𝑆(𝑞, 𝑟) = 0
we will have:

𝑞 =
−𝐿𝑟 − 𝐴
𝑀𝑟 + 𝐾 = 𝑓𝑞(𝑟), 𝑟 =

−𝐾𝑞 − 𝐴
𝑀𝑞 + 𝐿 = 𝑓𝑟(𝑞). (14)

Similarly, we have four more equations derived from the other two equations.
These equations will help us identify the mixed equilibria when the quadratic
equations have infinite solutions and do not give us any information. An example
for this case is the game shown in Figure 4. In this game, we have 0 = 0 for
(11) and (12). Also, (13) cannot be formed because we have to multiply by 0 to
eliminate other variables; hence, we have to look at the relation between the
variables. Here, 𝑟 cannot be written as a function of other variables (division
by 0), and for the other relations we have

𝑝 = 𝑓 (𝑞) = −8𝑞+7
−8𝑞+8 , 𝑞 = 𝑓 (𝑝) = −8𝑝+7

−8𝑝+8 ,

𝑝 = 𝑓 (𝑟) = 1
2 , 𝑞 = 𝑓 (𝑟) = 3

4 .

These relations show that there is a line of equilibria in the 𝑟 direction where
𝑝 = 1

2 and 𝑞 = 3
4 , as one can see on each player’s best-response surface in Figure 4.
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I
II

1 − 𝑝

𝑝

1 − 𝑞 𝑞

0 0
0 2

0 0

−3 1
0 −2

0 0

F: 1 − 𝑟

III

U:

D:

L: R:

I
II

1 − 𝑝

𝑝

1 − 𝑞 𝑞

0 0
0 2
−7 1

−3 1
0 −2

1 1

B: 𝑟

III

U:

D:

L: R:

Fig. 4: Example of a game with a line of mixed equilibria when the quadratic
equations have infinitely many solutions.
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4.2 Displaying best-response surfaces

To see how the best-response surfaces look like, we focus on player I’s expected
payoff equation; for the other players it is similar. With (6) and (5), the condition
𝑆(𝑞, 𝑟) = 0 states

𝑆(𝑞, 𝑟) = 𝐴 + 𝐾𝑞 + 𝐿𝑟 +𝑀𝑞𝑟 = 0 . (15)

(a) First, we exclude the case when (𝐴, 𝐵, 𝐶, 𝐷) = (0, 0, 0, 0) because it means
the player is completely indifferent between the two strategies in every point.
Then every point in [0, 1] × [0, 1] × [0, 1] will be part of the best-response
correspondence. In the next step we compute the intersection of the best-
response correspondences of the other two players, so we do not need to
take this first player into account.

We continue by studying different cases for 𝑆(𝑞, 𝑟) = 0 when at least one of
𝐴, 𝐵, 𝐶, 𝐷 is not 0.
(b) The linear case applies if 𝑀 = 𝐴 − 𝐵 − 𝐶 + 𝐷 = 0, that is,

𝐴 + 𝐾𝑞 + 𝐿𝑟 = 0. (16)

If 𝐾 = 𝐿 = 0 then 𝐴 = 𝐵 = 𝐶 = 𝐷 and either 𝐴 = 0 and (a) applies, or
𝐴 ≠ 0 and either U or D is dominant (and (16) has no solution), so assume
(𝐾, 𝐿) ≠ (0, 0). If 𝐾 = 0 then the line is defined by a constant for 𝑟, namely
𝑟 = −𝐴/𝐿, and if 𝐿 = 0 then the line is defined by a constant for 𝑞, namely
𝑞 = −𝐴/𝐾. Otherwise, (16) expresses a standard linear relationship between
𝑞 and 𝑟. In all cases, it is a line in the 𝑞 × 𝑟 plane which is extended vertically
in the 𝑝-axis direction. According to (3), on this plane, Player I is indifferent
between the first and second strategy. For the points on each side of the
plane, (3) determines that the best response is 𝑝 = 0 or 𝑝 = 1.

(c) Now, suppose 𝑀 ≠ 0. Then (15) is equivalent to

𝐴

𝑀
+ 𝐾

𝑀
𝑞 + 𝐿

𝑀
𝑟 + 𝑞𝑟 = 0 . (17)
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Adding 𝐾𝐿
𝑀2 − 𝐴

𝑀 on both sides of this equation and using (6) gives(
𝑞 + 𝐿

𝑀

) (
𝑟 + 𝐾

𝑀

)
=
𝐾𝐿 − 𝐴𝑀

𝑀2 =
𝐵𝐶 − 𝐴𝐷

𝑀2 . (18)

If 𝐵𝐶 − 𝐴𝐷 = 0, then (18) states that 𝑞 = − 𝐿
𝑀 or 𝑟 = − 𝐾

𝑀 . This defines two
perpendicular lines, each similar to a line in case (b). This is a degenerate
hyperbola, with a best-response surface like the blue surface in Figure 5 in
the 𝑞 direction, or as in this picture:

If 𝐵𝐶 − 𝐴𝐷 ≠ 0, then these two lines are the asymptotes of a hyperbola
defined by (18). Depending on the values of 𝐴, 𝐵, 𝐶, 𝐷, it is possible that the
[0, 1] × [0, 1] rectangle contains two parts of the arcs of hyperbola or a part of
one of the arcs (see the green and red best-response surface in Figure 3), or just a
point on it, or none at all (but then the game has a dominated strategy). For the
points (𝑞, 𝑟) that are not located on the hyperbola, player I’s pure best response is
determined according to the inequalities 𝑆(𝑞, 𝑟) < 0 and 𝑆(𝑞, 𝑟) > 0 in (3). Note
that when (15) with “<” or “>” instead of “=” is replaced by the corresponding
inequality in (17), its direction is reversed if 𝑀 < 0.
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4.3 A well-known example

The extensive-form game in Figure 5 is a famous example from Selten [12, Fig. 1].
The game tree is in the shape of a horse, so this game is also known as “Selten’s
horse”. The strategic form of this game is displayed on the right. It is known
that this game has two segments of partially mixed equilibria and no completely
mixed equilibria. Below that the best-response correspondences are displayed,
with the Nash equilibria marked in black. There are two segments of equilibria,
which include the pure equilibria (𝑈, 𝑅, 𝐹) and (𝐷, 𝑅, 𝐵).

5 Conclusions

The computational complexity of finding Nash equilibria is often concerned with
asymptotic properties such as PPAD-hardness. Many concrete games are small
and would profit from a complete analysis of all its Nash equilibria. This has been
done for two-player games, but is significantly more difficult for general games
with more than two players. Solvers based on solving polynomial equations and
inequalities often fail in degenerate cases, which can have an infinite number of
equilibria [10].

Our contribution is a “proof of principle” that the complete equilibrium set
can be computed and displayed in full no matter how degenerate the game is.
We apply it only to the simplest multiplayer game, namely three players with
two strategies each, which had not been done before. We also streamlined the
corresponding algebraic expressions using determinants in (11), (12), (13) and
exploiting the symmetry of the setup. We did exploit the fact that the mixed-
strategy profiles can be displayed in a three-dimensional cube. Our experience
with the implementation is that one needs to deal with a large number of case
distinctions for the possible degenerate cases.

Another insight is that computing partially mixed equilibria is a fruitful
approach. For larger games, this means reducing the number of strategies for
some players. This can already give information about equilibria with relatively
little extra effort.

For larger games, it seems advisable to proceed incrementally in the same
manner: Computing partially mixed equilibria, and using algebraic solvers
such as done by Datta [6] under the assumption of nondegeneracy. The main
question in this context is what kind of multiplayer games people really want
to solve. Using models such as polymatrix games, which are based on pairwise
interactions [8,7,2], may be the appropriate next step in this direction.

Acknowledgements We thank the anonymous referees for helpful comments.
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Fig. 5: A famous example: “Selten’s horse”, see Section 4.3.



Automated Equilibrium Analysis of 2 × 2 × 2 Games 15

References

1. Avis, D., Rosenberg, G.D., Savani, R., von Stengel, B.: Enumeration of Nash equilibria
for two-player games. Economic Theory 42(1), 9–37 (2010)

2. Cai, Y., Candogan, O., Daskalakis, C., Papadimitriou, C.: Zero-sum polymatrix games:
A generalization of minmax. Mathematics of Operations Research 41(2), 648–655
(2016)

3. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash
equilibria. Journal of the ACM 56(3), Article 14 (2009)

4. Chin, H., Parthasarathy, T., Raghavan, T.: Structure of equilibria in N-person non-
cooperative games. International Journal of Game Theory 3(1), 1–19 (1974)

5. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a
Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

6. Datta, R.S.: Finding all Nash equilibria of a finite game using polynomial algebra.
Economic Theory 42(1), 55–96 (2010)

7. Govindan, S., Wilson, R.: Computing Nash equilibria by iterated polymatrix approxi-
mation. Journal of Economic Dynamics and Control 28(7), 1229–1241 (2004)

8. Howson, Jr, J.T.: Equilibria of polymatrix games. Management Science 18(5, Part I),
312–318 (1972)

9. McKelvey, R.D., McLennan, A.: The maximal number of regular totally mixed Nash
equilibria. Journal of Economic Theory 72(2), 411–425 (1997)

10. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game
theory, version 16.0.1 (2016), http://www.gambit-project.org

11. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295 (1951)
12. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive

games. International Journal of Game Theory 4(1), 25–55 (1975)
13. von Stengel, B.: Game Theory Basics. Cambridge University Press, Cambridge, UK

(2022)
14. Winkels, H.M.: An algorithm to determine all equilibrium points of a bimatrix game.

In: Moeschlin, O., Pallaschke, D. (eds.) Game Theory and Related Topics, pp. 137–148.
North-Holland, Amsterdam (1979)

http://www.gambit-project.org

	Automated Equilibrium Analysis of 222 Games

