
Finding Composition Trees for Multiple-Valued Functions

E. V. Dubrova
�
, J. C. Muzio

VLSI Design and Test Group
University of Victoria, P.O.Box 3055

Victoria, B.C., Canada, V8W 3P6
elena@shannon.uvic.ca

jmuzio@csr.uvic.ca

B. von Stengel
�

Theoretical Computer Science
ETH Zürich

CH-8092 Zürich, Switzerland
stengel@inf.ethz.ch

Abstract

The composition tree of a given function, when it ex-
ists, provides a representation of the function revealing all
possible disjunctive decompositions, thereby suggesting a
realization of the function at a minimal cost. Previously and
independently, the authors had studied the class of multiple-
valued functions that are fully sensitive to their variables.
These functions are useful for test generation purposes, and
almost all � -valued � -variable functions belong to this class
as � increases. All functions in this class have composition
trees. This paper presents a recursive algorithm for gen-
erating the composition tree for any function in this class.
The construction proceeds top-down and makes immediate
use of any encountered decomposition, which reduces the
(in general exponential) computation time.

1. Introduction

Most approaches to the logic synthesis of digital sys-
tems consist of two phases: a technology-independentphase
that manipulates and optimizes functions, and a technology-
mapping phase that maps functions onto a set of gates in
a specific target technology. The technology-independent
phase for two-level synthesis, resulting in two-level devices
such as programmable logic arrays, is based on minimiza-
tion techniques [2]. For multi-level synthesis, decompo-
sition is the essential step in the technology-independent
phase, leading to devices with multi-level structure such as
field programmable gate arrays [3].

Generally, the problem of decomposition of functions
can be formulated as follows. Given a function � , express
�
Supported in part by Research Grant No. 5711 from the Natural Sci-

ences and Engineering Research Council of Canada and by an equipment
loan from the Canadian Microelectronic Corporation.�

Supported by a Heisenberg grant from the Deutsche Forschungsge-
meinschaft (DFG).

it as a composite function of some set of new functions.
Sometimes, a composite expression can be found in which
the new functions are significantly simpler than � . Then the
design of a logic circuit realizing � may be accomplished
by designing circuits realizing the simpler functions of the
composite representation, thus reducing the overall cost of
implementing � .

However, the problem of selecting the “best” decompo-
sition minimizing the overall cost of realization of a given
function appears to be far too difficult to be solved exhaus-
tively. Therefore, all previous efforts to apply decompo-
sition theory to the design of Boolean and multiple-valued
logic circuits restrict the decomposition to be obtained to
a particular type. In our paper we consider disjunctive
decompositions only. The basis for the different types of
disjunctive decomposition is the simple disjunctive decom-
position where a function ���
	 1 � 	 2 ������� 	���� is expressed as
a composite function of two functions � and � , namely

����	 ��� ������������	�� ��� � � 1 �
with 	 and � being sets of variables forming a partition of
the set of variables ��	 1 � 	 2 �������� 	 �! of � . If � , � and �
are � -valued functions, then in (1) the original function �
specifying an � -input, 1-output � -valued circuit is replaced
by the specifications of two � -valued circuits, one having" inputs and one output, and the other having 1 #$�&% "
inputs and one output (see Figure 1). Every set of variables
	 such that � has a decomposition (1) is called a bound set
for � . Such a decomposition exists trivially for 	 given by
any singleton set ��	�' or the all-set ��	 1 � 	 2 ������� 	 �� .

If (��) * is an upper bound on the cost of realizing an � -
valued function of � variables, then the total cost of realizing
these two circuits is bounded above by (,+-) *&#&(/. 1 0 ��12+�34) * .
Because the cost bound (5��) * increases nearly exponentially
with � [12], the discovery of any nontrivial decomposition
of the form (1) greatly reduces the cost of realizing � . Once
such a decomposition has been selected, either � , � , or both
may be similarly decomposed, giving one of the following

In: Proc. 27th IEEE International Symposium on Multiple Valued Logic (1997) 19–26.

1

x h

y

g f(x, y)

...
...

p

1

p+1

n

Figure 1. Simple disjunctive decomposition

complex disjunctive decomposition types [7]:

multiple : ���
	 ������� �,� ���
���
	!� � � � � � ��� �
iterative : ���
	 ������� �,� ���
��� � �
	!� ��� � ��� � � 2 �

or more generally tree-like decompositions as in
����	 ����������� � � ���
��� � �
	!� ��� � ��� � � � ��� � .

Clearly, since each decomposition of type (1) reduces
the overall cost of implementing � , the more � is decom-
posed, the more the cost is reduced. However, sometimes
a function can be decomposed in several different ways,
depending on the bound set chosen, e.g. when two decom-
positions of the same function ����	 ��� � � ��������	�� ��� � and
��� ����� � � � � � � � � ��� � exist such that 	�� �
	� Ø. We call
such decompositions conflicting. Therefore, at this point, a
theory is needed to decide which bound sets should be cho-
sen to obtain the “most decomposed” representation of � .
Such a theory was developed by Ashenhurst [1] for the case
of Boolean functions, and generalized by the third author of
the present paper to a certain class Σ of general � -ary opera-
tions on (not necessarily finite) sets [13]. The decomposition
properties of the functions in Σ are as useful as possible in
the sense that there is a final decomposition that represents
any bound set of variables. The simple case is that two such
bound sets are disjoint or that one contains the other, which
gives rise to a multiple or iterative decomposition, respec-
tively. The interesting third possibility is that two bound
set are overlapping, i.e. given by �
	 ��� � and � ����� � where 	 ,
� , and � are nonempty sets of variables. Remarkably, this
implies a representation of � in the form

����	 ����������� � ����������	������ � ����� � � ��� � � 3 �
with an � -valued associative binary operation , where the
two ways of writing parentheses, ������	������ � � ���� � � � and
����	���!���� � ����� � � � , show that �
	 ��� � and � ����� � are bound sets
(as assumed), as well as (in consequence) their intersection
� , union �
	 ������� � , set-theoretic differences 	 and � , and
possibly ��	 ��� � if is commutative (as always for Boolean
functions).

Starting from these prototypical cases for two bound sets,
the disjunctive decomposition theory in [13] defines a com-
position tree of the function � which gives a representation

of the function reflecting any bound set of variables, thus
a “most decomposed” one. Hence, the realization of the
given function in correspondence with the composition tree
(with suitable assumption about the cost of logic elements)
should have a cost that is close to minimal. In the sixties it
was even conjectured that such an implementation must be
a minimal one. However, Paul [11] found a counterexample
demonstrating a circuit derived by other than decomposition
techniques that has smaller cost than the one implementing
the composition tree. Nonetheless, this seems to be the
exception.

This paper summarizes the results on composition trees
from [13] restricted to the case of � -valued � -variable func-
tions, defining composition trees and specifying a class of
functions Σ for which the composition tree exists. We show
the close connection between the class Σ and full sensitivity,
the discrete difference introduced in [5] for test generation
purposes, which allows us to apply some of the results for
full sensitivity to the class Σ and vice versa. For exam-
ple, one of the results from [6], restated in the terminology
of the present paper, says that the percentage of � -valued
� -variable functions which are not in Σ tends to zero as �
increases.

The results of [13] prove the existence of the composition
tree for a particular class of functions and give a description
of this tree. However, this is not algorithmicand does not de-
scribe how to build the composition tree from a specification
of the given function. In this paper we describe a recursive
algorithm for generating composition trees of functions in
Σ. It is a combined top-down and depth-first construction
of the tree. In parts, it generalizes Curtis’ approach [4] for
Boolean functions to the � -valued case. A bottom-up con-
struction that could be adapted to our situation is described
in [10].

If all functions – or at least a large class of � -valued
functions – were disjunctively decomposable, the algorithm
presented in our paper would have been more than adequate
for obtaining highly economical multi-level � -valued cir-
cuits. However, the fraction of all Boolean functions of �
variables possessing nontrivial disjunctive decompositions
of type (1) approaches zero as � approaches infinity [12,
p. 90]. It is straightforward to generalize this result to
� -valued functions for ��� 2. However, this does not
mean that the disjunctive decomposition theory developed
in [1] and [13] is of no practical value. First, the “practical”
functions are not randomly distributed through the space of
all functions. Second, in the Boolean case, Ashenhurst’s
disjunctive decomposition theory led to the formulation in
[4] of the general theory of nondisjunctive decompositions,
a theory encompassing all switching functions on � vari-
ables regardless of the size of � . We hope that the theory
developed in [13] can serve as a base for more general in-
vestigations of � -valued functions. Several directions for

2

the extension of the theory are discussed in the final section.
The paper is organized as follows. Section 2 recalls the

definition of bound sets, which we study for the class Σ of
fully sensitive functions. This class is defined in [5], [6], and
independently considered for decomposition in [13]. The
main results on composition trees are summarized in Sec-
tion 3. For proofs we refer to [1], [10], [13]. Section 4
describes the new recursive algorithm. Section 5 contains
conclusions and discusses possible directions for further re-
search.

2. Function class Σ and full sensitivity

Let ���
	 1 � 	 2 ������� 	 � � be a completely specified multiple-
valued function. In general, the multiple-valued functions
may be heterogeneous where the variables of the function
do not take values in the same set. However, in our paper
we consider only the case of homogeneous functions of type� ��� �

on a fixed set
�

: � � 0 � 1 ������ � � % 1 , and
restrict all functions participating in the decomposition to
this type.

Let the set of indices of the variables be � �$� 1 ������� � .
Any subset � of � defines a vector �
	 ' � '���� of such vari-
ables, so that 	
	 � ��	 1 �������� 	 � ��� � � . Let

� � �
� �
	�' � '����� 	�'�� � . By arranging the variables as it is
suitable, we can postulate

� 	 � � ��� � � �
where � ��� %�� . A simple disjunctive decomposition
of � is given by a nonempty subset � of � and suitable
functions � :

� � � �
and � :

� � � � � �
so that

���
	 ��� �,� ��������	�� ��� � � 1 �
for all 	�� � � , � � � � . Recall that every set � of
(indices of) variables such that � has such a decomposition
is called a bound set for � (equivalently, we may call the
set � 	�'������� or the vector 	 � ��	�'���'���� a bound set of
variables).

The classical method for recognizing a bound set is
based on representing the function by a decomposition chart
[1], [4]. The decomposition chart for ����	 ��� � is a two-
dimensional table where the columns represent the elements
	 of

� � and the rows the elements � of
� � . Then � is

a bound set if and only if the chart has column multiplicity
at most � , i.e. there are at most � distinct columns in the
chart [7]. The reason is that each such column is a function
���� ���
	 ��� � for fixed 	 (called a subfunction of � of the
variables �) which by (1) is equal to ���� ��������	�� ��� � , so
there cannot be more of these columns than � takes values.
Figure 2 shows such a chart for the � 	 3 � 	 1 � 	 2 partition-
ing of the variables of ���
	 1 � 	 2 � 	 3 � , where the set ��	 1 � 	 2
is indeed a bound set.

	 1 	 2 00 01 02 10 11 12 20 21 22

	 3 0 1 0 0 0 0 0 1 0 1

1 0 1 2 2 1 1 0 1 0

2 1 1 1 1 1 1 1 1 1

Figure 2. Decomposition chart for an � in Σ

Using these charts, Ashenhurst [1] showed representa-
tions like (3) and constructed the composition tree for any � -
variable Boolean function that is nondegenerate, i.e. which
actually depends on all � variables to determine its output.
We may call such a function sensitive to all its inputs. Call
a function � fully sensitive to a variable 	!' if there are fixed
values for the other variables such that any change in 	 '
causes a change in the value of � .

Let Σ be the class of functions � :
� ��� �

for some
��� 1 that are fully sensitive to all their variables. In [13],
it is shown (using different terminology) that the functions
in Σ have composition trees, generalizing this property of
nondegenerate Boolean functions. Note, that for � � 2,
sensitivity is the same as full sensitivity. Independently, full
sensitivity is introduced in [5] for test generation purposes,
where this name denotes an algebraic expression that indi-
cates where the function is fully sensitive to a given input.

Let 	�' be a variable of ����	 1 ������� 	 � � and � �$�
	 � �!�#"$ ' be
the vector of remaining variables. Full sensitivity of � to 	 '
means that for some fixed � , the subfunction 	 ' �� ����	�' ��� �
is injective, in fact bijective (a permutation of

�
) since 	 '

and � have only � possible values. For ���
	 1 � 	 2 � 	 3 � in Fig-
ure 2, the subfunctions 	 1 �� ����	 1 � 2 � 1 � , 	 2 �� ��� 0 � 	 2 � 1 � ,
and 	 3 �� ��� 0 � 2 � 	 3 � are such bijections, so this function �
is fully sensitive to all its variables. In the decomposition
chart for ���
	 ' ��� � where the possible values for � and 	 '
denote rows and columns, this means that at least one row
(fixed �) has � distinct elements. This is not necessarily the
case, even if this chart has � distinct columns. However,
a result from [6] states that the percentage of � -valued � -
variable functions which are not fully sensitive to all their
variables tends to zero as � increases (intuitively, because
it becomes unlikely not to find a bijection among the � ��1 1

rows of the chart).
Subfunctions of � of one variable are used to define full

sensitivity. Subfunctions of several variables (like the rows
and columns in any decomposition chart) can be used for
representing � and � in (1), which is the central idea of the
decomposition theory in [13]:

Lemma 1. Let ��� Σ, � :
� 	 � �

, and Ø 	�%�'&%� .
Then the following are equivalent:

(a) � is a bound set for � ,

(b) � has a decomposition � 1 � where ���
	!� is a subfunction

3

of � of the variables 	 � � � ,

(c) � has a decomposition � 1 � where ���
	 ' ��� � is a subfunc-

tion of � of the variables 	�' � �
and � � � � , for any

� � � .

Here, (b) means that ����	��&� ���
	 � ˆ� � for some fixed
ˆ� � � � . That is, ˆ� is a suitable row of the decompo-
sition chart for ����	 ��� � . In Figure 2 where � � � 1 � 2 ,
we can choose ˆ� � ˆ	 3 � 1 and observe ���
	 1 � 	 2 � 	 3 � �
���
���
	 1 � 	 2 � 1 � � 	 3 � so the second row ����	 1 � 	 2 � 1 � of the
chart is a suitable representation of ���
	 1 � 	 2 � .

Condition (c) is slightly more complicated. In (1), � has
1 # � variables since one variable is substituted by ���
	!� . To
obtain ���
	 ' ��� � as a subfunction of � , any variable 	 ' of the
vector 	 can be chosen, � ��� . That is, 	 � ��	�' ��� � where
� � ��	#���!�����) �#"$ ' , so that (c) asserts ���
	�' ��� �,� ��� ��	�' � ˆ� � ��� �
for some fixed ˆ� . In Figure 2, we can choose 	!' � 	 2,
ˆ� � ˆ	 1 � 0 and let ����	 2 ��� � � ����	 2 � 	 3 � � ��� 0 � 	 2 � 	 3 �
(the left of the three squares of the chart, which represents a
sample of the � columns that can occur).

As an extension to Lemma 1, one can show that the
fixed values ˆ� and ˆ� in these representations can be any
vector � ˆ�!� ˆ� � such that 	�' �� ��� ��	�' � ˆ� � � ˆ� � is a bijection (as
used for full sensitivity), like 	 2 �� ��� 0 � 	 2 � 1 � in Figure 2.
Hence, if � � Σ and we know a fixed vector ˆ� � � ˆ	 � � � "$ '
such that 	 ' �� ���
	 ' � ˆ� � is bijective (as a “witness” for
the full sensitivity to 	 '), then the functions � and � in a
decomposition (1) of � are found very simply by just fixing
some variables of � at the levels in ˆ� . Furthermore, Lemma 1
implies the following.

Corollary 2. Σ is closed under composition and decompo-
sition: If � and � in ����	 ��� ��� ���
���
	!� ��� � belong to Σ, then
so does � , and vice versa.

The class Σ of fully sensitive functions does not include
all functions for which the composition tree can be built.
However, we have not yet found a simple weaker condition.
In general, arbitrary � -valued � -ary functions may not have
composition trees, contrary to a conjecture in [7]. When
looking for functions that do not have a composition tree,
full sensitivity must be violated. Such counterexamples
exist but are not easy to find. This is no coincidence since,
as mentioned, � -variable functions not in Σ are rare for large
� [6]. The connections of full sensitivity as defined in [5]
and [6] and the structural decomposition theory in [13] are
fruitful in many other respects. For example, the procedure
for algebraic calculation of full sensitivity from [5] can be
used for checking whether a given � is in Σ. Apart from the
existence of the composition tree, Corollary 2 is a nice result
in terms of circuit testing since, as shown in [6], a circuit
implementing a function fully sensitive to all its variables
can be tested for all single stuck-at faults on primary inputs
with two tests only.

3. Composition Trees

Throughout, let � � Σ, � :
� 	 � �

, � � � 1 ������� � .
A function � that has only the trivial bound sets � and ���
for � � � (so that � or � in (1) is unary) is called non-
decomposable or prime, as for example if � � 2. If � is
a nontrivial bound set and (1) holds, then other bound sets
that are subsets or supersets of � or disjoint to � relate to
decompositions of � and � :

Lemma 3. Let � be a bound set with decomposition � 1 � ,
where � :

� � � �
and � :

��� '���� � � �
for some � ��� .

Then for all sets (& � , � & � :

(a) (is bound for � 	�
 (is bound for � ,

(b) �� (is bound for ��	�
 ��� ��� is bound for � ,

(c) � is bound for � 	�
 � is bound for � .

Several bound sets for � , as in Lemma 3, lead to iterative
or multiple decompositions of � as in (2). Call a bound
set � for � strong if any other bound set is either a subset
or superset of � or disjoint to � . For example, the trivial
bound sets � and ��� are strong. Clearly, the partial order
of inclusion among these strong bound sets defines a tree.
This tree with strong bound sets as nodes (suitably labeled)
is called the composition tree of � .

Each node of the composition tree is labeled with a func-
tion that has as many variables as the node has children.
Leaves are labeled with unary functions, which may be the
identity. The hierarchical term of these functions repre-
sents � . For a tree like in Figure 3 (which will be described
more fully below), this term may be

���
	 1 �������� 	 6 �,�����
�������
	 1 � 	 2 � � 	 3 � 	 4 � � 	 5 � 	 6 � � � 4 �

If all these functions are prime, then all bound sets are strong
and the composition tree is fully described. The interesting
case is therefore that some bound sets are overlapping with
others.

1 ... 6

1... 4

1, 2

2

5

3 4

1

d

a b c

F

L D

D DD

D D

6e

D

Figure 3. Example of a composition tree

4

Theorem 4. Let � � Σ and � ��� be bound sets for � that
overlap, i.e. (����% � , � � � � � , and � � � %�� are
not empty. Then

(a) �� � and (, � , � are bound sets,

(b) � has a representation � 3 � for 	 � ���
, � � ���

,
� � ���

and remaining variables � where is an
associative function in Σ, which is commutative if and
only if (��� is a bound set.

In Theorem 4, � and � are not strong bound sets, but
� � � and its partition classes (� � � � may be. In that case,
the node � � � of the composition tree is labeled with the
function �� � � of the three variables � � � � � (with values
in

�
). In fact, it suffices to store with the node � � � the

binary function (with � 2 values) and to specify a linear
order among its children showing how to take the product
with , like ������� since the order � �� � is not allowed
if is not commutative. If is commutative, then the order
of taking the product is irrelevant. For � � 2, Σ may have
non-commutative associative operations like

� ��/�
	 � if �/� 0
� if � � 0.

For example, � in (4) may also have the overlapping bound
sets � 1 � 2 � 3 and � 3 � 4 , which are bound sets for � by
Lemma 3(a). Then Theorem 4 asserts

��������	 1 � 	 2 � � 	 3 � 	 4 � � ˆ�������
	 1 � 	 2 � � ���	 3 � � ��
	 4 � �
� ���
	 1 � 	 2 ���� �
	 3 � ����	 4 �

� 5 �

with an associative binary operation
 . The unary functions
� and � are bijections which in general are necessary for this
representation (but would be unnecessary if � was prime).
The functions � and ˆ� in (5) are called isotopic since they are
identical except for such bijections

� � �
of variable or

function values. Isotopy leaves decompositions invariant:
If � , � , or � in (1) is replaced by an isotopic function, then
the other functions can be replaced by isotopic functions
such that (1) still holds. As a stronger notion, two, say,
binary operations � and are called isomorphic if there is a
bijection � :

� � �
such that � ������ �,��� ��� � �� ��� � .

A maximal bound set is an inclusion-maximal bound set
not equal to � . Then either

all maximal bound sets are pairwise disjoint � � 6 �
or

two maximal bound sets � ��� overlap � � 7 �
In (7), �� � � � because of Theorem 4(a). Starting with
this case distinction, one can show the following.

Theorem 5. Let � ����� be the composition tree of � given by
the strong bound sets as nodes, related by inclusion. Any
node of the tree can be labeled “disjoint” (which holds for

all nodes with at most two children) or “full” or “linear”,
such that � is a bound set for � if and only if

(a) � is a node of the tree, or

(b) � is the arbitrary union � '���� � ' of the children
� 1 ������������ of a “full” node, Ø 	���%& � 1 �������� � ,
or

(c) � is the union ���' $ � � ' of an interval of the children
� 1 ������������ (specified in that linear order) of a “linear”
node, 1

��� � � � �
.

The children of a “disjoint” node � are the maximal,
pairwise disjoint bound sets contained in � as in (6). We
assume

� � 3 in (b) and (c) to distinguish these cases
from a “disjoint” node. The number of bound sets may be
exponential, as in (b), but they are efficiently coded by this
labeled tree, which has size linear in � [10].

Theorem 6. Let � ����� be the composition tree of � :
� 	 �

�
and � 1 ���������� be the children of the root � . Then

��� � 1 ���������� � �,� ���
� 1 � � 1 � ������� � � � � � � � � 8 �
for functions ��' :

����� � �
(1
� � � �) and � :

� � � �
in Σ where

(a) � is prime if � is labeled “disjoint”,

(b) ����� 1 ������� � � � � � 1 �!�"���� � (for �2' � �
, 1
� � � �

)
with an associative and commutative operation in Σ if
� is labeled “full”,

(c) ����� 1 ������� � � �/� � 1 #�"�!�� � � with an associative and
non-commutative operation in Σ if � is labeled “lin-
ear”.

(d) In (a), � is unique up to isotopy. In (b) and (c), is
unique up to isomorphy.

This is the main representation theorem of [13]. It is
applied by induction, which ends if � is prime. Using the
trees � ��� 1 � �������� � �
� � � with the children � 1 ����������� of �
as roots, (8) gives the fully decomposed representation of � .
By Theorem 5, the resulting hierarchical term contains any
decomposition (1) as a subterm, where ���
	!� is possibly
obtained by suitable arrangement of “products” with an op-
eration .

An example of a composition tree is shown in Figure 3.
Abbreviations “D”, “F” and “L” stand for labels “disjoint”,
“full” and “linear”, respectively. The linear order among
the children of the “L” node is from left to right. Letters
� � � � � ��$!��% denote the functions associated with the nodes,
and and
 denote the operations. In accordance with the
tree, the complete decomposition of the function � is

����	 1 ������� 	 6 � � �����
	 1 � 	 2 �&
 ���	 3 �&
 ���	 4 � � $ ��	 5 � % ��	 6 �
with being an associative and commutative operation and

 being associative and non-commutative.

5

4. Constructing Composition Trees

Assume an � -valued � -variable � is specified in some
way, and � � Σ. We want to find its composition tree � �
�!� .
The problem of finding a simple disjunctive decomposition,
i.e. determining a bound set for an � -valued function � and
obtaining suitable functions � and � in ���
	 ��� � � ��������	�� ��� � ,
is widely studied with a number of algorithms developed for
its solution including those in [8], [9], [14]. So we assume
the existence of the following function:

IsBoundSet ��� � � � � �
input: � :

� 	 � �
in Σ, � & �

output: “true” if � is a bound set for � ,
“false” otherwise.

We assume this function has worst-case time complexity
� � . One may hope that the output “false” is produced
faster, if more than � columns in the decomposition chart
are detected early. As long as all arguments of � have to
be evaluated, � � is the worst-case running time [10]. It
might be interesting to analyze the expected time needed to
recognize that a “random” function is prime, with all caveats
that such functions are not those used in practice.

We check successively all sets � with cardinality � % 1,
� % 2, ������ 2 until a bound set is found. If � is prime, this
requires 2 � % � % 2 many calls to IsBoundSet and overall
running time � � 2 � � � � . However, this is the worst-case
time complexity. It will become apparent that there is a
significant speedup as soon as decompositions are found.

If � is prime, then we return

TrivialTree �
� � �&�
which is just one node if � is a singleton, otherwise root �
with children � � for � ��� . The root is labeled “disjoint”
and with the function � to take the place of � in (8), and the
children � ' � ��� are labeled with ���
	�' �,�$	�' .

If a bound set � is found, then it is maximal since we
examine the largest subsets of � first. We construct a spec-
ification of � and � in (1), for example by Lemma 1. Recall
that for that purpose, it is useful to know explicitly where �
is fully sensitive to all its variables.

If � is not overlapping with any other bound set, then �
is by definition a node of the composition tree � ��� ����� .
Using Lemma 3, we can recursively compute

� 1 � � �
�!� � � 2 � � � �2� � 9 �
and return

� � Append � � 1 � � � � 2 � � � � � � �
The function Append takes two trees, � 1 with root � and
� 2 with root � � � � , as input and returns � obtained by
replacing the leaf � � of � 2 by � 1, and new root � � � . The

labels of the nodes are not changed. Then Lemma 3 and
Theorem 6 imply ��� � ����� .

However, this is not correct if another bound set � over-
laps with � , as in (7). Then � � � � � because � is
maximal, hence � � � %�� � � %�� and Theorem 4(a)
implies:

��% � and � � � are bound sets for � ,
� is a bound set for � .

By Lemma 3(a) and (c), these necessary conditions are
equivalent to

��% � and � � � are bound sets for � ,
� is a bound set for � .

As before, these conditions can be verified from the compo-
sition trees � 1 and � 2 of � and � in (9) if these are computed
recursively first. The conditions fail if the root of either tree
is labeled “disjoint” and has three or more children, by (6).
Otherwise, we invoke

PossiblyMerge � � 1 � � � � 2 � ��� � � �
input: composition trees � 1 � � �
�!� with root � and

� 2 � � � � � with root � � � � . Assume (1).
output: If no bound set � for � overlaps with � , then the

same as Append � � 1 � � � � 2 � � � � � � .
Otherwise, � � � �
�!� with the roots of � 1 and � 2

merged, the leaf ��� of � 2 omitted, and new root
�� � labeled “full” or “linear”.

We describe this procedure in more detail. The root of
� 2 � � � �2� is labeled “disjoint” since � � is a maximal
bound set for � (by Lemma 3(b), since � is maximal for
�). Suppose the root of � 2 has two children � � and � , and
the root of � 1 � � �
�!� has two children (� � . Then the
functions � and � for these roots (which are stored with
the trees) show

���
� ��� �,��� �
� � � � � � � � � � � � � � � �
����� ��� � ��� �������!� � �� � � � � � � � � ��� � � � � 10 �

so that ����� ������� � ��� ��� �������!� � �� � � � � �� � � � . We have to
check for the possibility that � and � are isotopic to an
operation . Rather than trying out the bijections

� � �
for verifying such an isotopy, we test if � � � � � (i.e. the
variables �����) and � � (� � (i.e. the variables � ���) are
bound sets for ����� ������� � . It is not necessary to apply this
test to � . Equivalently, we test if � � � � and � � � � are bound
sets for the function � ��� � � � � � ��� ��� ��� � � � � � � of the three
variables � � � � � with values in

�
. This can be done quickly

in time � 3. Then if
(i) � � � � and � � � � are bound: merge the roots and label

the new root � � � “full”, with children (� � � � .
(ii) � � � � is bound, � � � � is not: merge, with label “linear”

and children (� � � � .
(iii) � � � � is bound, � � � � is not: merge, with label “linear”

and children � � (� � .

6

(iv) Otherwise, just append � 1 to � 2.
In cases (i)–(iii), the root obtained by merging is labeled
with the operation , which can be found similar to Lemma 1
[13]. Furthermore, it may be necessary to apply a bijective
transformation to the values of the functions of the children,
as when changing from � to ˆ� in (5).

PossiblyMerge is also applied if the root of � 1 is labeled
“full” or “linear” with children � 1 ����� ����� . In that case,
we let (� � 1 and � � � 2 � �!�"� � �� , and let � be
the operation at the root of � 1, so that (10) holds, and
proceed as before. In case (ii), the children of the new root
are � 1 ���������� � � . In case (iii), they are � ����������� 1 � � . In
any case, PossiblyMerge has time complexity � ��� 3 � .

The great advantage of the recursion (9) is that it saves
computation time. If � � " as in Figure 1, each test of a
bound set for � or � with IsBoundSet requires up to � + or
� 1 0 ��1 + many steps, much fewer than the � � steps for � .

For the computation of � 2 � � � �2� , some care is neces-
sary to avoid duplicate computations. First, � � is a leaf of
� 2, so only subsets of � have to be checked. Second, subsets
� of � with �� � " can also be disregarded since they have
already been checked for � and Lemma 3(c) holds. (Even
certain subsets � of � with ���� " may have been checked
before � , and can be disregarded by a careful implementa-
tion of the algorithm.) The second point is relevant only
when " � � � � % " , i.e. " � ��� 2. In that case (which
includes " �� �) it is also unnecessary to invoke Possibly-
Merge since then � � " for the bound set � of � that is
sought there, which is not possible.

In order to compute � 2 efficiently, we therefore pass�
: � � and " as additional parameters to the algorithm,

which looks as follows. Preconditions and assertions at
various stages are given in � � � ��� . The procedure terminates
at each return statement with the indicated output.

CompositionTree �
� � � � � � " �
input: � :

� 	 � �
in Σ,

� &�� , integer "
assumption: � � & �

and � � " for any bound set �
of � , � 	� � �

output: the composition tree � � � �
�!�
initial call: CompositionTree ��� � � � � � � % 1 � .

1. if �� � 2 then
return � : � TrivialTree ��� � �&� ;

2. while " � 1
for all � & �

with � �� "
if IsBoundSet ��� � � � �&� then goto 3;

end for;" : � " % 1;
end while;
�-� is prime �
return � : � TrivialTree ��� � �&� ;

3. ��� is a bound set for � , � �� " �
let ���
	 ��� � �����
���
	!� ��� � as in (1), � � �

� 1 : � CompositionTree �
� � � � � � " % 1 � ;
� 2 : � CompositionTree � � � � � � � � %�� � �� %�� � min � " � � % � � ;

4. if � 	� �
or " � �� % "
or � 1 or � 2 has a “disjoint” root with

more than two children
then
� : � Append � � 1 � � � � 2 � ��� � � % � �

else
� : � PossiblyMerge � � 1 � � � � 2 � ��� � � %�� � ;

return � .

When computing � 2, we exploit that � 2 has a “disjoint”
root when we invoke CompositionTree with third parameter�

: � � % � rather than � % � , since all elements of � % �
(as singletons) will be children of the root. For example,
suppose � � 12345678 (as shorthand for � 1 ����� � 8 with
disjoint maximal bound sets 123, 45, 67, 8. Assume � ���
in step 3 is the first element of � . Then the parameters � � �
of CompositionTree for computing � 2 are

after 123 is found: � � 145678,
� � 45678,

after 45 is found: � � 14678,
� � 678,

after 67 is found: � � 1468,
� � 8.

Similarly, the test � 	� �
in step 4 reveals if the current

computation is for some tree � 2.
To illustrate the recursive calls for computing � 1, con-

sider Figure 3 where � � 123456. In succession, we
find the bound sets 12345, 1234, 123, 12. (In this exam-
ple, � 2 is therefore always the trivial tree by step 1.) Let� �
	 1 � 	 2 � 	 3 � be the function with root 123,

� �
	 1 � 	 2 � 	 3 � �� ������	 1 � 	 2 � � 	 3 � . Because
�

and � are binary functions,
PossiblyMerge � � ��� � � � 1 � 2 � � � � � � � 1 � � 3 � is called,
which is the same as Append since (case (iv) above) neither
� 2 � 3 nor � 1 � 3 are bound sets for

�
. After this recur-

sion terminates, the function � for node 1234 is checked
with, say, PossiblyMerge � � � � � � � 1 � 2 � 3 � � � �,� � � 1 � � 4 �
which merges 123 into 1234 (case (ii) above), making this a
“linear” node. Next, via PossiblyMerge, case (iv), 1234 is
just appended to 12345, and then 12345 is merged via case
(i) into 123456 which is labeled “full”.

The algorithm exploits the structure of bound sets as
stated in Theorems 4 and 5, and there seems to be no obvi-
ous way to do this better. Furthermore, it is readily adapted
to bound sets � that are apparent from a modular specifi-
cation of the function, where � and � in (1) are explicitly
given. After computing � 1 ��� �
�!� and � 2 � � � �2� , these
trees could possibly be merged. The above procedure Pos-
siblyMerge can easily be modified for that purpose so that
it works with arbitrary composition trees � 2.

Making use of decompositions that are found along the
way reduces the running time substantially. If � is composed
only of binary functions, for example, then � has a bound
set of size � % 1, which is found after ��� � or fewer steps,

7

and the same holds for any function � (with correspondingly
smaller number � of variables). Thus, the complete tree is
computed in � �' $ 3 �4� ' � � �
��� � � time. The expensive
cost � � of finding a bound set is still there, but with a factor
of � rather than 2 � for a non-decomposable function.

5. Conclusions

This paper summarizes the results on composition trees
from [13] restricted to the case of � -valued � -variable func-
tions, defining composition trees and specifying a class of
functions Σ for which the composition tree exists. The
composition tree provides a representation for the function
showing all its disjunctive decompositions, which substan-
tially reduce the overall cost of realizing the function. The
class Σ is connected to full sensitivity, a concept introduced
independently in [5] as the discrete difference for test gen-
eration purposes. This shows the practical importance of
the class Σ, and allows to apply the results obtained for test
generation as well as the decomposition theory.

Some extension of the algorithm seems desirable. First,
since the class Σ does not include all functions for which
the composition tree can be built, the present algorithm is
incapable of constructing the composition tree for the de-
composable functions which are not in Σ. An open problem
remains how to generalize this class so that it includes all
decomposable functions. Second, the functions included in
class Σ are restricted to homogeneous functions only. If
the theory developed in [13] can be extended to the case of
heterogeneous functions, then it would have a direct appli-
cation to Boolean circuit synthesis, since it would cover as
a special case the decomposition of type

���
	 ��� �,� ��������	�� ��� �
with � : � 0 � 1 ��� � 0 � 1 , � : � 0 � 1 +�� � 0 � 1 ��� � � � � % 1
and � : � 0 � 1 �� � � � � % 1 � � 0 � 1 ��12+ � � 0 � 1 . In such a
decomposition the � -valued function � of 2-valued vari-
ables can be coded by

� ��� log2 ��� Boolean functions
� 1 � � 2 ������� � � , giving a decomposition of the form

����	 ��� �,� ����� 1 ��	�� � � 2 ��	�� �������� � � ��	�� ��� � � 11 �
with all functions being Boolean. The decomposition of
type (11) includes as a subclass simple disjunctive de-
compositions (

� � 1) as well as nondisjunctive decom-
positions. As long as � is a function of more than three
variables, such a decomposition can always be found with
� 1 �
	!� � � 2 �
	!� ������� � � �
	!� and � each having fewer arguments
than � , for there always exists a decomposition of the form

����	 1 ������� 	���� �$��� ��� 	����,�����
� 1 � � � � � 2 � � � � 	����
with � � ��	 1 ������� 	���1 1 � . Thus, a decomposition (11) al-
lows simplifying any Boolean function. Therefore, a theory

of composition trees for this extended case would be a base
for systematic synthesis of multi-level Boolean circuits.

References

[1] R. L. Ashenhurst. The decomposition of switching
functions. Proc. Int. Symp. Theory of Switching, Part I,
Ann. Comput. Lab. Harvard Univ. 29:74–116, 1959.

[2] M. Bolton. Digital Systems Design with Pro-
grammable Logic. Addison-Wesley Pub. Co., 1990.

[3] S. D. Brown, R. J. Francis, J. Rose and Z. G. Vranesic.
Field-Programmable Gate Arrays. Kluwer Academic
Publishers, 1992.

[4] H. A. Curtis. A New Approach to the Design of Switch-
ing Circuits. Van Nostrand, Princeton, 1962.

[5] E. V. Dubrova, D. B. Gurov and J. C. Muzio. Full
sensitivity and test generation for multiple-valued logic
circuits. Proc. 24th Int. Symp. on MVL, 284–289, 1994.

[6] E. V. Dubrova, D. B. Gurov and J. C. Muzio. The evalu-
ation of full sensitivity for test generation in MVL Cir-
cuits. Proc. 25th Int. Symp. on MVL, 104–109, 1995.

[7] R. M. Karp. Functional decomposition and switching
circuit design. J. Soc. Indust. Appl. Math. 11:291–335,
1963.

[8] D. M. Miller. Decomposition in Many-Valued Logic
Design. Ph.D. Thesis, University of Manitoba, March
1976.

[9] D. M. Miller and J. C. Muzio. Decomposition and
the synthesis of many-valued switching circuits. Proc.
1976 Int. Symp. on MVL, 164–168, 1976.

[10] R. H. Möhring. Algorithmic aspects of the substitu-
tion decomposition in optimization over relations, set
systems and Boolean functions. Annals of Operations
Research 4:195–225, 1985.

[11] W. Paul. Realizing Boolean functions on disjoint sets of
variables. Theoretical Computer Science 2:383–396,
1976.

[12] C. E. Shannon. The synthesis of two-terminal switch-
ing circuits. Bell System Technical J. 28:59–98, 1949.

[13] B. von Stengel. Eine Dekompositionstheorie für
mehrstellige Funktionen. Mathematical Systems in
Economics, Vol. 123, Anton Hain, Frankfurt, 1991.

[14] K. M. Waliuzzaman and Z. G. Vranesic. Decomposi-
tion of multiple-valued switching functions. Computer
Journal 13(4):359–362, 1970.

8

