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The enumeration of all equilibria of a bimatrix game is a classical algorithmic
problem in game theory. As shown by Vorob’ev (1958), Kuhn (1961), and Man-
gasarian (1964), all equilibria can be represented as convex combinations of the
vertices of certain polyhedra defined by the payoff matrices. Simplified by a pro-
jective transformation that eliminates the payoff variable, these polyhedra have the
form

P1 = {x ∈ IRM | x ≥ 0M , B>x ≤ 1N},
P2 = { y ∈ IRN | Ay ≤ 1M , y ≥ 0N} .

The players’ payoff matrices are A and B . These are w.l.o.g. positive, so that P1

and P2 are bounded and therefore polytopes. The disjoint sets M and N contain
the row and column indices, respectively, which represent the pure strategies of
the two players. The vectors 0 and 1 have all components equal to zero and one,
respectively. The elements x in P1−{0M} and y in P2−{0N} represent the mixed
strategies of the two players after normalization so that their components sum up
to one. After this normalization, the right hand sides in B>x ≤ 1N and Ay ≤ 1M

denote the expected payoff to the other player. If any of these inequalities is binding
(holds as equality), the pure strategy corresponding to that inequality is optimal. In
equilibrium, any pure strategy must be optimal or have probability zero. Hence, any
Nash equilibrium of (A,B) corresponds to a complementary pair (x, y) in P1 × P2

where any inequality in M ∪N in the above definition of P1 and P2 is binding for
x or for y.

It suffices to look at the vertices of the polytopes. Any equilibrium is the
convex combination of a set of vertex pairs that are all complementary each other
(Winkels, 1979; Jansen, 1981). We formulate this as follows.

Theorem. Let V1 and V2 be the sets of vertices of P1 and P2 , respectively, and let
R be the set of completely labeled vertex pairs in V1×V2−{(0M ,0N)}. Then (x, y)
represents a Nash equilibrium of (A,B) if and only if it belongs to the convex hull
of some subset of R of the form U1 × U2 where U1 ⊆ V1 and U2 ⊆ V2 .

Here, the set R can be viewed as a bipartite graph with the completely labeled
vertex pairs as edges. The subsets U1×U2 are cliques of this graph. The convex hulls
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of the maximal cliques of R are the convex components of Nash equilibria. (The
topological equilibrium components are unions of non-disjoint convex components.)
If the game is nondegenerate, all convex components are singletons.

Given a (possibly degenerate) bimatrix game (A,B), we want to output its
convex equilibrium components. The straightforward approach is to enumerate the
vertices of P1 and P2 , find those that are complementary, which define the bipartite
graph R in the Theorem, and then compute the maximal cliques of R.

Vertex enumeration is indeed superior to support enumeration, by an expo-
nential factor. In a (square) n × n bimatrix game, for example, there are about
4n possible equilibrium supports, even if the game is nondegenerate, but less than
O(2.6n) vertices due to the Upper Bound Theorem for polytopes. Except for degen-
erate vertices, the algorithm by Avis and Fukuda (1992) enumerates the vertices of
a polytope efficiently, that is, in running time that is polynomial in input and output
size. Deciding if a game has a unique equilibrium is NP-hard (Gilboa and Zemel,
1989). Hence, an efficient equilibrium enumeration algorithm is not likely to exist
since it would decide that question in polynomial time. Once the complementary
vertices are found, however, the cliques of R can again be enumerated efficiently
(Tsukiyama et al., 1976). Because of its simplicity, we have implemented a vari-
ant for bipartite graphs of the clique enumeration algorithm by Bron and Kerbosch
(1973), which is very fast in practice.

Our main contribution is an algorithm that enumerates only the vertices of one
polytope (the one of lower dimension, say P1). It finds directly the complementary
vertices of the other polytope, if these exist. For a given vertex v1 of P1 , the
complementary binding inequalities of P2 define a face F of P2 . In many cases
F is the empty face, if v1 is not part of an equilibrium. For an equilibrium in a
nondegenerate game, F is a single vertex of P2 . In degenerate games (where v1

itself may or may not be a degenerate vertex), F may also be a higher-dimensional
face of P2 .

We use the reverse-search pivoting algorithm by Avis and Fukuda for enumerat-
ing the vertices of P1 (assuming |M | ≤ |N |), with 0M as the nondegenerate starting
vertex. For each pivoting step that generates a new vertex v1 of P1 , we perform the
complementary pivoting step on the affine hyperplane arrangement that has P2 as a
cell, and then check for feasibility. For generic payoffs, this pivoting step is possible,
and immediately finds a vertex of the face F of P2 that is complementary to v1 ,
or establishes that F is empty. If the pivoting step is not possible (since the pivot
element is zero), we solve that problem in the standard way by a phase I simplex
method. Once a vertex of F is found, the remaining vertices of F , now vertices
of P2 , are again determined by the Avis–Fukuda algorithm. The output is then an
incidence list of the bipartite graph R that is further processed for enumerating its
maximal cliques.

Our method is particularly advantageous if the game has much fewer rows
than columns (or vice versa) since the number of vertices of a polytope is in general
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exponential in the dimension, and polynomial in the number of defining inequalities.
We use fraction-free exact arithmetic in order deal correctly with complementarity,
which is a combinatorial property. Results about computational performance will
be reported.

References

D. Avis and K. Fukuda (1992), A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete and Computational Ge-
ometry 8, 295–313.

C. Bron and J. Kerbosch (1973), Finding all cliques of an undirectred graph. Comm.
ACM 16, 575–577.

I. Gilboa and E. Zemel (1989), Nash and correlated equilibria: some complexity
considerations. Games and Economic Behavior 1, 80–93.

M. J. M. Jansen (1981), Maximal Nash subsets for bimatrix games. Naval Research
Logistics Quarterly 28, 147–152.

H. W. Kuhn (1961), An algorithm for equilibrium points in bimatrix games. Proc.
National Academy of Sciences of the U.S.A. 47, 1657–1662.

O. L. Mangasarian (1964), Equilibrium points in bimatrix games. Journal of the
Society for Industrial and Applied Mathematics 12, 778–780.

S. Tsukiyama, H. Ozaki, H. Ariyoshi, and M. Ide (1976), An algorithm for generating
all the maximal independent sets. Electronics and Communications in Japan
59-A:6, 1–8.

N. N. Vorob’ev (1958), Equilibrium points in bimatrix games. Theory of Probability
and its Applications 3, 297–309.

H.-M. Winkels (1979), An algorithm to determine all equilibrium points of a bima-
trix game. In: Game Theory and Related Topics, eds. O. Moeschlin and D.
Pallaschke, North-Holland, Amsterdam, 137–148.

3


