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Abstract. The committee meeting problem consists in finding the ear-
liest meeting time acceptable to every member of a committee. We
consider an asynchronous version of the problem that does not presup-
pose the existence of a global clock, where meeting times are maximal
antichains in a poset of ‘local times’, and propose an efficient algorithm
to solve it. A generalization, the private meeting problem, where the
earliest time for a meeting without some committee members is sought,
turns out to be NP-complete. However, it can be solved in polynomial
time if the poset is N-free, that is, representing a precedence of the arcs
(and not the nodes) of an acyclic directed graph. This special case is
relevant, because it allows to improve the key algorithm of the model
checking technique developed in [4] for Petri nets.
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1 The asynchronous committee meeting problem

The committee meeting problem is an elementary, well-known problem of pro-
gram design. It is for instance the first problem used by Chandy and Misra [3]
to illustrate their UNITY programming methodology. The problem is to find
the earliest meeting time acceptable to every member of a committee. Time
instants are linearly ordered, and there exists a zero time without predecessor.
Every committee member labels a subset of the time instants as ‘free’. The
desired output is the earliest time which is labeled as ‘free’ by all members.

A simple algorithm (with several variants, as shown in [3]) can be used to
solve the problem: time zero is taken as the first candidate to a solution; if
some person cannot meet at that time, she suggests her next free time as new
candidate, and the procedure is iterated until nobody makes a new suggestion.
It is not difficult to prove that, if some meeting time exists, then the algorithm
yields the earliest one.

This problem presupposes the existence of a global clock, which can be
viewed as a totally ordered set of times that are common to every committee
member. We study an asynchronous version of the problem in which no global
clock exists. In this version, every person has her own totally ordered set of local



times, or, as we shall say, states. The states can also be seen as pauses between
the execution of two tasks. The time taken by a task is not known in advance,
and therefore it is not possible to ensure that, for instance, the first pause will
simultaneously take place for all persons. However, in addition to the (fixed)
sequential order of the tasks of one person, there may be dependencies between
certain tasks of different persons, which impose additional precedences between
the states. Thereby, the union of the (pairwise disjoint) sets of states is partially
ordered.

The total order of the special synchronous case is thereby represented by
introducing for each time instant separate states, one for each person, that are
mutually incomparable and otherwise precede all states corresponding to later
time instants. Furthermore, any partially ordered set (poset) may arise from
the asynchronous meeting problem by partitioning the poset into chains (totally
ordered subsets) which are assigned to committee members; here, only finite
posets will be considered.

Figure 1.1 shows a case in which the committee consists of three people, A,
B and C, whose sets of states contain 4, 5 and 3 elements, respectively. As in
the synchronous case, every person labels a subset of her own states as ‘free’.
The free states are shown in boldface.

A ai as as aq

bl/bz by / bs
Cl/ \ 3 .

Fig. 1.1. An instance of the asynchronous version of the meeting problem.

C:

Two states where one precedes the other are called comparable. An antichain
is a set of pairwise incomparable states. Here, a maximal antichain with respect
to set inclusion is called a cut. A cut can be interpreted as a snapshot of the
committee, which tells which members have finished which tasks at a certain
moment. For instance, {as, b3, c2} is a cut of the partial order of Fig. 1.1, but
{as, b1, 1} is not, because az and b; are comparable (and so A and B cannot
simultaneously be in az and by).

Cuts are the asynchronous counterpart of the global time instants in the
asynchronous case. There is a natural notion of temporal precedence between
cuts, which corresponds to the precedence between global time instants of the
synchronous case: We say that a cut is earlier than another if every state of the
first precedes (not necessarily strictly) a suitable state of the second. Indepen-
dently of the relative speeds of the local clocks, if a cut Y is earlier than a cut
Z, then Z can only be observed after Y. In Fig. 1.1, {aa, b3, cs} is earlier than
{a4,bs,c3}, but not earlier than {as,bs,cs}. It is easy to see that the ‘earlier
than’ relation on cuts is a partial order.



The asynchronous committee meeting problem is to find an earliest cut
containing one ‘free’ state for each member of the committee. In the example
of Fig. 1.1, the reader can check that the unique earliest cut satisfying this
condition is {a4,ba, c3}.

2 Formalization and algorithm

Before proceeding to give an algorithm for this problem, we introduce further
notations and conventions.

The set of states is denoted by X, which is a finite set to guarantee termina-
tion of the algorithm, possibly with a negative result if no common meeting time
exists. The precedence relation between states is a partial order and denoted
by <, so the poset under consideration is (X, <). A state z is smaller than, or
precedes, a state y if x < y. For a subset Y and an element z of X, say that z
precedes Y if z precedes some element of Y. Given two cuts A, B, we denote
by A C B that A is earlier than B, that is, each element of A precedes B. A
smallest state is a <-minimal state (with no predecessor), but not necessarily
smaller than all states. Similarly, an earliest cut is C-minimal.

The problem is stated as follows. Each state is labeled with a label from a
finite set S, or unlabeled. Any two states that carry the same label (from §)
are comparable. Then, find an earliest cut containing one s-labeled element for
every label s in §.

The interpretation is that the set X is the disjoint union of the sets of states
of the given persons. Each person has a separate label in § to mark certain of
her states as ‘free’, while the others are unlabeled and thus marked as ‘blocked’
(these are not distinguished per person). The states of any one person are totally
ordered.

We shall consider a slightly more general problem: Given a subset G of &
of ‘prescribed’ labels, find an earliest cut containing one s-labeled element for
every label s in G. The asynchronous committee meeting problem corresponds
to the case ¢ = S.

A cut containing an (obviously at most one) s-labeled element for every
label s in G shall be called a G -cut. Notice that the set of G-cuts may be empty,
so that it has no C-minimal element, and then the problem has no solution.
However, if such a cut exists, then it is unique, so it is the earliest G-cut:

Proposition 2.1. Let the set of G-cuts be nonempty. Then it has exactly one
C-minimal element.

Proof. Let A, B be two G-cuts, and C' be the set of largest states preceding
both A and B. It is easy to see that the elements of A preceding B and the
elements of B preceding A belong to C', which comprise at least one of the
s-labeled states in A or B for each label s in G. A further consequence is that
C' is a cut and in fact the lattice-theoretic meet, the greatest lower bound with



respect to C, of A and B (it is well known [1] that the cuts of any poset form
a lattice). So C' is also a G-cut. The meet of all G-cuts is the unique earliest
G-cut. O

To simplify the algorithm, we assume that the set of G-cuts is nonempty,
and denote by C' its earliest element. This can be achieved for any poset (X, <)
by ‘stacking’ an extra G-cut D on top of X, that is, D is a set of additional
states (not in X)), one for each label in G, which are mutually incomparable and
larger than any element of X. The algorithm is then applied to X U D instead
of X, and if it produces an earliest G-cut containing elements of D, then X
itself has no G-cut, so the original problem has no solution.

The problem is then to design an algorithm that yields C' as output. We
use a variable A, which is initialized to the earliest cut of (X, <), namely the set
of smallest elements of X. A loop increases A until it becomes a G-cut, while
preserving A C C'. When the loop has ended, A is the output.

The algorithm uses the following notation: given an element z of X, the
set Jx (read ‘proper predecessors of z’) consists of the states smaller than z and
different from it. For a subset A of X, the set | A 1s defined as the union of the
sets | for every element z of A. The set of labels of A is denoted by /(A).

A = set of smallest elements of X;
do { invariant: Aisacutand ACC }
there exists s in G\ I(A) —
z := smallest s-labeled state not preceding A;
A := set of smallest elements of X \ (AU {z})
od

Let us prove the correctness of the algorithm. The loop guard simply states
that A is not a G-cut. The invariant then guarantees that, upon termination of
the algorithm, A is a G-cut and A C C. By the C-minimality of ', A = C'.
The invariant holds before the first execution of the loop because the set of
minimal elements of X is the unique C-minimal cut. The following lemma and
proposition show that the invariant is preserved by the body of the loop.

Lemma 2.2. Let Y be a subset of X, and let 7 be set of smallest elements of
X\ Y. Then Z is a cut.

Proof. Since the smallest elements of any set are pairwise incomparable, Z is
an antichain. To prove that 7 is a cut, let z be an arbitrary element of X. If
z € X \ Y, then z is larger than some element of Z by the definition of Z. If
z € lY, then z is smaller than some largest element y of Y. So y € Z by the
definition of 7. In both cases, x 1s comparable with some element of 7, so 7 is
a cut. d



Proposition 2.3. Let A be a cut so that A T C and so that for some label s, no
element of A is s-labeled. Let x be the smallest s-labeled state not preceding A.
Let B be the set of smallest states of X\ (AU {z}). Then B isacutand BC C.

Proof. B is a cut by Lemma 2.2. Tt remains to show B C C, i.e., every element
of B is smaller than some element of C. By the definition of B, it suffices to
prove that C' is a subset of X \ |(A U {z}), or, equivalently, C'N ({A U ]z) = 0.

CNJA =0 because AC C and C is a cut. To prove C'N z = @}, observe
that C' contains one s-labeled element y, which is comparable with z and not
smaller than an element of A, so # < y by the definition of z; since C' is an
antichain, it contains no proper predecessor of x. |

To prove termination, it suffices to show that the body of the loop strictly
increases A with respect to the partial order C. In other words, that A is earlier
than, and different from, the set of smallest elements of X \ {(AU{z}). The
first part is trivial. For the second part, observe that ¢ A (because A contains
no s-labeled element), but z is one of the smallest elements of X \ (A U {z}).

To estimate the running time of the algorithm, its input has to be made
precise. We choose as input the diagram (X, <) of the poset, where z < y if
y is an immediate successor of z, that is, # < y and there exists no state z
with z < z < y. Since (X, <) is finite, < can be recovered as the reflexive and
transitive closure of <.

The cut A can be increased with respect to C at most |X| times. So the
number of iterations of the loop is at most |X|. An iteration requires to compute
the element  and the set of smallest elements of X \ [(A U {z}), which can be
done in O(]X|+]<|) time. So the algorithm requires at most O (|X|-(|X|+|<]))
time.

3 The asynchronous private meeting problem

A subset of the committee members wish to meet, for instance those belonging
to a certain political party. However, they also want to make sure that, when
they meet, the committee members of another party are busy, i.e., that none
of them is in a ‘free’ state. To this end, a new set H of ‘forbidden’ labels is
introduced besides the set G. The asynchronous private meeting problem is to
find an earliest cut C of (X, <) so that:

(1) for every label s € G, some element of C' is s-labeled, and
(2) for every label s € #, no element of C' is s-labeled.

The set of cuts satisfying these two conditions may be empty. Furthermore,
even if the set is nonempty it may happen that it has no unique C-minimal
element. Figure 3.1 shows such a poset (in the conventional way of drawing
poset diagrams, with smaller elements further down). There, let the states a
and b carry one label and @’ and ¥ another, both labels belonging to G, and
the state x, indicated by a white dot, have a forbidden label in the set . Then



both {a,a’} and {b,b'} are cuts satisfying (1) and (2), but their meet {a, z, '}
1s not.

a x b’
Fig. 3.1. A poset with no earliest cut fulfilling (1) and (2).

Thus, for a general poset, the asynchronous private meeting problem may
not have a unique answer. Even finding one possible solution is much harder
than in the previous case. This question turns out to be NP-complete already
for G = (. In this case, the condition on G is vacuously fulfilled, and the problem
reduces to finding an earliest cut of (X, <) containing no element with a label
in H. An even weaker question is whether there exists such a cut at all: if we
color the elements with labels in H white and the rest black, the problem is to
find a cut containing only black elements.

Proposition 3.1. The following problem is NP-complete: Given a finite poset
(X,<) and each element of X being either black or white, find a cut in X
containing only black elements.

Proof. As before, call the elements of X states. A cut C' in X is an antichain
so that every state in X compares with an element of C'. Since this is verified
fast, the problem belongs to the complexity class NP.

The NP-complete problem 3SAT will be reduced to this problem, which will
show that it is NP-complete [5]. An instance of 3SAT is a Boolean expression
in conjunctive normal form, given by a conjunction of clauses, each of which
is a disjunction of exactly three literals, which are either positive, given by a
Boolean variable, or negative, given by a negated variable. The problem is to
decide if this Boolean expression is satisfiable, that is, to find an assignment of
truth values to the variables so that each clause evaluates to true.

Given an instance of 3SAT, construct the poset (X, <) as follows. For each
variable z of the expression, introduce two black states p(z) and n(z) and a
white state w(z) with n(z) < w(z) < p(z); between these states, considered
for all variables z, these are the only comparabilities, and the white states w(z)
will compare with no other states. Therefore, a cut C' that is a solution to the
problem contains for each variable z either p(z) or n(z) (which is interpreted
as z assuming the value true or false, respectively), since each white node must
compare with some element of C'. Additional white states will be used to encode
the clauses. If a clause ¢ contains only positive literals z, y and z, say, introduce
a white state w(c) with w(c) < p(z), w(e) < p(y) and w(c) < p(z) and no further
comparabilities, so C' is a solution only if it contains at least one of the states
p(z), p(y) or p(z), that is, if the clause ¢ is true. Similarly, a clause ¢ containing
only negative literals T (z negated), ¥ and Z is represented by a white node
w(z) larger than n(z), n(y) and n(z).



Fig. 3.2. Encoding of the clause ¢ given by z Vy V Z.

A ‘mixed’ clause ¢ contains the literals z, y and Zz for variables z,y, z (or
literals z, ¥ and Z, in which case ¢ will be encoded analogously). As shown in
Fig. 3.2, a white node w(c) is introduced with w(c) < p(z) and w(c) < p(y),
and an additional black node b(¢) with b(c) < w(e) and b(c) < p(z) (note that
n(z) < w(e) would not work since then n(z) < p(z)). Then, a solution C' has to
contain at least p(z), p(y) or b(c) to contain a state comparing with w(c). The
clause ¢ is true if z or y is true, represented by p(z) € C respectively p(y) € C,
or if z is false, represented by n(z) € C; only in this case, b(c) can belong to
C', since otherwise p(z) € C and p(z) compares with b(c). This encodes mixed
clauses.

The poset is constructed in polynomial time from the 3SAT expression,
which is satisfiable if and only if there is a cut containing only black nodes. O

4 The private meeting problem for N-free posets

In this section, we consider the special class of N-free posets, where the asyn-
chronous private meeting problem always has a unique answer, and can be solved
in polynomial time. These are the (always finite) posets (X, <) satisfying the
following condition:

(*) If z,y, z are states with 2 < y and z < z, then |y = |z.

Notice that the poset of Fig. 3.1 does not satisfy this condition: b and a’ are
immediate successors of z, and a € b but a ¢ la’.

The following equivalent conditions to (*) are better known in the literature:
X contains no four distinct elements a,b,c,d with a < b, ¢ < b, ¢ < d and
otherwise being incomparable [6], or, more specially, with a < b, ¢ < b, ¢ < d,
otherwise being incomparable [7]. In the latter case, the states a,b,c,d form
an N-shaped part of the poset diagram, which is why such posets are called N-
free. Another equivalent condition ‘CAC’ is chain-antichain-completeness: every
maximal chain intersects every maximal antichain [6]. Finally, ordering the arcs
of an acyclic directed graph (with z < y if y is an arc starting at the endpoint
of the arc z) yields an N-free poset, and conversely, for each N-free poset such
a directed graph is easily constructed.



In the following, consider an N-free poset. First, we establish that the private
meeting problem has a unique solution. That is, there is a unique earliest cut
satisfying the conditions (1) and (2) in Sect. 3 above, where the labels of the
elements of the cut include all labels from G and none from #, if there is such
a cut at all.

Proposition 4.1. For an N-free poset, let the set of cuts satisfying conditions
(1) and (2) be nonempty. Then it has exactly one C-minimal element.

Proof. Let A, B be two cuts satisfying (1) and (2). As in Proposition 2.1, the
meet C' of the cuts A and B consisting of the maximal states preceding both A
and B is a G-cut. We claim that C' is also a subset of AU B (in fact, it equals
the set of smallest elements of AU B). Assume that some z in C' belongs neither
to A nor to B, and consider a € A, b € B and states y, z such that z <y <a
and z < z < b. Since y precedes A but not B by the maximality of z, and B
is a cut, b’ € |y for some b’ in B, but b’ ¢ |z, contradicting (*). Thus, since
neither A nor B has elements with a label in H, neither does C'. So C' satisfies
(2) as well. O

We assume that the set of cuts satisfying conditions (1) and (2) is nonempty,
and denote by C' its earliest element. The algorithm to compute C' is an exten-
sion of that described in Sect. 2. We use a variable A, which is initialized to
the set of smallest elements of X. A loop increases A with respect to C until
it satisfies (1) and (2), while preserving A C C. As before, I(A) denotes the set
of labels of A.

A = set of smallest elements of X;
do { invariant: Aisacutand ACC }
there exists s in G\ I(A) —

z := smallest s-labeled state not preceding A;
A := set of smallest elements of X \ (AU {z})

0  there exists s in HNI(4) —
z := an immediate successor of the unique s-labeled element of A;
A := set of smallest elements of X \ (AU {z})

od

The algorithm is proved correct along the lines of the first algorithm. The
loop guards (both of which have to be false to terminate the loop) now state
that (1) or (2) does not hold for A. So the invariant guarantees that, upon
termination, A is a cut satisfying (1) and (2), and A C C. By the C-minimality
of C, A=C.

The invariant holds before the first execution of the loop because the set of
smallest elements of X is the unique earliest cut. The first alternative (i.e., the
sequence of statements after the first guard) preserves the invariant by Propo-
sition 2.3. The following proposition shows that the second alternative also
preserves the invariant.



Proposition 4.2. Let A be a cut with A C C that contains an element y
carrying a label s from H, and let x be an immediate successor of y. Let B be
the set of smallest elements of X \ (AU {z}). Then B is a cut and BC C'.

Proof. B is a cut by Lemma 2.2. It remains to show B C C'. By the definition

of B, it suffices to prove C' C X \ [(A U {z}), that is, C N ({AU lz) = 0.
CNJA =0 because A C C. To prove C N|z =}, note that since C' does

not contain any s-labeled element and A C C', some immediate successor z of

y is smaller than some element of C'. Since C is an antichain, C' N}z = (. By
assumption (*), lz = |z, s0 C'Nlz =0. O

To prove termination, it suffices to show that the body of the loop strictly
increases A with respect to the partial order C. This was already shown for the
first alternative in Sect. 2. The proof for the second alternative is analogous.

The running time does not change compared to the first algorithm. Again,
the number of iterations of the loop is at most |X|. The element z can be
computed, for both alternatives, in O(]X| + |<|) time, and so can the set of
smallest elements of X \ {(A U{z}).

5 The private meeting problem for nonsequential processes

In this section we consider Petri nets, a well-known formal model of concurrent
systems, thoroughly studied in the literature [8]. Petri nets can be given a partial
order semantics in terms of certain labeled posets called nonsequential processes
[2]. We shall observe that the private meeting problem for nonsequential pro-
cesses corresponds to a problem stated in [4], and that nonsequential processes
satisfy the condition of Sect. 4. As will be indicated, the new algorithm is more
efficient than the algorithm described in [4].

A netisatriple N = (S, T, F), where SN"T =@ and F C ((SxT)U(T'xS5)).
The elements of S are called places, the elements of T' transitions, and the
elements of F' arcs. The preset (postset) of an element z of S UT is the set of
nodes y such that (y,z) € F ((z,y) € F).

A marking of N is a mapping M from S to the nonnegative integers. A Petri
net is a pair (N, Mp), where N is a net and My an initial marking. Graphically,
the places of a Petri net are represented by circles, and its transitions by boxes.
If (z,y) is a arc, an arrow is drawn from z to y. Finally, if My(s) = n for a
place s, then n black dots or tokens are drawn inside the circle corresponding
to s. Figure 5.1 shows a Petri net. A transition ¢ is enabled at a marking M
if M(s) > 0 for every place s in the preset of ¢. If a transition ¢ is enabled
at a marking M, then it can occur, yielding a marking obtained by removing
one token from each place in the preset of ¢ and adding one token to each
place in the postset of ¢t. Given a Petri net (N, My), a marking M of N is
reachable if there exists a finite sequence of successively occurring transitions
initially enabled at My and eventually yielding M .



to t3

84 ty S5

Fig. 5.1. A Petri net.

A nonsequential process (or just a process) of a Petri net (N, M) with
N = (S,T,F) is a pair (N',p), where N’ is an acyclic net N' = (B, E, F'), and
p is a labeling function B — S and F — T'. To avoid confusions, the elements
of B are called conditions, instead of places, and the elements of F are called
events, instead of transitions. The labeling p satisfies certain properties that
allow to interpret N’ as an ‘unfolding’ of the Petri net (N, M), corresponding
to one of its possible concurrent runs. Most of these properties are not relevant
here; the interested reader is referred to [2].

S9 i3 S5 59 tq S3
t4 €3
€1 b3 by ey
S1 ts S84 51 ty S4

Fig. 5.2. A nonsequential process of the Petri net of Fig. 5.1.

Figure 5.2 shows a nonsequential process of the Petri net of Fig. 5.1. The
names of the conditions and events are written inside the circles and boxes; the
names of the places and transitions with which they are labeled are written close
to them. If we put one token in the conditions b; and by, then we can simulate
in the process a concurrent run of the Petri net; the occurrence of an event
corresponds to the occurrence in the Petri net of the transition it is labeled with
(for example, the occurrence of the event e; in the process corresponds to the



occurrence of 5 in the net); the set of conditions marked after the occurrence of
the events corresponds via the labeling to a reachable marking of the Petri net.
The process of Fig. 5.2 corresponds to a run in which the transitions ¢; and 3
can occur independently, then transition ¢4 can occur, and finally transitions #;
and t5 can occur independently.

Since the net N’ of a process is acyclic, the reflexive and transitive closure of
F' is a partial order, in the following denoted by <. This partial order will be of
interest for the conditions of the process, considering only the poset (B, <). This
is a special poset, because N’ has the property that the preset and postset of a
condition contain at most one event. If we extend the process with an ‘initial’
event preceding all smallest conditions and with a ‘terminal’ event succeeding
all largest conditions, then every condition has a unique event in its preset and
its postset, so B can be seen as the set of arcs of a directed graph whose nodes
are the events.

In this paper we restrict our attention to safe Petri nets, in which every
reachable marking puts at most one token in a place (if this holds for the initial
marking); then, a marking can be identified with the set of places with a token.
The following proposition (see [2]) shows that the markings of the Petri net
reached along the run correspond to the cuts of the poset (B, <).

Proposition 5.1. Let (N',p) be a nonsequential process of a safe Petri net
(N, My), where N' = (B, E, F'). Then
(a) two conditions carrying the same label are comparable with respect to <,

(b) if A is a cut of (B, <), then p(A) defines a reachable marking of (N, My).

In [4], a new model checking technique for safe Petri nets is presented, based
on nonsequential process semantics. The paper shows that the verification of an
arbitrary property expressible in a certain temporal logic can be reduced to the
following problem: given a finite process of the safe Petri net (N, My), and two
sets G and H of places of N, find an earliest cut such that its associated marking
puts a token in each place of G and no token in the places of H. (Actually, the
problem discussed in [4] is that of finding a latest cut. Tt is easily reduced to the
problem of finding an earliest cut.) For instance, if in the example of Fig. 5.2
we take G = {s1} and H = {s2}, then the solution is the cut {b1, b4}, which
corresponds to the reachable marking which puts tokens on s; and s5.

As shown in [4], if this problem concerning processes can be solved in poly-
nomial time, then some verification problems which required exponential time
with the existing algorithms could be solved in polynomial time.

To reduce this problem to the asynchronous private meeting problem, con-
struct the poset (B,<). Choose as the set of labels S the set of places of the
net N, and label a condition b € B with p(b). Any two conditions carrying
the same label are comparable by Proposition 5.1(a). The following proposition
shows that the poset (B, <) satisfies the condition (*) of Sect. 4, which allows
to apply the polynomial algorithm given there. The proposition is also implicit
in the above remarks on directed graphs.



Proposition 5.2. Let (B, <) be a poset obtained from a nonsequential process.
Let b,c,d € B be conditions such that ¢ and d are immediate successors of b.

Then |c = ld.

Proof. Let N' = (B, E, F') be the net from which the poset (B, <) is obtained.
Every condition of B has a unique event in its poset. Let e be the unique event
of the postset of b, which is the unique event in the preset of ¢ and d. So both
Jec and |d are equal to the set of conditions smaller than e. |

In [4], the problem of finding the earliest marking was solved by means of
a reduction to Linear Programming. This reduction shows that the problem is
solvable in polynomial time, although still with large exponents for the known
polynomial algorithms for Linear Programming. The algorithm proposed here is
more efficient, and does not require to construct a system of inequalities, because
it works directly on the poset.
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