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We propose theequence forras a new strategic description for an extensive game with
perfectrecall. Itis similar to the normal form but has linear instead of exponential complexity
and allows a direct representation and efficient computation of behavior strategies. Pure
strategies and their mixed strategy probabilities are replaced by sequences of consecutiv
choices and their realization probabilities. A zero-sum game is solved by a corresponding
linear program that has linear size in the size of the game tree. General two-person game:
are studied in the paper by Kollet al,, 1996 Games EcorBehav 14, 247-259)Journal
of Economic Literature€Classification Number: C72. ©1996 Academic Press, Inc.

1. INTRODUCTION

In applications, it is often convenient to describe a game in extensive fc
The game tree, with its information sets, possible moves, chance probabi
and payoffs, gives a rather complete picture of the situation that is modele
the game tree is explicitly given and not generated from certain rules like
chess game, it is also a data structure of manageable size. On the other
the standard way to find optimal strategies for a game in extensive form is
inefficient. Usually, the game is converted to its normal form by considering
pure strategies for each player and the resulting payoffs when these strategi
employed. A pure strategy specifies a move for each information set of the pl:
so the number of pure strategies is ofexponentialn the size of the extensive
game. This holds also for the reduced normal form of an extensive game w
pure strategies differing in irrelevant moves are identified. In the case of a1
person zero-sum game, optimal mixed strategies can then be found by |
programming, but the vast increase in the description can make the pro
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computationally intractable and may even force the analyst to abandon the
theoretic approach altogether (Lucas 1972, p. P-9).

In this paper, we present a computational method without these disa
tages. Itis based on a new strategic description of an extensive game, cal
sequence formBased on the sequence form, equilibria of the extensive ¢
can be determined by essentially the same algorithms that are known f
normal form. In particular, a two-person zero-sum game can be solved
linear optimization method like the simplex algorithm. For a two-person g
with general payoffs, an equilibrium is found by Lemke’s (1965) variant of
complementary pivoting algorithm by Lemke and Howson (1964) for bime
games; this is the topic of the paper by Koller, Megiddo, and von Stengel (1
(A summary of this and other results is presented in Kadleal., 1994; that
paper also contains the main results of the present text, which has appe:
preliminary form in von Stengel, 1993.) In general, these algorithmsxgre-
nentially fastethan with the standard approach because the size of the seq
form islinear and not exponential in the size of the game tree.

The sequence form is a matrix scheme similar to the normal form but w
pure strategies are replaced by sequences of consecutive moves. Instead ¢
strategy probabilities, we consider the realization probabilities by which t
sequences are played. These are nonnegative real numbers that can be cf
ized by certain linear equations which correspond naturally to the inform:
sets of the player, provided the player pgsfect recall that is, his information
sets reflect that he does not forget what he knew or did earlier. From the
ization probabilities for the sequences one can reconstrbehavior strategy
which defines a local randomization at each information set rather than a ¢
randomization over all pure strategies. This construction is similar to the the
of Kuhn (1953) stating that in a game with perfect recall, any mixed strateg
be replaced by a behavior strategy.

A player can play the game optimally by appropriately choosing the realiz:
probabilities for his sequences. His expected paydifh&ar in these variables
This is their key advantage over behavior strategy probabilities: The latte
also small in number, they can be characterized by linear equations (a
probabilities), but the expected payoff usually involves products of beh:
strategy probabilities. Using the resulting polynomials for computing equili
is theoretically and practically much more difficult than the approach taken |
Assume aplayer seeks a bestresponse against fixed strategies of the other
so he maximizes his payoff. In terms of sequence form variables, this de
a linear program (LP). In thdual of this LP, the variables are separated fr
the strategic variables of the opponent, so that if these are no longer fixe
constraints are still linear for a two-person game. We thus obtain an optimiz
problem whose solutions are the equilibria of the game. This problem is a |
program if the game is zero-sum, a linear complementarity problem for a
person game with general payoffs, and a multilinear optimization problem f
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N-person game. Using a sparse representation of the payoffs and constrain
optimization problem has a size proportional to the size of the extensive ga

The first polynomial-time algorithm for solving a zero-sum game in extens
form with perfect recall was described by Koller and Megiddo (1992). It soh
a linear program with essentially the same variables as in our approach. Th
inequalities are defined by strategies of the opponent, which may be expon:
in number. However, these inequalities can be evaluated as needed by finc
best response of the opponent, which can be done quickly by backward in
tion. This solves efficiently the “separation problem” for the ellipsoid meth
for linear programming, which therefore runs in polynomial time. Similar
Wilson (1972) described a method for solving extensive two-person games
general payoffs, where best responses, which serve as pivoting columns ft
Lemke-Howson algorithm, are generated directly from the game tree. In
trast to these approaches, we no longer consider pure strategies but use seq
symmetrically for all players. In our LP, the number of variatdasd constraints
is linear in the size of the game tree. We will compare our techniques in d
with earlier work in the concluding Section 7.

In Section 2, we state our notation and basic definitions, and introduce a sil
example that will be used frequently. We define the sequence form in Sectit
The strategic variables of the players describe how sequences are played, a
be translated to behavior strategies. In Section 4, we consider mixed strat
and compare the sequence form with the well-known reduced normal form ¢
extensive game. In Section 5, we apply the sequence form to two-person ge
A central idea is the linear program for computing a best response of one pl
to fixed strategies of the other players. From this one obtains a linear proc
whose solutions are the optimal strategies of a zero-sum game, and a |
complementarity problem whose solutions are the equilibria of a nonzero-
game. In Section 6, we interpret the dual solutions of the “best response LP’
describe theN-person case. In Section 7, we summarize our results, comj
them with earlier work, and discuss their applicability to games without per
recall.

As prerequisites, we assume familiarity with the duality of linear prograr
Classical texts are Gale (1960) and Dantzig (1963). A more recent introduc
to linear programming is Clatal (1983).

2. EXTENSIVE AND NORMAL FORM GAMES

In this section, we state our notation and conventions for games in exter
and normal form. For an extensive game, it will be convenientto represent che
by unique labels of edges in the game tree, and to treat the random chance |
as a fixed behavior strategy played by a chance player. We also give an exe
that will be used throughout the text.
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The basic structure of an extensive game isgame tregewhich is a finite,
directed tree, that is, a directed graph with a distinguished nodeydhénitial
node), from which there is a unique path to every other node. Edges of th
are denoted bwb, where the nodé is called achild of the nodea. Nodes
without children (that is, terminal nodes) are calledves the otherslecision
nodes Trees are depicted graphically with the root at the top and edges ¢
downwards.

In addition to the game tree, an extensive game has the following compol
In general, there ardl personal playersf the game numbered 1., N. An
additionalchanceplayer is denoted as player 0. The chance player is here tre
symmetrically to the other players, except that he plays with a fixed beh
strategy and receives no payoff.

The payoff functionh is defined on the set of leaves and yields a veltay
in RN for each leafa. Theith componenh;(a), 1 <i < N, of h(a) is called
the payoff to playei ata. A zero-sumgame has two player§\( = 2), with
h, = —h;.

The possible moves of a player are represented by a function that assi
each edgab a label, called @hoiceata, such that the choices atare always
distinct, that is, the childreb of a decision node can be distinguished b
the respective labels of the edgds The usage of the terrmovevaries in the
literature. We use it to denote an action that occurs during play, whereas a ¢
means an intended move as planned by a player, or a possible move ata d
node of the game tree. There is not much harm in confusing these terms
both refer to the outgoing edges at decision nodes. Similgolgyas a particular
instance in which the game is played from beginning to end, that is, a seq
of moves represented by the path from the root to a particular leaf of the
A gameis the static description with the entire tree and all possible moves
outcomes.

The set of decision nodes is partitioned imfmrmation setsEach information
setu belongs to exactly one player0 < i < N, called theplayer to movetu.
The set of all information sets of playeis denoted byJ;. For all nodesa in
u there are the same choicesaatvhich will be called the choices at the set
of these choices is denoted By. In particular, all nodes in u have the same
number|C,| of children. For simplicity, it is assumed that the choice $&fs
andC, of any two information sets andv are disjoint. The sdt),,., C, of all
choices of player, 0 <i < N, is denoted;.

Finally, fixed positive probabilities for the chance moves are also pa
the extensive game. They are specified as a behavior strageigy player O.
Generally, dehavior strategy; for playeri is given by a probability distributior
onC,, called theébehavioratu, for each information set € U;. Itis representec
as afunctiorg;: D; — R such that the probabilitg; (c) for making the move
is nonnegative for alt € D;, and Zcecu Bi(c) = 1 forallu € U;. Without
loss of generality, the chance probabilitiggc) for c € Dy are assumed to b
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c d
L) | -2 4
(,R) 11
nL) | -1 3
(r,R) 2 0

Fic. 2.1. An extensive game, and its normal form.

nonzero, since branches of the game tree that are never reached can be p

Inthe extensive games considered here, each player is assumedpetface
recall. Thisis a structural property of the information sets of the player, reflect
that he does not forget what he knew or did earlier. Technically, it says th
choicec at an information sai of a player precedes a notdef an information
setv of the same player if and only if it precedes all nodes.dafherebyc is said
toprecede bif cis the label of an edge on the path from the rodi.t®he concept
of perfect recall has been introduced by Kuhn (1953). This short definitio
due to Selten (1975); see also Wilson (1972, p. 456). Itis easy to see that p
recall implies that there is no path between two nodes of an information s
property which often forms part of the definition of an extensive game.

An example of an extensive game is shownin Fig. 2.1. There is a chancer
from the root with probability; to the left and with probabilitys to the right.
The labels inDy denoting the choices of the chance player are omitted si
the chance probabilities suffice, but in general they will be useful for system
reasons. There are three information sgets, v” indicated by ovals. The game
is zero-sum, so only the payoffs to player 1 are specified at the leaves of the
For two-person games, we will use the pronoun “she” for the first player
“he” for the second player.

Inthe game in Fig. 2.1, both players have perfect recall. This would not be
case if the firstinformation set belonged to player 2 and not to the chance pl;
Games without perfect recall and the associated computational difficulties
discussed in Section 7 below.

For a general extensive ganpeye strategyr; of playeri, 1 <i < N, specifies
a choice at each information sete U, so the sef, of his pure strategies is
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the cartesian produqf[ueUi C,. For eachN-tupler = (mq, ..., 7n) Of pure
strategies, the payoff vectdt (r) € RN is given by the expected payoff th:
results from the payoffis(a) at the leavea reached by the random chance moy
and the players’ moves as prescribedby his defines agame imormal form In
general, such agameis given®, ..., Py; H)withH: Py x- - - x Py — RN,
wherePy, ..., Py are non-empty finite sets of pure strategies.

A mixed strategyu; of playeri is a probability distribution on his sét of
pure strategies. For a tuple= (u1, ..., un) Of mixed strategies, the expect
payoff H () is defined accordingly. Such a tupleis anequilibriumif each
mixed strategysi, 1 <i < N, is abest responst the fixed(N — 1)-tuple of
the mixed strategies of the other players, that is, yields maximum pelyQff)
to playeri for all his mixed strategies.

Figure 2.1 also shows the normal form of the extensive game. Each rov
resents a pure strategy of player 1 and each column a pure strategy of pl:
The respective matrix entry is the expected payoff to player 1 when these ¢
gies are used. The normal form of an extensive game may be very large
the number of pure strategies is exponential in the number of information
For example, in an extensive game similar to Fig. 2.1 but witparallel” in-
formation sets, instead of only two, following an initial chance move wit
possibilities, and with two choices at each of these information sets, player
2" strategies.

One equilibrium of this game consists of the pure straiggRR) for player 1
and the mixed strategy for player 2 that assigns probalflitp bothc andd.
These strategies are mutual best responses. A mixed strategy is a best re
to a mixed strategy of the other player if and only if every pure strategy sels
with positive probability is a best response (Nash 1951, p. 287). Player
therefore assign positive probabilitiesd¢@ndd since both give him the samr
maximum expected payoff 1. Conversely, against the mixed strataéfy %)
of player 2, all pure strategies of player 1 are best responses, which su
that there may be further equilibria. Indeed, there exist two mixed strat
w1 and ) of player 1 that produce the same expected payoffs to play
These are, as vectors of probabilities for her four pure strate@e8, %, %)
and (%, 0, 0, 34), in addition to the pure strateg®, 1, 0, 0). Since the game i
zero-sum, all convex combinations of these three extreme mixed strategi
also equilibrium strategies.

3. THE SEQUENCE FORM

In this section, we define the sequence form for an extem$iperson game
using the notation of the previous section. The sequence form is a new str
description that describes strategies in a new way: Rather than planning a
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for every information set, a player looks at each leaf of the game tree and
siders the choices he needs to make so that the leaf can be reached in the
These choices are prescribed by the respective play, i.e., path from the rc
the leaf, whenever that path goes through an information set of the player.
represent a “sequence” that will be considered instead of a pure strategy:

DerINITION 3.1. A sequencef choices of player, 0 <i < N, definedby a
nodea of the game tree, is the set of labeldn on the path from the root ta.
The set of sequences of playes denoteds.

A sequence can also be regarded as the string of choice labels of the
found on the path to some nodeFor easy reference to its elements, we ha
defined a sequence as a set. This is possible since choices at differentinforn
sets are distinct. In Fig. 2.1, for example, player 1 has the sequences (repres
as strings), r, L andR, and the empty sequen@ethe sequences of player :
are@, c andd.

In the sequence forng is the set of sequences of playelefined by all nodes
of the game tree. It replaces his set of pure strategies in the normal form.
sequences of the chance player 0 are also considered, since this allows d
only with payoffs and not expected payoffs. As in the normal form, payoffs
defined as they result from combinations of sequences:

DEFINITION 3.2.  Thepayoff functiongS x S x - - - x Sy — RN is defined
by g(s) = h(a) if sis the(N + 1)-tuple (s, Sy, - . ., Sn) Of sequences definec
by a leafa of the game tree, and li(s) = (0, ..., 0) € RN otherwise.

The payoff function is well defined since tkisl + 1)-tuple (so, S1, ..., Sn)
of sequences, whegeis defined bya for 0 < i < N, is unique for any noda
of the game tree. For a player, there are at most as many sequences as the
tree has nodes, so their number is linear in the size of the game tree, in col
to the number of pure strategies which may be exponentiali tiheomponent
g of the payoff functiong for 1 < i < N is a(1 + N)-dimensional matrix
representing the payoffs to playerThat matrix is sparse since the number
nonzero entries is at most the number of leaves of the tree, so the size c
matrix is also linear if it is represented sparsely. In contrast, the payoff me
for a player in the normal form is usually full. Because the chance probabili
are known, the dimension of the matrix can be reduced fromN to N by
considering expected payoffs, as shown in Section 5.

In addition to the payoffs, it is also necessary to specify how sequence:
selected by a player. In the normal form, the player may just decide on a |
strategy, or, by a mixed strategy, use a probability distribution to select one
the sequence form, a player cannot just decide on a single sequence. In Fi
for example, player 1 has to decide betwkandr as well as betweeh andR,
so she may for example decide lbandL as in the pure strategy, L). In that
case, the probabilities, 1, 0, 1, 0 are assigned to her sequenges, r, L, R,
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respectively. In general, mixed strategy probabilities will be replaced by
realization probabilities of sequences when the player ubetaviorstrategy.
The use of a mixed strategy will be considered in the next section.

If playeri, 0 <i < N, usesthe behavior stratefy then the sequensee §
is played with probability

rs) =[]6©. (3.1)

ces

The functionr;: § — R defined in this way is called threalization planof g;.

Realization plans of behavior strategies can be characterized by certain
eqguations, using a correspondence between the sequences and the info
sets of a player. By definition of perfect recall, every node in an informatian
of playeri defines the same sequence of choices for that player. This seq
will be denoteds, and is called the sequenteading to u A choicec atu
extendsy,. The extended sequence will be abbreviated as

ouC=o,U{c} forc e C,.

This shows that a nonempty sequence is uniquely specified by its last chc
Thus, the se§ of sequences of playércan be represented as

S ={0}U{ouc|ueU,ceCyl 3.2

Therefore,§ has 1+ |Di|, thatis, 1+ )., |Cul elements.

If one were only interested in the payoffs, it would suffice to consider ¢
the sequences defined by the leaa@d the game tree. By considering decisi
nodesa as well, the representation (3.2) §fleads to the following constraint
that are fulfilled by a realization plam according to (3.1):

W =1 (3.3

because the empty product is 1, and, sihcg fi(c) = 1,

—ri(ow+ Y _ri(oy0)=0  forueu,. (3.9

ceCy

Furthermore, realization probabilities are obviously nonnegative:
ri(s)>0 fors € §. (3.5

The following definition of a realization plan uses these constraints; itis just
by the subsequent proposition.

DerINITION 3.3. A functionr;: § — R fulfilling (3.3), (3.4), and (3.5) is
called arealization planfor playeri, 0 <i < N.
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ProPOSITION3.4. Any realization plan arises from a suitable behavior stra
egy

Proof. The realization plan arises from the following behavior strate@y
For an information sat in U;, define the behavior atby

ri(ouC)
ri(ow)

if ri (oy) > 0, and arbitrarily (so thazcecu Bi(c) =1)ifri(oy) = 0. Then (3.1)
follows by induction on the length of a sequences

Bi(c) = force C, (3.6)

DerINITION 3.5. Thesequence forraf an extensive game is given by the se
of sequences, the payoff functigy the constraints for the realization plans ¢
the personal players, and the realization plaof the given behavior strategy
of the chance player.

The sequence form corresponds closely to the extensive game. Itisan ab
tion like the normal form that describes the strategic possibilities of the play
and the resulting payoffs. It has the advantage of small size and the disac
tage of a less intuitive selection of sequences by realization plans. The latte
finitely described by the constraints in Definition 3.3.

The constraints for playdr, 1 < i < N, are determined if one knows fol
each information set in U; the sequence, leading tou and the choices
at u. They need not be stated for the chance player beaguisedefined by
Bo. It is possible to ignore the structure of sequences and re§gusst as a
finite set, and a realization planas a nonnegative vector witg | components.
The linear equations (3.3) and (3.4) for this vector can then be representec
two-dimensional “constraint” matrix with 4 |U;| rows and| S| columns. We
will do this in Section 5 where we show, using matrix notation, how equilib
of two-person games can be computed with the sequence form.

In the normal form, thexpectegbayoff to each player is a multilinear expres
sion in terms of the payoffs and the mixed strategy probabilities. In the sequ
form, it is defined analogously. Consider behavior strategies. ., By for all
players, and let = (ry, ..., ry) be the tuple of corresponding realization plan
As in Def. 3.5, letrg be the fixed realization plan for the chance player. L
S= S xS x---x Sy denote the set of a{lN + 1)-tupless = (s, Sy, . .., SN)
of sequences. Then, define the expected payoff vegtoy € RN in terms of
g(s) fors € Shy

N

Gr) =Y 9®]]ri). (37)

seS i=0

IndeedG(r) isthe expected payofi (81, . . ., Bn) ifthe players use the behavio
strategie®; because, inthe summation o ponly a tuples of sequences definec
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by a leafa of the game tree contributes a nonzero payoff vegtsy = h(a),
and by (3.1)a is reached with probability_[iNzori (s).

4. MIXED STRATEGIES AND THE REDUCED NORMAL FORM

So far, we have defined a realization plan only for a behavior strategy. An
strategy can also be strategically represented by a realization plan, as fc
A pure strategy is a special behavior strategy that has a realization plar
integral values zero or one. A mixed strategyis a convex combination of pur
strategies. The corresponding convex combination of the realization plans
strategies is again a realization plan by Definition 3.3, and defines the reali:
plan of u;. (This means that the set of realization plans is a polytope, analc
to the simplex of mixed strategies, but of much smaller dimension. The vel
of the polytope represent the pure strategies.) Equivalently, the realizatior
of u; assigns to each sequersc¢he combined probability under; for the pure
strategies that are “consistent” with

In going from a mixed strategy to its realization plan, information is lost
cause the latter has much fewer components. However, the strategically re
aspect of a mixed strategy is captured by its realization plan: Two mixed s
gies of a player are calle@alization equivalenif for any fixed strategies of the
other players, both strategies define the same probabilities for reaching the
of the game tree. Looking at these probabilities, it is easy to see the follc
(compare also Koller and Megiddo 1996, Lemma 2.5):

ProPoOsITION4.1. Mixed strategies are realization equivalent if and only
they have the same realization plan

(For the “only if” part, any node of the game tree must be reachabile
suitable strategies of the other players, which requires that all chance r
have positive probability.) Since a behavior strategy is in effect a special n
strategy, Propositions 3.4 and 4.1 imply Kuhn's theorem (1953, p. 214):

COROLLARY 4.2. For a player with perfect recallany mixed strategy is re
alization equivalent to a behavior strategy

This shows that for a game with perfect recall, the sequence form, whi
designed to compute behavior strategies, is not more restrictive than the r
form. The realization plan of a mixed strategycan be retranslated to a behav
strategy that is realization equivalent;ip.

As an example, consider the optimal mixed strategies of player 1 in Fig
described at the end of Section 2. They dreR) = (0, 1, 0, 0) and the mixed
strategiest; = (0,0, %, %) andu) = (%, 0, 0, 3,). Denote a realization pla
by its vector of values for the sequendéd, r, L, R. The realization plan o



230 BERNHARD VON STENGEL

L |1 @,L) | 1
LR | 0 (LR) | 0
(rL) | 0 (%) | 0
(rnR) | 0

1

Fic. 4.1. An extensive game, its normal form, and its reduced normal form.

(I, R)is (1,1,0,0,1). For i, selecting(r, L) and(r, R) with probabilities,
and?, respectively, itiss-(1,0,1,1,0) +%-(1,0,1,0,1) = (1,0, 1, %, %).
The pure strategyl, R) as well as the mixed strategy; are in effect behavior
strategies. This is not the case for the optimal mixed strajggyselecting
(I, L) and(r, R) with probabilities¥, and¥,;, which defines the realization plar
(1, Y, 3, %, 3). That realization plan tells that with’,, player 1 moves left or
right at both information sets andv’ with probability ¥, and3,, respectively,
but without the correlation of these moves as specified by the mixed strafeg
Furthermore, this vector is a convex combination of other optimal realiza
plans,(1,1,0,0, 1) and(1, O, 1, %, %), unlike i; in the normal form.

More than one behavior strategy may define the same realization plan
As shown in the proof of Prop. 3.4, this is the case if the information st
playeri cannot be reached wheh is played, that is, ifi (oy) = 0. Thenu is
calledirrelevantwhen playingg;, otherwiserelevant(Kuhn 1953, p. 201). In
this case, the behavior atunderg; is arbitrary and therefore not unique (if
has at least two choices).

In particular, more than one pure strategy may define the same realiz:
plan. However, there is a natural one-to-one correspondence between reali.
plans with integral values zero or one and pure strategies iretheced normal
formof the extensive game. In the reduced normal form, any two pure strate
that differ only in choices at irrelevant information sets are identified, like -
strategiegr, L) and(r, R) in Fig. 4.1. Kuhn (1953, p. 202) called such strategi
“equivalent,” and even identified them directly (1950, p. 574). They can
represented in the reduced normal form by leaving the choices at the irrele
information sets blank, denoted by some new symbol likethat does not
denote a choice, like ifr, *) in the example.

In the reduced normal form, precisely the pure strategies that are realiz:
equivalent are identified. These lead to the same payoffs for all players. How:
their identification in the reduced normal form does not depend on the partic
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payoff function. In contrast, Dalkey (1953, p. 222) defined the reduced nc
form via payoff equivalence, which may allow the identification of further str:
gies like(l, R) and(r, *) in Fig. 4.1. Other reductions of the normal form he
been considered by Swinkels (1989), that for a “generic” game is the rec
normal form considered here.

The reduced normal form can easily be constructed directly from the ¢
tree, without considering the full normal form first. It is smaller than the nor
form, but not necessarily in the same significant way as the sequence forr

DErFINITION 4.3.  Two information setsl andv of a player are calleparallel
if oy = o,.

An example of parallel information sets aveand v’ in Fig. 2.1. Parallel
information sets are not distinguished by preceding choices of the same
so all combinations of choices at these sets are part of separate pure str
in the reduced normal form. Because there may be arbitrarily many pa
information sets, the reduced normal form may still be exponentially large. !
if every sequencey, leading to an information set identifies the informatior
set uniquely (like in Fig. 4.1), then the reduced normal form is as compact ¢
sequence form.

5. COMPUTING EQUILIBRIA OF TWO-PERSON GAMES

The sequence form leads to an optimization problem whose solutions a
equilibria of the game. In this section, we derive this problem for the case
two-person gamd\ = 2). The variables of this problem are the realization pl
of the players. We consider first the LP where a best response is sought f
player, and its dual LP. With the help of these linear programs, we can form
an LP whose solutions are the equilibria of a zero-sum game. For a two-p
game with general payoffs, we obtain in a similar way a linear complement
problem (LCP), which is studied in detail in Kollet al. (1996).

In this section, we consider an extensive game with two personal player
have perfectrecall. The game is transformed to its sequence form. We are Ic
for a pair of realization plans that represents an equilibrium. As described a
realization plans are easily converted to behavior strategies. Inthat sense, &
is said to play according to a realization plan. The components of the realiz
plans, analogous to the mixed strategy probabilities in the normal form, au
strategic variables of the players.

We will use a notation with vectors and matrices. The realization plar
andr, for player 1 and 2 shall be written as vectorsand y with |S| and
|S| components, respectively. All vectors are column vectors, row vector
denoted by transposition asxd . Theconstraint matrices EBndF are used ta
express thakx andy are realization plans according to Definition 3.3, with |
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equations
Ex=¢e and Fy=f. (5.1

The number of columns dE andF is |S | and|S|, respectively. The number
of rows of E andeis 1+ |U,|, and forF and f itis 1+ |U,|. The vectorg and
f are equal to the unit vectdt, O, ..., 0)T of appropriate dimension. The firs
row in each equation in (5.1) represents (3.3), the other rows (3.4).

For the example of Fig. 2.1, these constraint matrices have the following fc
The sequences of player 1 &fd, r, L, R, and for player 2 they ané c, d. The
constraint matrices are

1

1
E=] -1 1 1 and F:( >
_1 11 -1 1 1

withe= (1,0,0)T and f = (1, 0)". The zero entries of the constraint matrice
have been omitted. By (3.3) and (3.4), a constraint matrix has a single 1 in €
column, and an additionall in every row except the first. The constraint matr
is sparse since all other matrix elements are zero.

If player 1 and 2 play according tg& andy, respectively, then their ex-
pected payoffs can be representedxXdydy and x™ By, with suitable|S;| x
|S| matricesA and B. The matrix entry forA in row s; and columns; is
ZsoeSo 01(S0, S1, ) ro(So), and forB itis the same withy, in place ofg; . All other
matrix elements are zero. The expected payoffscamy andx' By by (3.7).

The payoff matrice#\ andB are “flattened” versions of the three-dimension
functionsg; andg,, using the known realization plag for the chance player.
The matrices can be constructed directly from the game tree as follows. F
they are initialized as zero. Then, each leaf of the tree is considered, which de
a triple s, s1, S of sequences. The player’s payoff at the leaf is multiplied
the producty(sy) of chance probabilities along the path to the leaf. The resul
added to the matrix element at posit®ns,. This addition is necessary becaus
due to chance moves, more than one leaf may define the same matrix pos
This is done for all leaves. Thus, each payoff matrix has at most as many nor
elements as the tree has leaves, and it has linear size if it is represented sp
In the example of Fig. 2.1, with the sequengek r, L, Randd, c, d indicating
rows and columns, respectively,

-2 4
1

the first row ofA is zero (and left blank) since the sequediagf player 1 is not
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defined by a leaf; the second row has a zero entry that is shown explicitly be
it results from the payoff at a leaf. Because this game is zero-Bum— A.

In order to derive algorithms for computing an equilibrium, we consider
the problem of finding a best response for one player agamistarealization
plan of the other player. Assume that player 1 plays accordirgTben, finding
a best responsgof player 2 defines the following linear program:

maximize  (x"B)y
y

subject to Fy=f, (5.2
y > 0.

The dual LP for this problem will be useful. It has 4+ |U,| dual variables
represented by the vectgr These variables are unconstrained because they
respond to the equalities in (5.2). Tf#®| constraints for the dual LP correspol
to nonnegative primal variables (the componentg)oEo they are inequalities
Thus, the dual LP to (5.2) is

minimize  q'f
q (5.3)
subjectto  q"F > x"B.

Analogously, a best responsef player 1, given that player 2 plays accordi
toy, is a solution to the following problem:

maximize X' (Ay)
X
subjectto  xTET =¢€, (5.4
X > 0.

The dual problem to (5.4) uses the unconstrained veetoith 1 + |U;| com-
ponents and reads

minimize e’ p
p (5.5)
subjectto  ETp> Ay.

In order to find an equilibrium, botk andy have to be treated as variable
Then, the objective functionsin (5.2) and (5.4) are no longer linear. Neverth:
a zero-sum game can be solved with a linear program. We consider this ca
and treat general payoffs later.

In a zero-sum game, we regard the dual LP (5.5), but with varigbbesdy,
based on the following intuition: The LP (5.4) and its dual (5.5) have the s
optimal valuee™ p. This is the payoff that player 2, if he plays has to give to
player 1. If player 2 can vary, he will try to minimize this payoff; an optima
choice ofy will be a min-max strategy. Thereby, must be subject ty > 0
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andFy = f asin (5.1) to represent a realization plan for player 2; it will I
convenient to write the equation with a negative sign. This defines the new

minimize e'p
y.p
subjectto —Ay+ETp=>0 (5.6)
—Fy=- f,
y>0.

Again, consider the dual of this LP:

maximize —-q'f
X,q
subjectto  x"(-=A)—-q'F <0
] ( )XQET S (5.7)
X > 0.

In a zero-sum game; A = B, so (5.7) is just (5.3) but with variablesandx,

subject tox > 0 andEx = eas in (5.1). The LP (5.7) can be interpreted as t
problem of finding a min-max strategy for player 1. The following result sta
that the optimal solutions to (5.6) and (5.7) define indeed an equilibrium of
zero-sum game. It is proved with the duality theorem of linear programming

THEOREMS5.1. The equilibria of a zero-sum game in extensive form w
perfect recall are the optimal primal and dual solutions of a linear progra
whose sizgn sparse representatiois linear in the size of the game tree

Proof The linear program is (5.6). The number of nonzero entries of
payoff matrix A and of the constraint matric&andF is linear in the size of the
game tree. Consider an optimal solutiprp to (5.6) and a dual optimal solution
X, qto (5.7). Theny, q, X, and p are feasible solutions to the linear progran
(5.2), (5.3), (5.4) and (5.5), respectively, whegrandx fulfill the constraints of
(5.3) sinceB = —A. Multiplying the equationf = Fy in (5.2) byg' and the
inequality in (5.3) by the nonnegative vectpyields

q"'f =q"Fy > x"By. (5.8

Analogously,
e'p=x"ETp > x"Ay, (5.9

which implies
e'p>x"Ay=—x"By>—q'"f. (5.10)

Condition (5.8) is known as the weak duality theorem, that is, the objec
functionx” By of the LP (5.2) is bounded by the objective functiphf of the
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dual LP (5.3) and vice versa, for any pair of feasible solutions. Similarly, (
says this for the pair of linear programs (5.4) and (5.5), and (5.10) state:
effect for (5.6) and (5.7). According to the strong duality theorem, a pa
primal and dual solutions is optimal if and only if the two objective functions
equal. Applied to (5.6) and its dual (5.7), this shasip = —q" f, so equality
holds in (5.10), (5.9) and (5.8). Thereforejs an optimal solution of the LF
(5.4) and a best responseytpand analogously is a best response ta That
is, X, y represents an equilibrium.

Conversely, any equilibrium, y solves the linear programs (5.4) and (5
optimally, and with the corresponding optimal dual solutipng, equality holds
in (5.9), (5.8) and (5.10), so that (5.6) and (5.7) are solved optimaliy.

Theorem 5.1 shows that a zero-sum game in extensive form can be ¢
in polynomial time, using any polynomial linear programming algorithm.
practice, the LP (5.6) is very suitable for the simplex algorithm, which comp
an optimal pair of primal and dual solutions. Efficient implementations ex|
the sparsity of the matrice&, E, andF (Chvatal 1983, p. 112). The runnin
time of the simplex algorithm can be exponential but is usually quite short.
mostly determined by the number of constraints and very little by the nui
of variables (Chafal 1983, p. 46). Therefore, it may be advantageous in ce
cases to run the simplex algorithm on the dual LP (5.7) instead of (5.6). The
|Si| + 1+ |Uy| constraints in (5.6) anf®| + 1+ |U,| constraints in (5.7). Note
that both numbers are of ordgt; | + |U;| unless a player has a large number
choices per information set.

In the case of a non-zero-sum game, we will not consider the LP (5.6). Ins
we will use the complementary slackness condition that characterizes oj
LP solutions. As mentioned in the proof of Theorem X HBnd p are optimal
solutions to (5.4) and (5.5) if and only if (5.9) holds with equality, that is
xTETp=x"Ayor

x" (—Ay+ E"p) =0. (5.11)

Equation (5.11) states that the nonnegative vextof primal variables is or-
thogonal to the nonnegative vecterAy + ET p of slacksin the dual program
(the dual conditionx" ET — e") p = 0 holds also but is trivial). In linear pro
gramming, this orthogonality condition is known e@mplementary slacknes
It characterizes as a best reponse yoWe will interpret this in the next sectior

Similarly, y andq are optimal solutions to (5.2) and (5.3) if and only if (5.
holds with equality, that is, ifi" Fy = x" By or

(—x"B+q'F)y=0. (5.12)

An equilibriumx, y is given by simultaneous optimal solutions to the ling
programs (5.4) and (5.2). Considering the dual programs (5.5) and (5.3) as
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this defines the following problem: Find, y, p, g so that the constraints in
(5.2)—(5.5) and the orthogonality conditions (5.11) and (5.12) are fulfilled. T
defines a so-callelinear complementarity probleror LCP (see Cottle, Pang,
and Stone 1992).

THEOREM5.2. The equilibria of a general two-person game in extensive fo
with perfect recall are the solutions of a linear complementarity problem wh
size in sparse representations linear in the size of the game tree

By using the sequence form, the LCP is of small size. A very similar LCP «
be formulated for a game in normal form, but considered for a game in exter
form it may have exponential size and the matrices are full and not sparse
bimatrix games, the algorithm by Lemke and Howson (1964) finds at least
LCP solution, that is, one equilibrium. Unfortunately, the LCP for the seque
form is not suitable for a direct application of the Lemke—Howson algorith
However, one can use the more general algorithm by Lemke (1965) instead.
is shown in detail by Kolleet al. (1996).

Finally, we note an obvious reduction of the constraint and payoff matri
which reduces the size of the LP in (5.6) and of the mentioned LCP even fur
It is possible to consider only those sequences of a player that actually
to a leaf of the game tree. Other sequenggdike the empty sequendé for
player 1 in Fig. 2.1, have only zero entries in both payoff matrices. Theref
the variable (o) does not appear in the payoff term. In the constraints (5.
this variable can be eliminated as follows: There is one equation wherg
has coefficient 1, and one or more equations where it is the first variable in |
with a negative sign. For each of the latter equations, take the corresponding
in (3.4) and substitute it far (o) in the first equation. The resulting equatior
replace the old ones. This eliminates one variable and one equatign=,
the discarded equation is (3.3) and the right hand side must also be obsen
these replacements. All variablgéo, ) corresponding to nonterminal sequenc:
oy can be eliminated in this way. In the example of Fig. 2.1, the constraint me
E and the right hand sidein (5.1) are thus reduced to

(Pt ) e e().

Thereby, the componemry of the vectorx is omitted and the payoff matrix has
to be sized accordingly.

By this method, the total number of variables is reduced by less than a |
since for each choice preceding an information set there are at least two |
choices, at that set, further down the tree. Therefore, the reduction is not
nificant, in particular since (5.1) is always very easy to solve. The reduc
has another disadvantage: The constraints (3.4) are quite canonical since
correspond to the information sets of the players. As described above, they
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correspond to dual LP variables, the componentp ahdq. As we will show
in the next section, these can be interpreted as “payoff contributions” of op
choices at the respective information sets. In certain applications, this inte
tation may be interesting, but it is destroyed by the indicated reduction.

6. BEST RESPONSES FOR ANY NUMBER OF PLAYERS

In the previous section, we described the linear program for computing
response of one player against a fixed strategy of the other player. The
can be done for any number of players, where all but one of them play
a fixed strategy. We will interpret the solutions of this LP with the help of
dual variables and the complementary slackness condition. This charact
a behavior strategy “locally” as a best response, in the sense that it ch
only moves yielding a maximal payoff “contribution” with positive probabili
Furthermore, we will describe a nonlinear optimization problem whose solu
are the equilibria of thé&-person game.

For illustration, we consider first a two-person game in normal form, the
a bimatrix game. Let it have payoff matricésand B, and letx andy denote
mixed strategies of player 1 and 2, respectively. Then, their expected payo
xT Ay andx' By as above. Assume thgis fixed. A best responseof player 1
is a solution to the LP (5.4) whel is a matrix consisting of the single ro
(11---1) andeis the scalar 1. In fact, this constraint matrix for the bimat
game can be regarded as a special case of our approach for the sequenc
To see this, convert the bimatrix game to an extensive game in the usua
with one information set for each player where his choices are his strateg
the given normal form. Then, the sequence form is equal to the normal
except for the empty sequengewhich, however, is not defined by a leaf of tl
game tree and disappears if the sequence form is reduced as described at
of Section 5.

For the bimatrix game, the dual LP (5.5) has a single scalar varjahbiose
optimum is the maximum of the compone#sy); of the expected payoff vectc
Ay. In other wordsp is the best possible payoff for a pure stratgegf player 1.
The complementary slackness condition (5.11) says<tisd best response o
if and only if for all j,

x>0 = (E"p)=(Ay), (6.1)

where(ET p); is here simplyp. Condition (6.1) states that only best resporjse
are chosen with positive probabiligf, which is the familiar criterion of a bes
response due to Nash (1951, p. 287).

The same can be done with the sequence form. We consider first, in a tec
way, the example of Fig. 2.1, and will explain the general case latery bet
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a fixed realization plan for player 2, sgy= (1, %, %)" in correspondence to
the sequences, c, d (this is not the optimal realization plan for player 2). Th
LP (5.5) has the dual vectge = (po, p,, p,/) Of variables, whergy is the
first component and the other components correspond to the information se
player 1. The constrain&™ p > Ay have the form

1 -1 -1 0 0
1 1 -1 0

1 1 0

1 1

The objective functiore” p, that is, pg, is minimized byp, = 1, p, = % and
Po = 4. The expected payoff that player 1 receivepisOnly the first, third,
and fifth inequalities in (6.2) are tight, that is, hold with equality, the others h;
positive slacks. Therefore, by the complementary slackness condition (5
analogous to (6.1), onlyy, X, andxg can be positive, so that the unique be
response of player 1 s = (1,0, 1,0, 1)T in correspondence to her sequenc:
@,1,r, L, R. For the optimal realization plap = (1, %, %)" of player 2, the
best response of player 1 is not unique since all inequalities in (6.2) are tigh
in the normal form, we see a connection between complementary slacknes
best responses. We make this explicit in the following discussion.

We consider now a general game with any nunidesf players, and assume
that all players play according to certain realization plans except for one ple
say player 1. As before, let her realization ptarbe denoted by, and now let
y denote the given realization plans ... ., ry of all remaining players. We are
interested in finding and characterizing the best respongey. Analogous to
the components ckyfor the two-person game, we denote plag/off contribution
of the sequencs, by

GisLY) = ) (S0, 5,% -, ) Fo(S)l2(S) -+ In(sy),  (6.3)
0,9, SN

where the sum is taken over alle S fori =0, 2, ..., N. If we denoter1(s;)
by x(s,), then the expected payoff to player 1 in (3.7) has the form

Gi(X, y) = D X(51) Ga(sL, Y)

S1€S

which corresponds to the terd (Ay) for the two-person game. As before, thi
is a linear expression in the variablegs,) for s; € S. Maximizing it subject

to Ex = eas in (5.4) determines a best resporge y. For the dual LP (5.5),
the vectorp of dual variables has the componepts corresponding to the first
equation (3.3) ofEx = e, and p, for u € U;. Then (5.5) says: Minimizey
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subject to
Po— Y. P=Gai@y) (6.4)
veUq, o,=0
and
Pu — Z P, > Gi(oyC, YY) forueU;, ceC,. (6.5)

veUy, o,=0yC

An example of these constraints is (6.2). The entries of the constraint n
E appear here ifE" as follows: Each inequality corresponds to a sequenc
in §. The coefficient 1 of1(s;) in the primal constraints (3.3) and (3.4) is tl
coefficient ofpg in (6.4) fors; = @, and ofpy in (6.5) for a nonempty sequenc
s; = oyC. For each information setin U, there is an additional coefficientl
in (3.4). Itis the coefficient op, in (6.4) or (6.5) for the sequensg = o, that
leads tov, where parallel information setsappear in a single inequality.

With this notation, the complementary slackness condition (5.11) that
acterizes< and p as optimal solutions to (5.4) and (5.5) has the following fol
analogous to (6.1):

Po=CGiy)+ Y. P (6.6)

U€U1. Uv:@

because(?) is always positive, and

X0, >0 = p=GilaCY+ Y P (6.7)

veUq, o,=oyC

foru € Uy, c € Cy. When these conditions hold, the two objective functions
equal, ands(X, y) and pg represent the maximal expected payoff to playel
For the realization plar and its corresponding behavior stratgjy(6.7) can
be interpreted as a “best response criterion” in terms of the player’s move
(6.2) illustrates, the constraint matrfixhas a simple structure resulting from t
game tree. Therefore, a best respoxde y and an optimal dual vectqy can
be found directly by backward induction or “dynamic programming”, with
using an LP algorithm. Inthis inductive procedure, one starts with the inform:
setsu that are closest to the leaves and constructs an optimal behaviass
well as optimal dual variableg,. For these information sets the sum over the
setsv in (6.5) is empty, andy, can be defined as the maximum of the pay
contributionsG; (oyc, y) for the choiceg atu. (In the example (6.2), these du
variables arp,, = 1 andp, = %. They can be interpreted in Fig. 2.1: Player
usingy, makes the choices andd with probabilities?; and %, respectively.
The resulting expected payoffs have to multiplied by the chance probabiliti
determine the payoff contributions for player 1. For her information'sé¢tiese
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are 0 and 1 for her sequencesand R, shown in (6.2), so her optimal payof
contribution is 1 with the sequend® Similarly, at her information set it is
15 with her sequence.) To make sure that (6.7) holds, the behavior strajggy
should assign positive probabilitiBs(c), which can otherwise be arbitrary, only
to the “optimal” choices atu where the payoff contribution is actually maxima
(In the above example, this implies the deterministic behavior of playew’l
andv.) Ifitturns out later thati is irrelevant, the equatian(o,€) = X(oy) - B1(C)
implies that the behavior atcan be arbitrary, but fox(c,) > 0 it is necessary
for (6.7) that only optimal moves are made with positive probability.

The dual variablgp, and optimal moves at are defined inductively at infor-
mation setsa higher up in the tree, where the dual variabggswith o, = oy C
for the choicex atu and the behavior at are already known. Thereby, can
be interpreted as the maximal payoff contribution of a moetu, regarded as
the collective contribution of the sequengg and of all longer sequences a
expressed by the sum in (6.7). This payoff is also achieved if the choices ful
down the tree are made optimally. Eventually, this defines a behavior stra
B1 that is a best response yoand the realization plar = r, of g; according
to (3.1). Finally, pp as defined by (6.6) is the expected pay@ff(x, y) to the
player at the root of the tree (in the above example= 0+ p, + p» = %).

This best response criterion for behavior strategies says that at each infc
tion set, only “locally optimal” moves, looking down the tree, should be me
with positive probability, which is in some sense analogous to (6.1) for the
mal form. As there, any best response can be deterministic. However, a ber
strategy is not necessarily a best response if it is “locally optimal” in terms
the overall payoff, that is, if the payoff cannot be improved by changing the
havior at a single information set. An example (due to Robert Aumann, pers
communication) is Fig. 4.1 where the pure stratégyR) is a behavior strategy
that has to be changed at both information sets to improve the payoff. Here
choiceR is optimal only in terms of the global payoff since it is made at
irrelevant information set, but it is not optimal in the inductive construction
and a corresponding dual varialyig = 0 would not be feasible since (6.5
would be violated for the sequenggc =1 L.

A best response behavior strategy is determined by the “bottom up” induc
just described. Nevertheless, it need not be part siilagame perfectquilib-
rium. If an information seti is not reached due to the behavioof the other
players, then all choicese C, produce the equally “optimal” payoff contribu-
tion Gi(oyC, y) = 0in (6.5). These arbitrary moves need not be optimal ir
subgame, as it is required by subgame perfectness (see Selten 1975, p. 3!

To conclude this section, we describe a nonlinear optimization problem wt
solutions are the equilibria of a-person game. In this problem, the componer
of all realization plans,, ..., ry are treated as variables. The dual constrai
(6.4) and (6.5) are regarded for all players, and the goal is to close the “dual
between dual and primal objective function for all players simultaneously. |
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tationally, we replace the subscript 1 indicating player 1 in (6.3), (6.4), and
byi for 1 <i < N. Correspondinglyy representsry, ..., ri_1, 11, ...,IN),
and (6.3) has the form

Gi(s.Y)= Y Gos.....s) [][ ") (6.8)

s €S, j#i j#i, 0=j=N

For each player, we continue to denote the |U;| components of the due
vector by p, (indexed by the respective information sets U;), except for
the first componenpg that shall be called;, also representing the value of tl
dual objective function. The value of the primal objective functioGjsr) as
in (3.7). Generalizing the inequalities in (5.3) and (5.5), we obtain the follov
constraints from (6.4) and (6.5), with the subscript 1 replaceid-by, ..., N:

~Gi@y) +d— > p=0 (6.9)

vEUi N O'U=®
and

—Gi(ouC.Y)+pu— >, p,=0 foruel;, ceCu. (610

veU;, o,=0yC

Note that forN > 2 these are nonlinear constraints since the expression in
is nonlinear. With this notation, we state the following result.

THEOREMG6.1. Consider an extensive N-person game with perfect re
and its sequence forrhet r; be the realization plan of a behavior strategyof
playeri,and letr = (ry,...,ry). Then(By, ..., Bn) is an equilibrium if and
only if the reals r(s) for s € § and suitable realsidand p, for u € U; solve
the following optimization problem

N
minimize ) " (di — Gi(r)) (6.11)
i=1

subject t0(3.3), (3.4), (3.5), (6.9)and(6.10),for 1 <i < N.

Proof In equilibrium, each behavior strategy is a best response to tt
others. An equivalent condition is that for ed¢cll < i < N, and fixedy, the
primal LP of maximizing the expected paydH; (r) to playeri subject to the
constraints (3.3), (3.4) and (3.5), and its dual of minimizihgubject to (6.9)
and (6.10), are solved optimally, with = G;(r). For any feasible solution
d > Gi(r) by weak duality, so the expression in (6.11) is nonnegative, an
minimum is attained at zero since an equilibrium always exisis.

This optimization problem generalizes the LP and LCP for a two-person ¢
described in the previous section. With the notation used there, the obj
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function in (6.11) is(e" p — xT Ay) + (q" f — x"By), which is linear for a
zero-sum game with + B = 0. Then, the problem is a self-dual LP with th
constraints of both (5.6) and (5.7), and equivalent to either LP. For a ger
two-person game, the optimization problem is equivalent to the LCP mentic
in Section 5 since (6.11) can also be written as a minimizatiox'af- Ay +
E"p) + y'" (—BTx + F'q), which has its minimum at zero as required k
(5.11) and (5.12).

Algorithms to solve the multilinear optimization problem in Theorem 6.1 f
more than two players have been described by Roa#en{1971) and Wilson
(1971) for normal form games. Howson (1972) has solved spétipérson
games that are essentially equivalent to a set of simultaneously played bin
games. There should be no major difficulty in applying this algorithm, and ot
methods for solving normal form games, to the sequence form.

7. COMPARISON WITH RELATED WORK AND CONCLUSIONS

In this section, we summarize our contributions and explain their relations
to earlier work. The most closely related papers are Koller and Megiddo (1¢
and Wilson (1972), which introduced some techniques that we have used
will also discuss games without perfect recall, and conclude with perspec
for further research.

For extensive zero-sum games with perfect recall, we have shown in Tl
rem 5.1 that optimal strategies for both players are determined by a smal
There are two main ideas behind this approach. First, the realization probabi
for sequences of choices are used for optimization. The expected payoffis i
in these variables, which is not true for behavior strategy probabilities. Sec
we have taken the LP of finding a best reponse of one player against a
strategy of the other player and considered its dual. In this dual LP (5.5),
dual variables are separated from the decision variables of the other play
that one obtains linear constraints that can be used in the LP (5.6) for the €
game. In summary, we have linearized the problem of using behavior stra
probabilities by a variable transformation (introducing products over seque
as in (3.1) as new variables), and by a suitable separation of variables.

The first of these ideas is not new. Koller and Megiddo (1992) presentec
first polynomial-time algorithm for solving an extensive zero-sum game w
perfect recall. They described a behavior strategy by nonnegative variable:
are subjecttolinear equations analogousto (3.4). Instead of sequences of ch
they considered nodes of the game tree for defining realization plans, bu
is not essentially different (see also Koller and Megiddo 1992, Remark
p. 545). A minor point is that they overlooked the possibiljty,) = 0in (3.6),
so the behavior strateg§ cannot always be uniquely reconstructed from tl
realization plarmr; as they claimed (Prop. 3.6, p. 543).
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The main difference to our approach is that Koller and Megiddo (1992, p.
still considered pure strategies of the opponent. Namely, if player 1, say,
according to realization plax, and player 2 uses the pure strategythen the
expected payof6;(x, m2) to player 1 is a linear function of. The problem of
finding a max-min strategy for player 1 can then, in our notation, be writt
as: Maximizex subject tor < G(x, 7o) for all pure strategies of player 2,
and so thak defines a realization plan. This is an LP for computing an opti
realization plan for player 1, but with a generally exponential number of inec
ities. However, theseparation problenfor this LP can be solved in polynomic
time. Given a vectok and a real numbey, the separation problem is to eith
verify that all constraints of the LP are satisfied, or, if not, to find a violated «
straint. Given a realization plax this is solved by computing a best respor
7, of player 2, which can be done fast. Using the ellipsoid algorithm for lir
programming, it suffices to evaluate only polynomially many constraints, sc
the LP can be solved in polynomial time. (The ellipsoid algorithm is not \
practical. For the dual LP, however, one could use in the same way the sir
algorithm with “column generation.”)

In contrast to this approach by Koller and Megiddo, we obtained an LP
a linear number of variables and constraints by employing the indicated dt
Our payoff matrix is of small size since we use sequences symmetricall
both players. This was partly motivated by a “strategic” view of sequences
replacement for strategies. For that reason, we have also considered choit
not nodes of the game tree for defining realization plans.

Another property of the sequence form, for any number of players, is t
allows to verify quickly whether aiN-tuple 84, . .., Bn Of behavior strategie:
represents an equilibrium: The realization plans of these behavior strategi
determined by (3.1), and the conditions (6.6) and (6.7) show that a realiz
plan (for player 1, similarly for the other players) is a best response to the o
If the normal form is used for verifying the equilibrium property accordinc
(6.1), then it may be necessary to evaluate exponentially many pure strate

The fast verification of an equilibrium in behavior strategies has also |
known earlier (this has been pointed out to the author by Daphne Koller). C
the behavior strategies of the other players, a best response pure strategy
found by backward induction as described by Wilson (1972, p. 455): Usin
condition of perfect recall, the game is converted to an equivalent one-p
game with singleton information sets. Then, a best response is found ea
the given behavior strategy yields the same payoff, it is also a best respon:
computations take linear time in the size of the game tree. The best respon
has been found serves as a dynamically generated pivot column for the Le
Howson algorithm (Wilson 1972, p. 458). A backward induction method
is closer to ours was described by Koller and Megiddo (1992, p. 547). T
the generated best response solves the separation problem for the LP me
above.



244 BERNHARD VON STENGEL

Koller and Megiddo (1992) also studied extensive games without perfec
call. We will discuss how the sequence form can be applied to this case. A
of game that is still tractable is a game where each playepédect memory
By definition, this means that if a nodeof an information set of the player
is preceded by a choice at an information geif the same player, then eac
node inv is preceded bgomechoice atu (for perfect recall, which is stronger
it would have to be the same choice). That is, a player with perfect memory
forget earlier moves but not earlier knowledge.

Koller and Megiddo (1992, p. 550) showed that in an extensive zero-s
game, one can compute in polynomial time a max-min behavior strategy
player 1, say, who has perfect recall, if her opponent has only perfect men
They considered theomplete inflatiorof the game obtained by partitioning th
information sets of player 2 such that he can distinguish his earlier moves
Dalkey 1953, p. 226, Okada 1985, p. 90). In the modified game, player 2 alsc
perfect recall, and his best respomseo a realization plax can be computed
as before. Furthermore, his best response can be reinterpreted for the or
game. Essentially, this is possible since the game has the same reduced r
form as its complete inflation (Dalkey 1953, p. 228).

Using the sequence form, we obtain the following stronger result: For a t
person game in extensive form with perfect memory, Theorems 5.1 and 5.2
for zero-sum payoffs and general payoffs, respectively, provided a player wit!
perfect recall may usmixedstrategies. This is easily seen by considering t
complete inflation of the game. It has perfect recall, so the sequence form c:
applied and the theorems hold. Equilibrium realization plans can be transl
to mixed strategies in the reduced normal form of the game (see Secti
above). Since the original game has the same reduced normal form, the
also equilibrium strategies there. However, they may no longer be behe
strategies for a player without perfect recall, since the probability for a mov
an information set that is partitioned in the complete inflation may depend o
earlier move.

Otherwise, it seems that the sequence form cannot be applied to games w
perfect recall. For a zero-sum game, Koller and Megiddo (1992, p. 534) |
shown that it is NP-hard to find an optimal mixed strategy for a player withi
perfect recall. Furthermore, a max-niiahaviorstrategy may involve irrational
numbers, even if the player has perfect memory (p. 537), so it cannot be
solution of an LP. If a player has no perfect memory as represented by
information sets and is assumed to “forget” during play, then a proper defini
of the sequence form of the game and its intended “strategic” interpretatic
also difficult.

As a topic for further research, the sequence form may be of concef
interest because of its correspondence to the game tree. The constraints
sequence form are closely related to backward induction. That notion is us
distinguish certain equilibria as perfect or subgame perfect (see Selten 1!
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and in many other definitions of “stability” of an equilibrium (see Kohlberg :
Mertens 1986, van Damme 1987). So far, the equilibria that can be com
with the sequence form are arbitrary and need notinduce an equilibrium in:
subgame, in which case they are not subgame perfect. On the other har
should be easy to accomplish, since equilibria of subgames can be con
with the presented algorithms.
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