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McLennan and Tourky showed that “imitation games” provide a new view of the computation
of Nash equilibria of bimatrix games with the Lemke—Howson algorithm. In an imitation game,
the payoff matrix of one of the players is the identity matrix. We study the more general “unit
vector games,” which are already known, where the payoff matrix of one player is composed
of unit vectors. Our main application is a simplification of the construction by Savani and von
Stengel of bimatrix games where two basic equilibrium-finding algorithms take exponentially
many steps: the Lemke—Howson algorithm, and support enumeration.
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1 Introduction

A bimatrix game is a two-player game in strategic form. The Nash equilibria of a bimatrix game
correspond to pairs of vertices of two polyhedra derived from the payoff matrices. These vertex pairs
have to be “completely labeled,” which expresses the equilibrium condition that every pure strategy
of a player (represented by a “label”) either is a best response to the other player’s mixed strategy or
is played with probability zero.

This polyhedral view gives rise to algorithms that compute a Nash equilibrium. A classical method
is the algorithm by Lemke and Howson (1964) which follows a path of “almost completely labeled”
polytope edges that terminates at Nash equilibrium. The Lemke—Howson (LH) algorithm has been
one inspiration for the complexity class PPAD defined by Papadimitriou (1994) of computational
problems defined by such path-following arguments, which includes more general equilibrium prob-
lems such as the computation of approximate Brouwer fixed points. An important result proved by
Chen and Deng (2006) and Daskalakis et al. (2009) states that every problem in the PPAD class can
be reduced to finding a Nash equilibrium of a bimatrix game, which makes this problem “PPAD-
complete” (The problem of finding the Nash equilibrium at the end of a specific path is a much
harder, namely PSPACE-complete; see Goldberg et al. 2013.)

If an algorithm takes exponentially many steps (measured in the size of its input) for certain
problem instances, these are considered “hard” instances for the algorithm. Savani and von Stengel
(2006) constructed bimatrix games that are hard instances for the LH algorithm. Their construction
uses “dual cyclic polytopes” which have a well-known vertex structure for any dimension and number
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of linear inequalities. Morris (1994) used similarly labeled dual cyclic polytopes where all “Lemke
paths” are exponentially long. A Lemke path is related to the path computed by the LH algorithm, but
is defined on a single polytope that does not have a product structure corresponding to a bimatrix
game. The completely labeled vertex found by a Lemke path can be interpreted as a symmetric
equilibrium of a symmetric bimatrix game. However, as in the example in Figure 4 below, such a
symmetric game may also have non-symmetric equilibria which here are easy to compute, so that
the result by Morris (1994) seemed unsuitable for describing games that are hard to solve with the
LH algorithm.

The “imitation games” defined by McLennan and Tourky (2010) changed this picture. In an
imitation game, the payoff matrix of one of the players is the identity matrix. The mixed strategy
of that player in any Nash equilibrium of the imitation game corresponds exactly to a symmetric
equilibrium of the symmetric game defined by the payoff matrix of the other player. In that way,
an algorithm that finds a Nash equilibrium of a bimatrix game can be used to find a symmetric
Nash equilibrium of a symmetric game. (The converse statement that a bimatrix game can be
“symmetrized” (see Proposition 2 below) is an earlier folklore result stated for zero-sum games by
Gale et al. 1950.)

In one sense the two-polytope construction of Savani and von Stengel (2006) was overly com-
plicated: the imitation games by McLennan and Tourky (2010) provide a simple and elegant way to
turn the single-polytope construction of Morris (1994) into exponentially long LH paths for bimatrix
games. In another sense, the construction of Savani and von Stengel was not redundant. Namely, the
square imitation games obtained from Morris (1994) have a single completely mixed equilibrium
that is easily computed by equating all payoffs for all pure strategies. Savani and von Stengel (2006)
extended their construction of square games with long LH paths (and a single completely mixed
equilibrium) to non-square games that are simultaneously hard for the LH algorithm and “support
enumeration,” which is another natural and simple algorithm for finding equilibria. The support of
a mixed strategy is the set of pure strategies that are played with positive probability. Given a pair
of supports of equal size, the mixed- strategy probabilities are found by equating all payoffs for the
other player’s support, which then have to be compared with payoffs outside the support to establish
the equilibrium property (see Dickhaut and Kaplan 1991).

In this paper, we extend the idea of imitation games to games where one payoff matrix is arbitrary
and the other is a set of unit vectors. We call these unit vector games. An imitation game is an example
of a unit vector game, where the unit vectors form an identity matrix. The main result of this paper
is an application of unit vector games: we use them to extend Morris’s construction to obtain non-
square bimatrix games that use only one dual cyclic polytope, rather than the two used by Savani and
von Stengel, and which are simultaneously hard both for the LH algorithm and support enumeration.
This result (Theorem 3) was first described by Savani (2006, Section 3.8).

Before presenting this construction in Section 3, we introduce in Section 2 the required
background on labeled best-response polytopes for bimatrix games, in an accessible presentation
due to Shapley (1974) that we think every game theorist should know. We define unit vector games
and the use of imitation games, and their relationships to the LH algorithm. We will make the case
that unit vector games provide a general and simple way to construct bimatrix games using a single
labeled polytope.

To our knowledge, unit vector games were first defined and used by Balthasar (2009, Lemma 4.10)
in a different context, namely in order to prove that a symmetric equilibrium of a non-degenerate
symmetric game that has positive “symmetric index” can be made the unique symmetric equilibrium
of a larger symmetric game by adding suitable strategies (Balthasar 2009, Theorem 4.1).
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2 Unit vector games

In this section, we first describe in Section 2.1 how labeled polyhedra capture the “best-response
regions” of mixed strategies where a particular pure strategy of the other player is a best response,
and how these are used to identify Nash equilibria. In Section 2.2 we introduce unit vector games,
whose equilibria correspond to completely labeled vertices of a single labeled polytope. In Section 2.3
we discuss the role of imitation games for symmetric games and their symmetric equilibria. Finally,
in Section 2.4, we show how Lemke paths defined for single labeled polytopes are “projections” of
seemingly more general LH paths in the case of unit vector games (Theorem 1).

2.1 Nash equilibria of bimatrix games and polytopes

Consider an m x n bimatrix game (A, B). We describe a geometric-combinatorial “labeling”
method, due to Shapley (1974), that allows an easy identification of the Nash equilibria of the
game. It has an equivalent description in terms of polytopes derived from the payoff matrices.

Let 0 be the all-zero vector and let 1 be the all-one vector of appropriate dimension. All vectors
are column vectors and C is the transpose of any matrix C, so 17 is the all-one row vector. Let X
and Y be the mixed-strategy simplices of the two players,

X=@xeR"|x>01x=1}, Y={yeR'|y>0,1"y=1}. 1)

It is convenient to identify the m + n pure strategies of the two players by separate labels where the
labels 1, ..., m denote the m pure strategies of the row player 1 and the labels m + 1,..., m +n
denote the n pure strategies of the column player 2.

Consider mixed strategies x € X and y € Y. We say that x haslabelm + jfor1 < j<nifjisa
pure best response of player 2 to x. Similarly, y has label i for 1 < i < m ifi is a pure best response of
player 1 to y. In addition, we say that x has label i for 1 <i < m ifx; = 0, and that y haslabel m 4 j
for 1 < j < nif y; = 0. That is, a mixed strategy such as x has label i (one of the player’s own pure
strategies) if i is not played.

In a Nash equilibrium, every pure strategy that is played with positive probability is a best response
to the other player’s mixed strategy. In other words, if a pure strategy is not a best response, it is
played with probability zero. Hence, a mixed-strategy pair (x, y) is a Nash equilibrium if and only if
every labelin {1, ..., m 4 n} appears as a label of x or of y. The Nash equilibria are therefore exactly
those pairs (x, y) in X x Y that are completely labeled in this sense.

As an example, consider the 3 x 3 game (A, B) with

0 0 0 2 4
A= 1 0|, B=|3 2 0]. (2)
0 1 0 2 0

[ R

Thelabels 1, 2, 3 represent the pure strategies of player 1 and 4, 5, 6 those of player 2. Figure 1 shows
X and Y with these labels shown as circled numbers. The interiors of these triangles are covered by
best-response regions labeled by the other player’s pure strategies, which are closed polyhedral sets
where the respective pure strategy is a best response. For example, the best-response region in ¥ with
label 1 is the set of those (y1, y2, y3) such that y; > y; and y; > ys, due to the particularly simple
form of A in (2). The outsides of X and Y are labeled with the players’ own pure strategies where
these are not played. These outside facets are opposite to the vertex where only that pure strategy is
played; for example, label 1 is the label of the facet of X opposite to the vertex (1, 0, 0). In Figure 1
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Figure 1 Labeled mixed-strategy sets X and Y for the game (2).

there is only one pair (x, y) that is completely labeled, namely x = (%, % 0) with labels 3, 4, 5 and
y= (%, % 0) with labels 1, 2, 6, so this is the only Nash equilibrium of the game.

The subdivision of X and Y into best-response regions is most easily seen with the help of the
“upper envelope” of the payoffs to the other player, which are defined by the following polyhedra.
Let

P={(x,v)e XxR|B'x<1lv}, O0={(y,u)eYxR|Ay<1lu}. (3)

For the example (2), the inequalities BTx < 1v state that 3x; < v, 2x] + 2x2 + 2x3 < v, 4x] < v,
which say that v is at least the best-response payoff to player 2. If one of these inequalities is tight
(holds as equality), then v is exactly the best-response payoff to player 2. The left-hand diagram in
Figure 2 shows these “best-response facets” of P, and their projection to X by ignoring the payoff
variable v, which defines the subdivision of X into best-response regions as in the left-hand diagram
in Figure 1.

Throughout this paper, assume (without loss of generality) that A and BT are non-negative
and have no zero column. Then vand u in BT x < 1vand Ay < 1u are always positive. By dividing
these inequalities by v and u, respectively, and writing x; instead of x;/v and y; instead of y;/u, the
polyhedra P and Q are replaced by P and Q,

P={xeR"|x>0,B'x<1}, Q={yeR"|Ay<1, y>0}, (4)

which are bounded and therefore polytopes. For B in (2), P is shown on the right in Figure 2.

X3

4
v 3
2
A ]
4 000, 4
3 3
3] ‘ (5 ‘ :
o] ® P O) :
(1,0,0) 0,1,0) X X,

Figure 2 Best-response facets of the polyhedron P in (3), and the polytope P in (4), for the game in (2).

10 International Journal of Economic Theory 12 (2016) 7-27 © IAET



Rahul Savani and Bernhard von Stengel Unit vector games

Both polytopes P and Q in (4) are defined by m + n inequalities that correspond to the pure
strategies of the player, which we have denoted by the labels 1, . .., m + n. We can now identify the
labels, as pure best responses of the other player, or unplayed own pure strategies, as tight inequalities
in either polytope. That is, a point x in P haslabel k if the kth inequality in P is tight, thatis, if x; = 0
forl <k <mor (B'x)j_m =1form+1<k <m+n. Similarly, y in Q has label k if (Ay)x =1
forl <k <mor yr_m =0form+ 1<k <m+n. Then (x,y) in P x Q is completely labeled if
x and y together have all labels in {1, ..., m + n}. With the exception of (0, 0), these completely
labeled points of P x Q represent (after rescaling to become pairs of mixed strategies) exactly the
Nash equilibria of the game (A, B).

The pair (x, y) in P x Q is completely labeled if

xi =0or(Ay); =1foralli=1,...,m, yj=00r(BTx)j=lforalljzl,...,n. (5)

Because x,1 — Ay, y,and 1 — BT x are all non-negative, the complementarity condition (5) can also
be stated as the orthogonality condition

x'1—Ay)=0, y' (1-B'x)=0. (6)

The characterization of Nash equilibria as completely labeled pairs (x, y) holds for arbitrary
bimatrix games. For considering algorithms, it is useful to assume that the game is non-degenerate
in the sense that no point in P has more than m labels, and no point in Q has more than n labels.
Clearly, for a non-degenerate game, in an equilibrium (x, y) each label appears exactly once as a label
of either x or y.

Non-degeneracy is equivalent to the condition that the number of pure best responses against a
mixed strategy is never larger than the size of the support of that mixed strategy. It implies that P is
a simple polytope in the sense that no point of P lies on more than m facets, and similarly that Q is a
simple polytope. A facet is obtained by turning one of the inequalities that define the polytope into
an equality, provided that the inequality is irredundant, that is, cannot be omitted without changing
the polytope. A redundant inequality in the definition of P and Q may also give rise to a degeneracy
if it corresponds to a pure strategy that is weakly (but not strictly) dominated by, or payoff equivalent
to, a mixture of other strategies. For a detailed discussion of degeneracy, see von Stengel (2002).

2.2 Unit vector games and a single labeled polytope

The components of the kth unit vector ey are 0 except for the kth component, whichis 1. Inanm X n
unit vector game (A, B), every column of A is a unit vector in R™. The matrix B is arbitrary, and
without loss of generality BT is non-negative and has no zero column.

In this subsection, we consider such a unit vector game (A, B). Let the jth column of A be the
unit vector ey j), for 1 < j < n. Then the sequence £(1), ..., £(n) together with the payoff matrix B
completely specifies the game.

For this game, the polytope Q in (4) has a very special structure. For 1 <i < m, let

Ni={jle(j)=i 1= j=n} (7)
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so that N; is the set of those columns j whose best response is row i. These sets N; are pairwise

disjoint, and their union is {1, .. ., n}. Then clearly
Q=<SyeR"|) y <L 1<i<m y>0,. (8)
JEN;

That is, except for the order of inequalities, Q is the product of m simplices of the form {z € RV |
ZjeN,» zj <1, 2> 0},for 1 <i < m.Ifeach N; is a singleton, then, by (7), A is a permuted identity
matrix, n = m, each simplex is the unit interval, and Q is the n-dimensional unit cube.

In any bimatrix game, the polytopes P and Q in (4) each have m + n inequalities that correspond
to the pure strategies of the two players. Turning the kth inequality into an equality typically defines
a facet of the polytope, which defines the label k of that facet, 1 < k < m + n.

In our unit vector game (A, B) where the jth column of A is the unit vector ey ), for1 < j < n,
we introduce the labeled polytope P*,

Pl={xeR"|x>0, B'x<1}, 9)

where the m + n inequalities of P! have the labels i for the first m inequalities x; > 0, 1 <i <m,
and the jth inequality of BT x < 1 has label £(}), for 1 < j < n. Thatis, P* is just the polytope P in
(4) except that the last n inequalities are labeled with €(1), ..., £(n), each of which is a number in
{1,...,m)}. A point x of P? is completely labeled if every number in {1, ..., m} appears as the label
of an inequality that is tight for x. In particular, if P¢ is a simple polytope with one label for each
facet, then x is completely labeled if x is a vertex of P so that the m facets that x lies on together
have all labels 1, ..., m.

The following proposition shows that with these labels, P carries all the information about
the unit vector game, and the polytope Q is not needed. The proposition was first stated in a dual
version by Balthasar (2009, Lemma 4.10), and in essentially this form by Végh and von Stengel (2015,
Proposition 1). Its proof also provides the first step of the proof of Theorem 1 below.

Proposition 1 Consider a labeled polytope P* with labels as described following (9). Then x is a
completely labeled point of P* — {0} if and only if for some y € Q the pair (x, y) is (after scaling) a
Nash equilibrium of the m x n unit vector game (A, B) where A = [eg(1) - - - eg(m)].

PrROOE: Let (x,y) € P x Q — {(0, 0)} be a Nash equilibrium, so it has all labels in {1, ..., m 4 n}.
Then x is a completely labeled point of P* for the following reason. If x; = 0 then x has label i. If
x; > 0 then y has label i, that is, (Ay); = 1, which requires that for some j we have y; > 0 and the
Jjth column of A is equal to ¢;, that is, £(j) = i. Because y; > 0, and (x, y) is completely labeled, x
has label m 4 j in P, that is, (BTx)j = 1, which means that x has label £(j) =i in P as required.
Conversely, let x be a completely labeled point of P* — {0}. Then for each i in {1, ..., m} with
x; > 0, label i for x comes from a binding inequality (BTx)j = 1 with label £(j) = i, that is, for
some j € N;in (7). Let y; = land y;, = O forall2 € N; — {j}, and do this for all i with x; > 0. It is
easy to see that the pair (x, y) is a completely labeled point of P x Q. |

The game in (2) is a unit vector game. For this game, the polytope P in (4) is shown on the right

in Figure 2, where we have shown only the labels 4, 5, 6 for the “best-response facets”. In addition,
the facets with labels 1, 2, 3 where x; = 0, x = 0, x3 = 0 are the facets, hidden in this picture, at
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®

Figure 3 The polytope P¢ for the unit vector game (2). The hidden facet at the back has label 1, written on
the left.

the back right, back left, and bottom of the polytope, respectively. In the polytope P¢, the labels
4,5, 6 are replaced by 1, 2, 3 because the corresponding columns of A are the unit vectors ey, €2, €3.
Figure 3 shows this polytope in such a way that there is only one hidden facet, with label 1 where
x1 = 0. Apart from the origin 0, the only completely labeled point of P is x as shown, which is part
of a Nash equilibrium (x, y) as stated in Proposition 1.

A polytope like in (9) that has a label for each facet provides a particularly natural way to describe
equilibrium-finding algorithms, as described in Section 2.4 below.

2.3 Reductions between equilibria of bimatrix and unit vector games

A method that “solves” a unit vector game in the sense of finding one equilibrium, or all equilibria,
of the game, can be used to solve an arbitrary bimatrix game. The first step in seeing this is the fact
that the equilibria of a bimatrix game correspond to the symmetric equilibria of a suitable symmetric
game. This “symmetrization” has been observed for zero-sum games by Gale et al. (1950) and seems
to be a folklore result for bimatrix games.

Proposition 2 Let (A, B) be a bimatrix game, and (x,y) € P x Q — {(0,0)} in (4). Then (x, y)
(suitably scaled) is a Nash equilibrium of (A, B) if and only if (z, z) (suitably scaled) is a symmetric
0 A

equilibrium of (C, CV) withz = (x, y) and C =
q f ( ) (x,y) BT o

Proor: This holds by (6) because (z, z) is an equilibrium of (C, CT)ifand onlyif z # 0, z > 0,
Cz<1l,andz'(1—Cz)=0. O

By Proposition 2, finding an equilibrium of a bimatrix game can be reduced to finding a symmet-
ric equilibrium of a symmetric bimatrix game. The converse follows from the following proposition,
due to McLennan and Tourky (2010, Proposition 2.1), with the help of imitation games. They define
an imitation game as an m x m bimatrix game (A, B) where B is the identity matrix. Here, we define
an imitation game as a special unit vector game (A, B) where A (rather than B) is the identity ma-
trix /. The reason for this (clearly not very material) change is that this game is completely described
by the polytope P in (9), which corresponds to P in (4) and compared to Q has a more natural
description because the m inequalities x > 0 with labels 1, ..., m are listed first.
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Figure 4 Labeled mixed-strategy sets X and Y for the symmetric game (C, CT) in (10).

Proposition 3 The pair (x, x) is a symmetric Nash equilibrium of the symmetric bimatrix game
(C, CT)ifand only if (x, y) is a Nash equilibrium of the imitation game (I, CT) for some y.

As an example, consider the symmetric game (C, C T) with
0 3 0 0 2 4

c=12 2 2|, c"=[3 2 o], (10)
4 0 O 0 2 0

sothat CT = Bin (2). Figure 4 shows the labeled mixed- strategy simplices X and Y for this game. In
addition to the symmetric equilibrium (x, x) where x = (1 3 0), the game has two non-symmetric
equilibria (a, b) and (b, a) where a = (5, ,0)and b = (0, 5 3). A method that just finds a Nash
equilibrium of a bimatrix game may not ﬁnd a symmetric equilibrium when applied to this game,
which shows the use of Proposition 3. The corresponding imitation game (I, C ") is just (A, B) in
(2), which has the unique equilibrium (x, y) where (x, x) is the symmetric equilibrium of (C, C M.

The left-hand diagram in Figure 5 shows the mixed- strategy simplex X subdivided into regions
of pure best responses against the mixed strategy itself, which corresponds to the polytope P* in
Figure 3. The (in this case unique) symmetric equilibrium is the completely labeled point x.

(0,0,1)

A%

(1,0,0) X (0,1,0) (1,0,0) (0,1,0)

Figure 5 (Left) Best-response regions for identifying symmetric equilibria. (Right) Degenerate symmetric
game (11) with a unique symmetric equilibrium.
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Figure 6 Labeled mixed-strategy sets for the imitation game (I, CT) for the degenerate symmetric game (11)
where the equilibria (x, y) are not unique.

The right-hand diagram in Figure 5 shows this subdivision of X for another game (C, CT) where
0 4 0 0 2 4

c=|22 2], c"=[4 2 of. (11)
4 0 0 0 2 0

This game is degenerate because the mixed strategy x = (%, %, 0) has three pure best responses. This
mixed strategy x also defines the unique symmetric equilibrium (x, x) of this game. However, the
corresponding equilibria (x, y) of the imitation game (1, CT) are not unique, because due to the
degeneracy any convex combination of (%, % 0) and (%, % %) can be chosen for y, as shown in
Figure 6.

Hence the reduction between symmetric equilibria (x, x) of a symmetric game and Nash equilib-
ria (x, y) of the corresponding imitation game stated in Proposition 3 does not preserve uniqueness
if the game is degenerate.

2.4 Lemke paths and Lemke—-Howson paths

Consider a labeled polytope P* as in (9). We assume throughout that P¢ is non-degenerate, that is,
no point of P* has more than m labels and so P is a simple polytope, and every tight inequality
defines a separate facet (we can omit inequalities that are never tight), each of which has a label
in {1, ..., m}. The path-following methods described in this section can be extended to degenerate
games and polytopes; for an exposition, see von Stengel (2002).

A Lembke path is a path that starts at a completely labeled vertex of P¢ such as 0 and ends at
another completely labeled vertex. It is defined by choosing one label k in {1, . . ., m} that is allowed
to be missing. After this choice of k, the path proceeds in a unique manner from the starting point.
By leaving the facet with label &, a unique edge is traversed whose endpoint is another vertex, which
lies on a new facet. The label, say j, of that facet is said to be picked up. If this is the missing label &,
then the path terminates at a completely labeled vertex. Otherwise, j is clearly duplicate and the next
edge is uniquely chosen by leaving the facet that so far had label j, and the process is repeated. The
resulting path consists of a sequence of k-almost complementary edges and vertices (so defined by
having all labels except possibly k, where k occurs only at the starting point and endpoint of the path).
The path cannot revisit a vertex because this would offer a second way to proceed when that vertex
is first encountered, which is not the case because P is non-degenerate. Hence, the path terminates
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Figure 7 Lemke path for missing label 1 for the polytope in Figure 3.

at another completely labeled vertex of P* (which is a Nash equilibrium of the corresponding unit
vector game in Proposition 1 if the path starts at 0). Figure 7 shows an example.

For a fixed missing label k, every completely labeled vertex of P is a separate endpoint of a
Lemke path. Because each path has two endpoints, there is an even number of them, and all of these
except 0 are Nash equilibria of the unit vector game, so the number of Nash equilibria is odd.

This path-following method was first described by Lemke (1965) in order to find a solution to a
linear complementarity problem (LCP); it is normally described for polyhedra, not for polytopes, so
that termination requires additional assumptions (see Cottle et al. 1992). The standard description of
an LCP assumes a square matrix B with labels £(j) = jfor j = 1, ..., m. Allowing P® to havem + n
rather than 2m facets with individual labels £( j) for the last n facets corresponds to a generalized LCP
(sometimes also called a “vertical LCP”), as studied in Cottle and Dantzig (1970). The term “Lemke
paths” for polytopes is due to Morris (1994).

The algorithm by Lemke and Howson (1964) finds one Nash equilibrium of an m x n bimatrix

game (A, B). Let C = as in Proposition 2. Then one way to define a Lemke—Howson

BT 0
(LH) path for missing label k in {1, ..., m + n} is as a Lemke path for missing label k for the labeled
polytope

Ri={zeR"™"|z>0, Cz <1} (12)

where the 2(m + n) inequalities of R have labels 1, ..., m 4+n,1,...,m + n (thatis, £(i) = i for
i=1,...,m+n).

The more conventional way to define the LH algorithm is to consider P x Q with P and Q as in
(4). Clearly, with z = (x, y), RYin (12) is equal to P x Q. Starting from (0, 0), the chosen missing
label k is a pure strategy of player 1 (for 1 < k < m) or of player 2 (form + 1 < k < m + n). Instead
of a single point z that moves on the graph (of vertices and edges) of R’, the pair (x, y) (which
equals z) moves on P x Q by alternately moving x on the graph of P and y on the graph of Q. This
alternate move of a pair of “tokens” can be nicely shown for 3 x 3 games on the two mixed-strategy
sets X and Y subdivided into best-response regions as in Figure 1, extended with the origin 0 (as
done by Shapley 1974). This is obviously more accessible than a path on a six-dimensional polytope,
but requires keeping track of the alternating tokens.

Figure 8 illustrates this for the game in (2). The pair of tokens starts on 0, 0, which is identified
by the pair of label sets 123, 456. Let 1 be the missing label, which means moving (in the left-hand
diagram in Figure 8) from (0, 0, 0) with labels 123 to the vertex (1, 0, 0) of X with labels 236. The
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(0,0,0)

Figure 8 Lemke—Howson path for missing label 1 for the game (2).

new pair has labels 236, 456 with duplicate label 6, so the next move is in the right-hand diagram
from (0, 0, 0) with labels 456 to the vertex (0, 0, 1) of Y with labels 345. The label that is picked up is
3 which is now duplicate, so the next move is in X from 236 to 256. Then 5 is duplicate, with a move
in Y from 345 to 234. With 2 duplicate, the next move in X is from 256 to 356. Then 3 is duplicate,
moving in Y from 234 to 246. Then 6 is duplicate, moving in X from 356 to 345, which is the point
X = (%, % 0). Then 4 is duplicate, moving in Y from 246 to 126, which is the point y = (%, % 0)
which has the missing label 1. This terminates the LH path for missing label 1 at the Nash equilibrium
(x, y).

The two diagrams in Figure 8 show two separate paths on P and Q, respectively (represented
by X and Y subdivided into best-response regions). These paths are traversed in alternate steps and
define a single path on the product polytope P x Q. In general, a simple path on P x Q (thatis, a
path that does not revisit a vertex) may not “project” to simple paths on P and Q. However, for LH
paths this is the case, as stated in the following proposition (Lemma 2.3 of Savani 2006, and implicit
in McLennan and Tourky 2010, Section 4).

Proposition 4 Every LH path on P x Q induces a simple path in each polytope P and Q, that is, no
vertex of P or Q is ever left and visited again on an LH path.

PROOF:  Suppose to the contrary that a vertex x of P is left and visited again on an LH path. This
means that there are three vertex pairs (x, y), (x, ¥'), and (x, ¥”) of P x Q, with pairwise distinct
vertices y, y', and y” of @, on an LH path with missing label k, say. All three pairs have all labels
except possibly k. The m labels of x define n — 1 labels shared by y, ¥, and y”. However, this is
impossible, since these n — 1 labels correspond to n — 1 equations in R” that define a line, which can
only contain two vertices of Q. The same reasoning applies to a vertex y of Q that would be visited
multiple times on an LH path. d

Consider an m x n unit vector game (A, B) where A = [e;(1) - - - €¢(n)]. According to Proposi-
tion 1, the labeled polytope P’ carries all information about the Nash equilibria of (A, B). Recall
that P* is the polytope P in (4) but where the labels n + j for the strategies j of the column player,
1 < j <, are replaced by £(), that is, by the best responses of the row player to these columns.
Replacing these labels in the left-hand diagram in Figure 1 gives the left-hand diagram in Figure 5,
equivalent to P* in Figure 3,
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We now establish the same correspondence with regard to the LH paths on P x Q for the game
(A, B), where the corresponding “projection” to P defines a Lemke path on P*. For example, the
LH path projected to P shown in the left-hand diagram in Figure 8 is the same as the Lemke path on
P* in Figure 7. Both paths are defined for the missing label 1. It seems natural that the LH path for
missing label i in {1, ..., m} projects to the Lemke path for missing label i on P¢. However, there
are n additional LH paths for the game (A, B) for the missing labels m + j for jin {1, ..., n}, which
do not exist as labels of P¢. The following theorem states that these project to the Lemke paths on
P* for the missing label £( /). This generalizes the corresponding assertion by McLennan and Tourky
(2010, p. 9) and Savani and von Stengel (2006, Proposition 15) for imitation games where £(j) = j.

Theorem 1 Consider an m x n unit vector game (A, B) where A = [ey1) - - - egm)], with Pt as in
(9) and P and Q as in (4). Then the LH path on P x Q for this game for missing label k projects to a
path on P that is the Lemke path on P* for missing label k if 1 < k < m, and that is the Lemke path for
missing label £(j) ifk =m + jfor1 < j <n.

PROOF: In Proposition 1 it was shown that the completely labeled pairs (x, y) of P x Q correspond
to the completely labeled points x of P*. It is easy to see that if P is non-degenerate, as assumed here,
then this correspondence is one-to-one, and x and y are vertices.

In the following, i is always an element of {1, . .., m}, and j is always an element of {1, ..., n}.

Consider a step of an LH path on P x Q that leaves or arrives at a vertex x of P, as part of a pair
(x, y). If the dropped label is i, then x; = 0 changes to x; > 0, and if the dropped label is m + j, then
(BTx)j = 1 changes to (BTx)j < 1. If i is a label that is picked up, then x; > 0 changes to x; = 0,
and if m + j is a label that is picked up, then (BTx)j < 1 changes to (BTx)j =1

Similarly, consider a vertex y of Q. Because Q is a product of m simplices as in (8), for each i the
following holds: either y; = 0 for all j € N;, or for exactly one j € N; we have y; = 1 (which means
(Ay); = 1 and y has label £(j) = i) and y;, = 0 for all 1 € N; — {j}. We can also describe precisely
which label is picked up after moving away from y by dropping a label:

(a) If the dropped label is i, then y; = 1 (for some j € N;) changes to y; = 0, so that m 4 j is the
label that is picked up.

(b) If the dropped label is m + j, this is just the reverse step: j € N; for a uniquei = £(j),s0 y; =0
changes to y; = 1, which means i = £(j) is the label that is picked up.

Consider now steps on an LH path with missing label k, and assume that any label that is picked
up is not the missing label k, and therefore duplicate. Suppose label i is picked up in P, corresponding
to the binding inequality x; = 0. Label i is duplicate and therefore dropped in Q. By (a), this means
thatm + jwith j € N;ispicked up in Q, wherei = £(j). The duplicate labelm + jin P corresponds
to the binding inequality (BT x); = 1. So the next step is to move away from this facet in P. In P*
this same facet with (BT x) ; = 1 has label £(j) = i, and moving away from this facet is exactly the
next step on the Lemke path on P*.

Similarly, suppose label m + j is picked up in P, which corresponds to the facet (B x) j=1
which in P¢ has label i = £(j). On the LH path, the duplicate label m + j in Q is dropped as in (b),
where label i is picked up in Q and therefore duplicate. In P, the facet with this duplicate label is
given by x; = 0. The next step on the LH path is to move away from this facet, which is the same
facet from which the Lemke path on P¢ moves away.

Similar considerations apply when the LH path is started or terminates. If the missing label is &
in {1, ..., m}, then the LH path starts by dropping k in P, and the Lemke path starts in the same
way in P‘. When the LH path terminates by picking up the missing label k in P, the Lemke path
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ends in the same way in P*. If it terminates by picking up the missing label k in Q, then by (b) this
was preceded by dropping the previously duplicate label m + j where j € Ny, that is, after the path
reached in P the facet defined by (BTx) j = 1 which has label £(j) = k in P*, 50 the Lemke path has
already terminated on P*.

The LH path with missing label k = m + j starts by dropping this label in Q. By (b), the label
that is picked up in Q is £(j), which is now duplicate, and the path proceeds by dropping this label in
P which is the same as starting the Lemke path on P¢ with this missing label. The LH path terminates
by picking up the missing label k = m + j in P by reaching the facet defined by (BT x) j = 1 which
has label £( ), so that the Lemke path on P’ terminates. Alternatively, label k = m + j is picked
up in Q which by (a) was preceded by dropping label i = £(j), which was duplicate because it was
picked up in P when encountering the facet x; = 0, where i is the missing label £(j) on the Lemke
path that has therefore terminated on P*. O

3 Hard-to-solve bimatrix games

With the help of Theorem 1, it suffices to construct suitable labeled polytopes with (exponentially)
long Lemke paths in order to show that certain games have long LH paths. McLennan and Tourky
(2010) (summarized in Savani and von Stengel 2006, Section 5) showed with the help of imitation
games that the polytopes with long Lemke paths due to Morris (1994) can be used for this purpose.
In this section we extend this construction, with the help of unit vector games, to games that are not
square and that are hard to solve not only with the Lemke—Howson algorithm, but also with support
enumeration methods.

In Section 3.1 we present a very simple model of random games that have very few Nash equilibria
on average, unlike games where all payoffs are chosen at random. These games are unit vector games,
and the result (Proposition 5) is joint work with Andy McLennan. We then describe in Section 3.2
dual cyclic polytopes whose facets have a nice combinatorial structure, which have proved useful for
the construction of games with many equilibria, and with long LH paths. Our main result, Theorem 3
in Section 3.3, describes unit vector games based on dual cyclic polytopes whose equilibria are hard
to find not only with the LH algorithm, but also with support enumeration.

3.1 Permutation games

We present here a small “warmup” result that was found jointly with Andy McLennan. A permutation
game is an n X n game (A, B) where A is the identity matrix and B is a permuted identity matrix,
that is, the ith row of B is the unit vector e;T'—l. for some permutation 7 of {1, ..., n} (so column 7 (i)
is the best response to row i, and, because A = I, the best response to column j is row j). Let I be
this matrix B, so that the permutation game is (1, I™).

Because a permutation game (/, I"") is an imitation game, the two strategies in an equilibrium
have equal support. It is easy to see that any equilibrium of (Z, I™") is of the form (x, x) where x mixes
uniformly over its support S, with S being any non-empty subset of {1, ..., n} that is closed under
7w, thatis, i € S implies 7(i) € S. In other words, S is any non-empty union of cycles of .

A very simple model of a “random” game is to consider a permutation game (/, I™) for a random
permutation 7.

Proposition 5 A random n x n permutation game has in expectation n Nash equilibria.
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PrOOF: Consider a random permutation 7w of {1, ..., n}. Let E(n) be the expected number of Nash
equilibria of (I, I'"), where we want to prove that E(n) = n, which is true for n = 1. Let n > 1
and assume as inductive hypothesis that the claim is true for n — 1. With probability 1/n we have
7(n) = n,in which case 7 defines also a random permutation of {1, ..., n — 1}, and any equilibrium
of (1, I'") is either the pure strategy equilibrium where both players play n, or an equilibrium with
a support S of a random (n — 1) x (n — 1) permutation game, or an equilibrium with support
S U {n}. Hence, in this case the number of equilibria of (I, I'") is twice the number E(n — 1) of
equilibria of a random (n — 1) x (n — 1) game plus one. Otherwise, with probability (n — 1)/n, we
have 7(n) # n, so that 7 defines a random permutation of {1, ..., n — 1} when removing n from
the cycle of 7 that contains n. For any equilibrium of the (n — 1) x (n — 1) permutation game
whose support contains this cycle, we add n back to the cycle to obtain the respective equilibrium
of the n x n game. So in the case w(n) # n the expected number of equilibria is E(n — 1). That is,

1 —1 1
E(n)= —(14+2-E(n= 1)+ ——En—1)= (1420 =1+ = Hn —1) =n,
which completes the induction. |

Random permutation games have very few equilibria, as Proposition 5 shows. In contrast,
McLennan and Berg (2005) have shown that the expected number of equilibria of an n x n game
with random payoffs is exponential in n. Barany et al. (2007) show that such a game has with high
probability an equilibrium with small support. A permutation game (1, I”), where the permutation
7 has k cycles, has 2K — 1 equilibria, but a large number k of cycles is rare. In fact, there are (n — 1)!
single-cycle permutations, so with probability 1/n = (n — 1)!/n! the permutation game has only
a single equilibrium with full support. For such games, an algorithm that enumerates all possible
supports starting with those of small size takes exponential time. On the other hand, it is easy to see
that the LH algorithm finds an equilibrium in the shortest possible time, because it just adds the
strategies in a cycle of 7 to its current support.

However, a square game has only one full support, which is natural to test as to whether it defines
a (completely mixed) equilibrium. The full support always defines an equilibrium in a permutation
game. It also does for the square games described by Savani and von Stengel (2006) which have
exponentially long LH paths. They therefore constructed also non-square games where support
enumeration takes exponentially long time on average. It is an open question whether non-square
games can be constructed from unit vectors as an extension of permutation games that are also hard
to solve with support enumeration.

3.2 Cyclic polytopes and Gale evenness bitstrings

With the polytopes P and Q in (4), Nash equilibria of bimatrix games correspond to completely
labeled points of P x Q. The “dual cyclic polytopes” have the property that they have the maximal
possible number of vertices for a given dimension and number of facets (see Ziegler 1995; or Griin-
baum 2003). In addition, it is easy to describe each vertex by the facets it lies on. Using these
polytopes, von Stengel (1999) constructed counterexamples for n > 6 to a conjecture by Quint and
Shubik (1997) that a non-degenerate n x n game has at most 2" — 1 equilibria. McLennan and Park
(1999) proved this conjecture for n = 4; the casen = 5isstill open. Morris (1994) gave a construction
of labeled dual cyclic polytopes with exponentially long Lemke paths, which we extend in Theorem 3
below.
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A standard way to define a cyclic polytope P’ in dimension m with f vertices is as the convex
hull of f points u(¢;) on the moment curve ju : t — (t, 2, ..., M7 forl < Jj < f. However, the
polytopes in (4) are defined by inequalities and not as convex hulls of points. In the dual (or “polar”)
of a polytope, its vertices are reinterpreted as normal vectors of facets. The polytope P’ is first
translated so that it has the origin 0 in its interior, for example by subtracting the arithmetic mean &
of the points p(¢;) from each such point. The resulting vectors 1(¢;) — 1t then define the dual cyclic
polytope in dimension m with f facets

CP={xeR" | (ut) —@) x <1, 1<j<f). (13)

A suitable affine transformation of C ;’? (see von Stengel 1999, p. 560) gives a polytope P asin (4) or
(9) so that the first m inequalities of P have the form x > 0. Thelastn = f — m inequalities BTx <1
of P then determine the m x n payoff matrix B. If the first m inequalities have labels 1, ..., m and
the last n inequalities have labels £(1), ..., £(n), then this defines a labeled polytope Ptasin (9) and
a unit vector game as in Proposition 1.

A vertex u of C'f' is characterized by the bitstring uyuy - - - u g of length f, where the jth bit u;
indicates whether u is on the jth facet (u; = 1) or not (u; = 0). The polytope is simple, so exactly m
bits are 1, and the other f — m bits are 0. Assume (which is all that is needed) that#; < #, < --- <ty
when defining the jth facet of C;’J by the binding inequality (u(z;) — ) "x = 1in (13). As shown
by Gale (1963), the vertices of C }” are characterized by the bitstrings that fulfill the Gale evenness
condition: a bitstring with exactly m 1s represents a vertex if and only if in any substring of the
form 01°0 the number s of 1s is even, so it has no odd-length substrings of the form 010, 01110,
and so on. (The reason is that the two zeros u; = u; = 0 at the end of such an odd-length substring
would represent two points (i (#;) and j(¢;) on the moment curve that are on opposite sides of the
hyperplane through the points p(#) for ux = 1, so that this hyperplane cannot define a facet of the
cyclic polytope that is the convex hull of all the points, and therefore does not correspond to a vertex
of the dual cyclic polytope.) Initial substrings 1°0 and terminal substrings 017 are allowed to have an
odd number s or ¢ of 1s. We only consider even dimensions m, where s and ¢ can only be both odd
and by a cyclic shift (“wrapping around”) of the bitstring define an even-length substring 0110,
which shows the cyclic symmetry of the Gale evenness condition.

Consider, for even m, the bitstrings of length f with m 1s that fulfill Gale evenness, and as before
letn = f — m. One such string is 10", that is, m 1s followed by n 0s. For the corresponding vertex
of C'7, the first m inequalities are tight, and if we label them with 1, ..., m, then this defines the
completely labeled vertex that is mapped to 0 in the affine map from C ;” to the polytope P, which
will be a labeled polytope P*. The last n facets of P¢ correspond to the last n positions of the bitstring,
and they have labels £(1), ..., £(n). If we view £ as a string £(1) - - - £(n) of n labels, each of which
is an element of {1, ..., m}, then these labels specify a labeled polytope. A completely labeled vertex
corresponds to a Gale evenness bitstring w1 ...u s with f = m + n, where the positions i so that
u; = 1 have all m labels, the label being i if 1 <i <m,and £(j) ifi =m + jfor1 < j <n. We call
the resulting polytope Cy", so this is the dual cyclic polytope C' where f =m +n and n is the
length of the string € of the last n facet labels, mapped affinely to P* as in (9), with facet labels as
described.

3.3 Triple Morris games

In the notation just introduced, Morris (1994) studied Lemke paths on the labeled dual cyclic
polytope C*, which we call the Morris polytope, for a string o of m labels defined as follows. Let T
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111111 - 111111 -
1111711 - - 111111 - -
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11 -1d71 - - 11 -1d711 - -
11 -11-11 11 -11-11
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.11 -1111 - .11 -1111-
11-11.11 11 .-11-11
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1111 - -11- 1111 . -11-
1111 - 11 - 1111 - 11 -
co1di11 11 - B A I O A
11 -1t - 111411 -
R I I I A
111111 111111 -

Figure 9 Lemke paths for missing label 1 on the Morris polytope C¢ (left), and on the triple Morris polytope
C§  (right).

be the string (1) - - - t(m) of m labels, which is 1324 for m = 4, 132546 for m = 6, 13254768 for
m = 8, and in general defined by

=1, t@)=i+(-1) Q<i<m-1, w(m)=m; (14)
and let o be the string 7 in reverse order, that is,
ci)=tm—i+1) (1<i<m), (15)

so o = 4231 form = 4, 0 = 645231 for m = 6, 0 = 86745231 for m = 8, and so on. We define the
triple Morris polytope as C['. , where the concatenated string oo is a string of 3m labels, for example
645231132546645231 if m = 6.

The left-hand diagram in Figure 9 shows the Lemke path for missing label 1 on the Morris
polytope CJ for m = 6. The top row gives the labels, where the first m are the labels 1, ..., m
corresponding to the inequalities x > 0 in P*, followed by the labels 645231 of 0. The rows below
show the vertices of C¢ as bitstrings, where bit 1 is written in a different font and 0 as a dot - to
distinguish them better. The first string 111111000000 represents the starting vertex 0 of P*. A facet
that is left by dropping a label, at first the missing label 1, has a small “v” underneath the bit 1,
whereas the facet that is just encountered, with the corresponding label that is picked up, has the
“v” above it. Dropping label 1 means the second vertex is 011111100000, where label 6 is picked up
and duplicate. Because the previous facet with that label corresponds to the second to last bit 1, it is
dropped next, which gives the next vertex as 011110110000 where label 4 is picked up, and so on.

The right-hand diagram in Figure 9 shows the Lemke path for missing label 1 on the triple Morris
polytope C&, . Because in this case the only affected bits are those with labels in the first substring o

of the entire label string oo, the path is essentially the same as in the Morris polytope C¢ on the left.
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Figure 10 Lemke paths for missing label 4 on the Morris polytope C¢ (left), and on the triple Morris
polytope C$_ (right).

oTo

Figure 10 shows the Lemke paths for these two polytopes for the missing label 4. In this case, to pre-
serve Gale evenness, the bitstring that follows the starting bitstring 111111000000 is 111011000001,
which “wraps around” the left-hand end to add a bit 1 in the rightmost position, which has label 1
that is picked up. The resulting path is the composition of two sub-paths. The first path moves away
from the dropped label 4 to the left (and wrapping around), which behaves essentially like a path
with dropped label 4 on a Morris polytope in dimension 4, until label 5 is picked up. This starts the
second sub-path with the original label 5 being dropped, which is essentially a (rather short) path
with dropped label 1 on a Morris polytope in dimension 2.

In general, the Lemke path on the Morris polytope C! for the missing label k, where k is even,
is the composition of two sub-paths. The first sub-path is equivalent to a Lemke path for missing
label k on a Morris polytope CX for missing label k, which, by symmetry (writing the label strings
backwards), is the same as the Lemke path on CX for missing label 1. The second sub-path is
equivalent to a Lemke path for missing label 1 on a Morris polytope C~*. (If k is odd, then a
similar consideration applies by symmetry.) In this way, the Lemke paths for any missing label k are
described by considering Lemke paths for missing label 1 in dimension k or m — k, where clearly k
orm — k is at least m /2 (which is used in the second part of Theorem 2 below).

The right-hand diagram of Figure 10 shows that the same Lemke path for missing label 4 results
in the triple Morris polytope CS__, because the two copies of the label string o have the same effect

o010’
as the single label string o in C£. Clearly, this correspondence holds for any missing label.

Proposition 6 Thereis a one-to-one correspondence between the Lemke path for missing label k starting
from the Gale evenness stringl™ 0™ (vertex 0) of the Morris polytope C!' and the Lemke path for missing
label k starting from the Gale evenness string 1™0°" (vertex 0) of the triple Morris polytope C" ., for
1<k=<m

The length of the Lemke path for missing label 1 on C* is exponential in the dimension m.
Essentially, this path composed of two such paths in dimension m — 2, with another such path in
dimension m — 4 between them (Figure 9 gives an indication). Hence, if the length of the path is
am, the recurrence a, = 2a,,—2 + am—4 implies that it grows from a,,—» to a, by an approximate
factor of 1 + +/2; for details, see Morris (1994), and for similar arguments, Savani and von Stengel
(2006, Theorem 7). Recall that ©( f(n)) means bounded above and below by a constant times f(n)
for large n.
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Figure 11 Illustration of the proof of Proposition 7 for m = 6. The top half shows the only completely labeled
bitstring u = 1"0°" where u,, = 1, the bottom half one such string where u,, = 0. There are three choices in
each of the m/2 lines (a), (b), (¢).

Theorem 2 (Morris 1994, Proposition 3.4) The longest Lemke path on CJ' is for missing label 1 and
has length ©((1 4 +/2)"/?). The shortest Lemke path on C!" is for missing label m/2 and has length
O(1 4 v2)™/4).

Consequently, the Lemke paths on triple Morris polytopes are also exponentially long. Hence,
these polytopes define unit vector games which by Theorem 1 have exponentially long LH paths. We
consider these games because they are of dimension m x 3m rather than m x m for the unit vector
game defined by the Morris polytope CZ'. The latter, square game has a single completely mixed
equilibrium, which is easily found by support enumeration. We show next that the m x 3m game
has multiple equilibria, each of them with full support for player 1 (for which we need the “middle”
label string 7).

Proposition 7 The m x 3m unit vector game that corresponds to the triple Morris polytope C%  has
3"/2 Nash equilibria. Each of them has full support for player 1.

Proor: With the label string oo, we identify the completely labeled vertices of C.  as completely
labeled Gale evenness strings u = u; - - - iy, First, we show that if u,, = 1, then u = 1"0>", which
is the vertex 0. This is illustrated in the top part of Figure 11. Because u;, = 1, which has label m,
the other positions j with label m have u; = 0, which are j =m + 1 and j = 3m + 1 (the first
positions in the two substrings o of 070) and j = 3m (the last position of t), shown in the first line
of Figure 11. The substring 10 with bits u,, and u,,_ requires u,—; = 1 by Gale evenness, with
label m — 1, which now requires u; = 0 for j = m + 3, 3m — 2, 3m + 3, as shown for label 5 in the
second line of Figure 11. The single bit u,,+, (label 4 in the picture) must be 0 by Gale evenness, and
similarly u3,,—1 = u3n42 = 0 and hence u,,—, = 1, as shown in the next line. Continuing in this
manner, the only possible string is u = 10" as claimed.
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Suppose now that u,,, = 0, where we will show that the resulting completely labeled Gale evenness
string is of the form u = 0™ 8, which represents a Nash equilibrium (x, y) of the game with full
support for player 1, that is, x > 0. Consider the lower part of Figure 11, where in line (a) we
now have three choices where to put the label m, namely by setting u; = 1 for exactly one j in
{m + 1, 3m, 3m + 1}, corresponding to the first position in one of the os or the last position in T
(where we choose the latter in the picture). So u3,, = 1, which requires u3,,—; = 1 by Gale evenness
because 13,41 = 0. This next position always has label m — 2 (label 4 if m = 6), so that u,,_, = 0,
and similarly in the other positions with that label. But then u,,_; = 0 by Gale evenness and we again
have three choices, in one of the substrings o, 7, o, of where to set that next bit with label m — 1.
In the picture, we choose it in line (b) in the first substring o, that is, #,,,13 = 1. Continuing in that
manner, there are m /2 times where we can choose a pair 11 of two bits 1 in either substring o, 7, &
to obtain a completely labeled Gale evenness string, making 3”/2 choices in total, as claimed. O

The m x 3m game in Proposition 7 has an exponential number of equilibria, which define
a certain set E of equilibrium supports of player 2. However, they form an exponentially small
subset of all possible supports. An equilibrium is therefore hard to find with a support enumeration
algorithm, even if that algorithm is restricted to testing only supports of size m for player 2.

Proposition 8 Consider an m x 3m game where a pair of supports defines a Nash equilibrium if and
only if both supports have size m, and player 2’s support belongs to the set E, a set of m-sized subsets of

{1,...,3m}. A support enumeration algorithm that tests supports picked uniformly at random without
replacement from the set U of all m-sized subsets of {1, . .., 3m} has to test an expected number of
3m
— |E]
- (16)
- +1
|E| +1

supports before finding an equilibrium support.

ProOF: To find the expected number of guesses required to find an equilibrium we use a standard
argument (Motwani and Raghavan 1995, p. 10). Consider a random enumeration of the elements
of U.The elements of U — E, whichweindexbyi =1, ..., |U — E|, correspond to non-equilibrium
supports. Let W; be the indicator variable that takes value 1 if the ith element of U — E precedes
all members of E in the enumeration of U, and 0 otherwise. Then W = ZEZI_E‘ W; is the random
variable equal to the number of supports checked before the first equilibrium is found. For a single
element of U — E, the probability that it is in front of all elements of E is 1 /(| E| + 1). Hence, using
the linearity of expectation,

3m
i . ) ~ |E|
|{U~E| |U—E| [U-E|
) \ N 1 _|U|—|E|_<m>
E(W)-E(Ei:1: W,>_ZE(W,)—Z|E|+1— E[+1  |E|l+1

i=1 i=1

This shows that the expected number of support guesses until an equilibrium is found is given by
expression (16), as claimed. O
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In Proposition 8, we assume that the algorithm does not identify any particular pattern as to
which supports should be tested. One way to achieve this is to permute the columns of the game
randomly (if one knows that the payoff matrix B of player 2 is derived from a dual cyclic polytope,
then this random order can be identified with a specialized method; Savani 2006, Section 3.6; this
is not a general method for solving games, so we do not consider it). However, unless one distorts
the polytope Q in (8), this still leaves a payoff matrix of player 1 where each unit vector appears
three times. In this case, even if the algorithm picks only columns where each unit vector appears

3m
once, there would be 3™ possible supports which define a set U of size 3™ rather than in
m

Proposition 8. Such a set U is still exponentially large compared to the set E of 3"/? supports that
define a Nash equilibrium. In that case the expected time for the support-testing algorithm in the
following theorem is (V/3)" ~ 1.732™.

Theorem 3 Finding a Nash equilibrium of the m x 3m unit vector game that corresponds to the
triple Morris polytope CI". . takes at least time @ ((1 + +/2)"/*) ~ ©(1.246™) with the Lemke—Howson

algorithm, and on expectation time @ ((27/4+/3)™ //m) ~ ©(3.897™ /\/m) with an algorithm that
tests in random order arbitrary supports of size m x m of the game.

PrOOF: The length of the LH paths follows from Theorem 2, Proposition 6, and Theorem 1. For the
support-testing algorithm, we have | E| = (+/3)™ in Proposition 8, by Proposition 7. Using Stirling’s

3m
formula n! ~ «/27tn - (n/e)", we have ( ) ~ (/3 - 3%) /(24/7m - 22™), so that the expression
m

in (16) is ©((27/4+/3)™ ) /m). O

To conclude, we note results on the following combinatorial problem. Let m be even and let £ be
a string of n labels from {1, ..., m}, and consider the set of Gale evenness bitstrings of length m + n
which encode the vertices of the labeled polytope C;". The problem is to find a second completely
labeled Gale evenness string other than 1”0". Casetti et al. (2010) have shown that this is equivalent
to finding a second perfect matching in the Euler graph with nodes 1, ..., m and edges defined by
the Euler tour 1, ..., m, £(1), ..., £€(n), 1. The edges in a perfect matching encode the pairs of 1s
in a Gale evenness bitstring, which is completely labeled because the edges cover all nodes. Végh
and von Stengel (2015, Theorem 12) give a near-linear time algorithm that finds such a second
perfect matching that, in addition, has opposite sign, which corresponds to a Nash equilibrium of
positive index as would be found by a Lemke path (which, however, can be exponentially long). So
this combinatorial problem is simpler than the problem of finding a Nash equilibrium of a bimatrix
game, even though it gives rise to games that are hard to solve by the standard methods considered
in Theorem 3.
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