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We propose thesequence formas a new strategic description for an extensive game with
perfect recall. It is similar to the normal form but has linear instead of exponential complexity
and allows a direct representation and efficient computation of behavior strategies. Pure
strategies and their mixed strategy probabilities are replaced by sequences of consecutive
choices and their realization probabilities. A zero-sum game is solved by a corresponding
linear program that has linear size in the size of the game tree. General two-person games
are studied in the paper by Kolleret al., 1996 (Games Econ. Behav. 14, 247–259).Journal
of Economic LiteratureClassification Number: C72. © 1996 Academic Press, Inc.

1. INTRODUCTION

In applications, it is often convenient to describe a game in extensive form.
The game tree, with its information sets, possible moves, chance probabilities
and payoffs, gives a rather complete picture of the situation that is modeled. If
the game tree is explicitly given and not generated from certain rules like in a
chess game, it is also a data structure of manageable size. On the other hand,
the standard way to find optimal strategies for a game in extensive form is very
inefficient. Usually, the game is converted to its normal form by considering all
pure strategies for each player and the resulting payoffs when these strategies are
employed. A pure strategy specifies a move for each information set of the player,
so the number of pure strategies is oftenexponentialin the size of the extensive
game. This holds also for the reduced normal form of an extensive game where
pure strategies differing in irrelevant moves are identified. In the case of a two-
person zero-sum game, optimal mixed strategies can then be found by linear
programming, but the vast increase in the description can make the problem
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computationally intractable and may even force the analyst to abandon the game
theoretic approach altogether (Lucas 1972, p. P-9).

In this paper, we present a computational method without these disadvan-
tages. It is based on a new strategic description of an extensive game, called the
sequence form. Based on the sequence form, equilibria of the extensive game
can be determined by essentially the same algorithms that are known for the
normal form. In particular, a two-person zero-sum game can be solved by a
linear optimization method like the simplex algorithm. For a two-person game
with general payoffs, an equilibrium is found by Lemke’s (1965) variant of the
complementary pivoting algorithm by Lemke and Howson (1964) for bimatrix
games; this is the topic of the paper by Koller, Megiddo, and von Stengel (1996).
(A summary of this and other results is presented in Kolleret al., 1994; that
paper also contains the main results of the present text, which has appeared in
preliminary form in von Stengel, 1993.) In general, these algorithms areexpo-
nentially fasterthan with the standard approach because the size of the sequence
form is linear and not exponential in the size of the game tree.

The sequence form is a matrix scheme similar to the normal form but where
pure strategies are replaced by sequences of consecutive moves. Instead of mixed
strategy probabilities, we consider the realization probabilities by which these
sequences are played. These are nonnegative real numbers that can be character-
ized by certain linear equations which correspond naturally to the information
sets of the player, provided the player hasperfect recall, that is, his information
sets reflect that he does not forget what he knew or did earlier. From the real-
ization probabilities for the sequences one can reconstruct abehavior strategy
which defines a local randomization at each information set rather than a global
randomization over all pure strategies. This construction is similar to the theorem
of Kuhn (1953) stating that in a game with perfect recall, any mixed strategy can
be replaced by a behavior strategy.

A player can play the game optimally by appropriately choosing the realization
probabilities for his sequences. His expected payoff islinear in these variables.
This is their key advantage over behavior strategy probabilities: The latter are
also small in number, they can be characterized by linear equations (as any
probabilities), but the expected payoff usually involves products of behavior
strategy probabilities. Using the resulting polynomials for computing equilibria
is theoretically and practically much more difficult than the approach taken here:
Assume a player seeks a best response against fixed strategies of the other players,
so he maximizes his payoff. In terms of sequence form variables, this defines
a linear program (LP). In thedual of this LP, the variables are separated from
the strategic variables of the opponent, so that if these are no longer fixed, the
constraints are still linear for a two-person game. We thus obtain an optimization
problem whose solutions are the equilibria of the game. This problem is a linear
program if the game is zero-sum, a linear complementarity problem for a two-
person game with general payoffs, and a multilinear optimization problem for an
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N-person game. Using a sparse representation of the payoffs and constraints, the
optimization problem has a size proportional to the size of the extensive game.

The first polynomial-time algorithm for solving a zero-sum game in extensive
form with perfect recall was described by Koller and Megiddo (1992). It solves
a linear program with essentially the same variables as in our approach. The LP
inequalities are defined by strategies of the opponent, which may be exponential
in number. However, these inequalities can be evaluated as needed by finding a
best response of the opponent, which can be done quickly by backward induc-
tion. This solves efficiently the “separation problem” for the ellipsoid method
for linear programming, which therefore runs in polynomial time. Similarly,
Wilson (1972) described a method for solving extensive two-person games with
general payoffs, where best responses, which serve as pivoting columns for the
Lemke-Howson algorithm, are generated directly from the game tree. In con-
trast to these approaches, we no longer consider pure strategies but use sequences
symmetrically for all players. In our LP, the number of variablesandconstraints
is linear in the size of the game tree. We will compare our techniques in detail
with earlier work in the concluding Section 7.

In Section 2, we state our notation and basic definitions, and introduce a simple
example that will be used frequently. We define the sequence form in Section 3.
The strategic variables of the players describe how sequences are played, and can
be translated to behavior strategies. In Section 4, we consider mixed strategies
and compare the sequence form with the well-known reduced normal form of an
extensive game. In Section 5, we apply the sequence form to two-person games.
A central idea is the linear program for computing a best response of one player
to fixed strategies of the other players. From this one obtains a linear program
whose solutions are the optimal strategies of a zero-sum game, and a linear
complementarity problem whose solutions are the equilibria of a nonzero-sum
game. In Section 6, we interpret the dual solutions of the “best response LP” and
describe theN-person case. In Section 7, we summarize our results, compare
them with earlier work, and discuss their applicability to games without perfect
recall.

As prerequisites, we assume familiarity with the duality of linear programs.
Classical texts are Gale (1960) and Dantzig (1963). A more recent introduction
to linear programming is Chv´atal (1983).

2. EXTENSIVE AND NORMAL FORM GAMES

In this section, we state our notation and conventions for games in extensive
and normal form. For an extensive game, it will be convenient to represent choices
by unique labels of edges in the game tree, and to treat the random chance moves
as a fixed behavior strategy played by a chance player. We also give an example
that will be used throughout the text.
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The basic structure of an extensive game is thegame tree, which is a finite,
directed tree, that is, a directed graph with a distinguished node, theroot (initial
node), from which there is a unique path to every other node. Edges of the tree
are denoted byab, where the nodeb is called achild of the nodea. Nodes
without children (that is, terminal nodes) are calledleaves, the othersdecision
nodes. Trees are depicted graphically with the root at the top and edges going
downwards.

In addition to the game tree, an extensive game has the following components.
In general, there areN personal playersof the game numbered 1, . . . , N. An
additionalchanceplayer is denoted as player 0. The chance player is here treated
symmetrically to the other players, except that he plays with a fixed behavior
strategy and receives no payoff.

Thepayoff functionh is defined on the set of leaves and yields a vectorh(a)
in RN for each leafa. The i th componenthi (a), 1 ≤ i ≤ N, of h(a) is called
the payoff to playeri at a. A zero-sumgame has two players (N = 2), with
h2 = −h1.

The possible moves of a player are represented by a function that assigns to
each edgeab a label, called achoiceat a, such that the choices ata are always
distinct, that is, the childrenb of a decision nodea can be distinguished by
the respective labels of the edgesab. The usage of the termmovevaries in the
literature. We use it to denote an action that occurs during play, whereas a choice
means an intended move as planned by a player, or a possible move at a decision
node of the game tree. There is not much harm in confusing these terms since
both refer to the outgoing edges at decision nodes. Similarly, aplayis a particular
instance in which the game is played from beginning to end, that is, a sequence
of moves represented by the path from the root to a particular leaf of the tree.
A gameis the static description with the entire tree and all possible moves and
outcomes.

The set of decision nodes is partitioned intoinformation sets. Each information
setu belongs to exactly one playeri , 0≤ i ≤ N, called theplayer to moveatu.
The set of all information sets of playeri is denoted byUi . For all nodesa in
u there are the same choices ata, which will be called the choices atu; the set
of these choices is denoted byCu. In particular, all nodesa in u have the same
number|Cu| of children. For simplicity, it is assumed that the choice setsCu

andCv of any two information setsu andv are disjoint. The set
⋃

u∈Ui
Cu of all

choices of playeri , 0≤ i ≤ N, is denotedDi .
Finally, fixed positive probabilities for the chance moves are also part of

the extensive game. They are specified as a behavior strategyβ0 for player 0.
Generally, abehavior strategyβi for playeri is given by a probability distribution
onCu, called thebehavioratu, for each information setu ∈ Ui . It is represented
as a functionβi : Di → R such that the probabilityβi (c) for making the movec
is nonnegative for allc ∈ Di , and

∑
c∈Cu

βi (c) = 1 for all u ∈ Ui . Without
loss of generality, the chance probabilitiesβ0(c) for c ∈ D0 are assumed to be
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FIG. 2.1. An extensive game, and its normal form.

nonzero, since branches of the game tree that are never reached can be pruned.
In the extensive games considered here, each player is assumed to haveperfect

recall. This is a structural property of the information sets of the player, reflecting
that he does not forget what he knew or did earlier. Technically, it says that a
choicec at an information setu of a player precedes a nodeb of an information
setv of the same player if and only if it precedes all nodes ofv. Thereby,c is said
toprecede bif c is the label of an edge on the path from the root tob. The concept
of perfect recall has been introduced by Kuhn (1953). This short definition is
due to Selten (1975); see also Wilson (1972, p. 456). It is easy to see that perfect
recall implies that there is no path between two nodes of an information set, a
property which often forms part of the definition of an extensive game.

An example of an extensive game is shown in Fig. 2.1. There is a chance move
from the root with probability1/3 to the left and with probability2/3 to the right.
The labels inD0 denoting the choices of the chance player are omitted since
the chance probabilities suffice, but in general they will be useful for systematic
reasons. There are three information setsu, v, v′ indicated by ovals. The game
is zero-sum, so only the payoffs to player 1 are specified at the leaves of the tree.
For two-person games, we will use the pronoun “she” for the first player and
“he” for the second player.

In the game in Fig. 2.1, both players have perfect recall. This would not be the
case if the first information set belonged to player 2 and not to the chance player.
Games without perfect recall and the associated computational difficulties are
discussed in Section 7 below.

For a general extensive game,pure strategyπi of playeri , 1≤ i ≤ N, specifies
a choice at each information setu ∈ Ui , so the setPi of his pure strategies is
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the cartesian product
∏

u∈Ui
Cu. For eachN-tupleπ = (π1, . . . , πN) of pure

strategies, the payoff vectorH(π) ∈ RN is given by the expected payoff that
results from the payoffsh(a)at the leavesa reached by the random chance moves
and the players’ moves as prescribed byπ . This defines a game innormal form. In
general, such a game is given by(P1, . . . , PN; H)with H : P1×· · ·×PN → RN ,
whereP1, . . . , PN are non-empty finite sets of pure strategies.

A mixed strategyµi of player i is a probability distribution on his setPi of
pure strategies. For a tupleµ = (µ1, . . . , µN) of mixed strategies, the expected
payoff H(µ) is defined accordingly. Such a tupleµ is anequilibrium if each
mixed strategyµi , 1 ≤ i ≤ N, is abest responseto the fixed(N − 1)-tuple of
the mixed strategies of the other players, that is, yields maximum payoffHi (µ)

to playeri for all his mixed strategies.
Figure 2.1 also shows the normal form of the extensive game. Each row rep-

resents a pure strategy of player 1 and each column a pure strategy of player 2.
The respective matrix entry is the expected payoff to player 1 when these strate-
gies are used. The normal form of an extensive game may be very large since
the number of pure strategies is exponential in the number of information sets.
For example, in an extensive game similar to Fig. 2.1 but withn “parallel” in-
formation sets, instead of only two, following an initial chance move withn
possibilities, and with two choices at each of these information sets, player 1 has
2n strategies.

One equilibrium of this game consists of the pure strategy(l , R) for player 1
and the mixed strategy for player 2 that assigns probability1/2 to bothc andd.
These strategies are mutual best responses. A mixed strategy is a best response
to a mixed strategy of the other player if and only if every pure strategy selected
with positive probability is a best response (Nash 1951, p. 287). Player 2 can
therefore assign positive probabilities toc andd since both give him the same
maximum expected payoff−1. Conversely, against the mixed strategy(1/2, 1/2)
of player 2, all pure strategies of player 1 are best responses, which suggests
that there may be further equilibria. Indeed, there exist two mixed strategies
µ1 andµ′1 of player 1 that produce the same expected payoffs to player 2.
These are, as vectors of probabilities for her four pure strategies,(0, 0, 1/3, 2/3)
and(1/4, 0, 0, 3/4), in addition to the pure strategy(0, 1, 0, 0). Since the game is
zero-sum, all convex combinations of these three extreme mixed strategies are
also equilibrium strategies.

3. THE SEQUENCE FORM

In this section, we define the sequence form for an extensiveN-person game,
using the notation of the previous section. The sequence form is a new strategic
description that describes strategies in a new way: Rather than planning a move
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for every information set, a player looks at each leaf of the game tree and con-
siders the choices he needs to make so that the leaf can be reached in the game.
These choices are prescribed by the respective play, i.e., path from the root to
the leaf, whenever that path goes through an information set of the player. They
represent a “sequence” that will be considered instead of a pure strategy:

DEFINITION 3.1. A sequenceof choices of playeri , 0≤ i ≤ N, definedby a
nodea of the game tree, is the set of labels inDi on the path from the root toa.
The set of sequences of playeri is denotedSi .

A sequence can also be regarded as the string of choice labels of the player
found on the path to some nodea. For easy reference to its elements, we have
defined a sequence as a set. This is possible since choices at different information
sets are distinct. In Fig. 2.1, for example, player 1 has the sequences (represented
as strings)l , r , L and R, and the empty sequence∅; the sequences of player 2
are∅, c andd.

In the sequence form,Si is the set of sequences of playeri defined by all nodes
of the game tree. It replaces his set of pure strategies in the normal form. The
sequences of the chance player 0 are also considered, since this allows dealing
only with payoffs and not expected payoffs. As in the normal form, payoffs are
defined as they result from combinations of sequences:

DEFINITION 3.2. Thepayoff function g: S0×S1×· · ·×SN → RN is defined
by g(s) = h(a) if s is the(N + 1)-tuple (s0, s1, . . . , sN) of sequences defined
by a leafa of the game tree, and byg(s) = (0, . . . ,0) ∈ RN otherwise.

The payoff function is well defined since the(N + 1)-tuple (s0, s1, . . . , sN)

of sequences, wheresi is defined bya for 0 ≤ i ≤ N, is unique for any nodea
of the game tree. For a player, there are at most as many sequences as the game
tree has nodes, so their number is linear in the size of the game tree, in contrast
to the number of pure strategies which may be exponential. Thei th component
gi of the payoff functiong for 1 ≤ i ≤ N is a (1+ N)-dimensional matrix
representing the payoffs to playeri . That matrix is sparse since the number of
nonzero entries is at most the number of leaves of the tree, so the size of the
matrix is also linear if it is represented sparsely. In contrast, the payoff matrix
for a player in the normal form is usually full. Because the chance probabilities
are known, the dimension of the matrix can be reduced from 1+ N to N by
considering expected payoffs, as shown in Section 5.

In addition to the payoffs, it is also necessary to specify how sequences are
selected by a player. In the normal form, the player may just decide on a pure
strategy, or, by a mixed strategy, use a probability distribution to select one. In
the sequence form, a player cannot just decide on a single sequence. In Fig. 2.1,
for example, player 1 has to decide betweenl andr as well as betweenL andR,
so she may for example decide onl andL as in the pure strategy(l , L). In that
case, the probabilities 1, 1, 0, 1, 0 are assigned to her sequences∅, l , r, L , R,
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respectively. In general, mixed strategy probabilities will be replaced by the
realization probabilities of sequences when the player uses abehaviorstrategy.
The use of a mixed strategy will be considered in the next section.

If player i , 0≤ i ≤ N, uses the behavior strategyβi , then the sequencesi ∈ Si

is played with probability

ri (si ) =
∏
c∈si

βi (c). (3.1)

The functionr i : Si → R defined in this way is called therealization planof βi .
Realization plans of behavior strategies can be characterized by certain linear

equations, using a correspondence between the sequences and the information
sets of a player. By definition of perfect recall, every node in an information setu
of playeri defines the same sequence of choices for that player. This sequence
will be denotedσu and is called the sequenceleading to u. A choicec at u
extendsσu. The extended sequence will be abbreviated asσuc,

σuc = σu ∪ { c } for c ∈ Cu.

This shows that a nonempty sequence is uniquely specified by its last choicec.
Thus, the setSi of sequences of playeri can be represented as

Si = {∅} ∪ {σuc | u ∈ Ui , c ∈ Cu}. (3.2)

Therefore,Si has 1+ |Di |, that is, 1+∑u∈Ui
|Cu| elements.

If one were only interested in the payoffs, it would suffice to consider only
the sequences defined by the leavesa of the game tree. By considering decision
nodesa as well, the representation (3.2) ofSi leads to the following constraints
that are fulfilled by a realization planri according to (3.1):

ri (∅) = 1 (3.3)

because the empty product is 1, and, since
∑

c∈Cu
βi (c) = 1,

− ri (σu)+
∑
c∈Cu

ri (σuc) = 0 for u ∈ Ui . (3.4)

Furthermore, realization probabilities are obviously nonnegative:

r i (si ) ≥ 0 for si ∈ Si . (3.5)

The following definition of a realization plan uses these constraints; it is justified
by the subsequent proposition.

DEFINITION 3.3. A function ri : Si → R fulfilling (3.3), (3.4), and (3.5) is
called arealization planfor playeri , 0≤ i ≤ N.
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PROPOSITION3.4. Any realization plan arises from a suitable behavior strat-
egy.

Proof. The realization planri arises from the following behavior strategyβi .
For an information setu in Ui , define the behavior atu by

βi (c) = ri (σuc)

ri (σu)
for c ∈ Cu (3.6)

if r i (σu) > 0, and arbitrarily (so that
∑

c∈Cu
βi (c) = 1) if ri (σu) = 0. Then (3.1)

follows by induction on the length of a sequence.

DEFINITION 3.5. Thesequence formof an extensive game is given by the sets
of sequences, the payoff functiong, the constraints for the realization plans of
the personal players, and the realization planr0 of the given behavior strategyβ0

of the chance player.

The sequence form corresponds closely to the extensive game. It is an abstrac-
tion like the normal form that describes the strategic possibilities of the players
and the resulting payoffs. It has the advantage of small size and the disadvan-
tage of a less intuitive selection of sequences by realization plans. The latter are
finitely described by the constraints in Definition 3.3.

The constraints for playeri , 1 ≤ i ≤ N, are determined if one knows for
each information setu in Ui the sequenceσu leading tou and the choicesc
at u. They need not be stated for the chance player becauser0 is defined by
β0. It is possible to ignore the structure of sequences and regardSi just as a
finite set, and a realization planr i as a nonnegative vector with|Si | components.
The linear equations (3.3) and (3.4) for this vector can then be represented by a
two-dimensional “constraint” matrix with 1+ |Ui | rows and|Si | columns. We
will do this in Section 5 where we show, using matrix notation, how equilibria
of two-person games can be computed with the sequence form.

In the normal form, theexpectedpayoff to each player is a multilinear expres-
sion in terms of the payoffs and the mixed strategy probabilities. In the sequence
form, it is defined analogously. Consider behavior strategiesβ1, . . . , βN for all
players, and letr = (r1, . . . , r N) be the tuple of corresponding realization plans.
As in Def. 3.5, letr0 be the fixed realization plan for the chance player. Let
S= S0× S1×· · ·× SN denote the set of all(N+1)-tupless= (s0, s1, . . . , sN)

of sequences. Then, define the expected payoff vectorG(r ) ∈ RN in terms of
g(s) for s ∈ Sby

G(r ) =
∑
s∈S

g(s)
N∏

i=0

ri (si ). (3.7)

Indeed,G(r ) is the expected payoffH(β1, . . . , βN) if the players use the behavior
strategiesβi because, in the summation overS, only a tuplesof sequences defined
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by a leafa of the game tree contributes a nonzero payoff vectorg(s) = h(a),
and by (3.1),a is reached with probability

∏N
i=0 ri (si ).

4. MIXED STRATEGIES AND THE REDUCED NORMAL FORM

So far, we have defined a realization plan only for a behavior strategy. A mixed
strategy can also be strategically represented by a realization plan, as follows.
A pure strategy is a special behavior strategy that has a realization plan with
integral values zero or one. A mixed strategyµi is a convex combination of pure
strategies. The corresponding convex combination of the realization plans of pure
strategies is again a realization plan by Definition 3.3, and defines the realization
plan ofµi . (This means that the set of realization plans is a polytope, analogous
to the simplex of mixed strategies, but of much smaller dimension. The vertices
of the polytope represent the pure strategies.) Equivalently, the realization plan
of µi assigns to each sequencesi the combined probability underµi for the pure
strategies that are “consistent” withsi .

In going from a mixed strategy to its realization plan, information is lost be-
cause the latter has much fewer components. However, the strategically relevant
aspect of a mixed strategy is captured by its realization plan: Two mixed strate-
gies of a player are calledrealization equivalentif for any fixed strategies of the
other players, both strategies define the same probabilities for reaching the nodes
of the game tree. Looking at these probabilities, it is easy to see the following
(compare also Koller and Megiddo 1996, Lemma 2.5):

PROPOSITION4.1. Mixed strategies are realization equivalent if and only if
they have the same realization plan.

(For the “only if” part, any node of the game tree must be reachable for
suitable strategies of the other players, which requires that all chance moves
have positive probability.) Since a behavior strategy is in effect a special mixed
strategy, Propositions 3.4 and 4.1 imply Kuhn’s theorem (1953, p. 214):

COROLLARY 4.2. For a player with perfect recall, any mixed strategy is re-
alization equivalent to a behavior strategy.

This shows that for a game with perfect recall, the sequence form, which is
designed to compute behavior strategies, is not more restrictive than the normal
form. The realization plan of a mixed strategyµi can be retranslated to a behavior
strategy that is realization equivalent toµi .

As an example, consider the optimal mixed strategies of player 1 in Fig. 2.1
described at the end of Section 2. They are(l , R) = (0, 1, 0, 0) and the mixed
strategiesµ1 = (0, 0, 1/3, 2/3) andµ′1 = (1/4, 0, 0, 3/4). Denote a realization plan
by its vector of values for the sequences∅, l , r, L , R. The realization plan of
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FIG. 4.1. An extensive game, its normal form, and its reduced normal form.

(l , R) is (1, 1, 0, 0, 1). Forµ1, selecting(r, L) and(r, R) with probabilities1/3
and2/3, respectively, it is1/3 · (1, 0, 1, 1, 0)+ 2/3 · (1, 0, 1, 0, 1) = (1, 0, 1, 1/3, 2/3).
The pure strategy(l , R) as well as the mixed strategyµ1 are in effect behavior
strategies. This is not the case for the optimal mixed strategyµ′1, selecting
(l , L) and(r, R) with probabilities1/4 and3/4, which defines the realization plan
(1, 1/4, 3/4, 1/4, 3/4). That realization plan tells that withµ′1, player 1 moves left or
right at both information setsv andv′ with probability 1/4 and3/4, respectively,
but without the correlation of these moves as specified by the mixed strategyµ′1.
Furthermore, this vector is a convex combination of other optimal realization
plans,(1, 1, 0, 0, 1) and(1, 0, 1, 1/3, 2/3), unlikeµ′1 in the normal form.

More than one behavior strategyβi may define the same realization planri .
As shown in the proof of Prop. 3.4, this is the case if the information setu of
playeri cannot be reached whenβi is played, that is, ifri (σu) = 0. Thenu is
called irrelevant when playingβi , otherwiserelevant(Kuhn 1953, p. 201). In
this case, the behavior atu underβi is arbitrary and therefore not unique (ifu
has at least two choices).

In particular, more than one pure strategy may define the same realization
plan. However, there is a natural one-to-one correspondence between realization
plans with integral values zero or one and pure strategies in thereduced normal
formof the extensive game. In the reduced normal form, any two pure strategies
that differ only in choices at irrelevant information sets are identified, like the
strategies(r, L) and(r, R) in Fig. 4.1. Kuhn (1953, p. 202) called such strategies
“equivalent,” and even identified them directly (1950, p. 574). They can be
represented in the reduced normal form by leaving the choices at the irrelevant
information sets blank, denoted by some new symbol like “∗” that does not
denote a choice, like in(r, ∗) in the example.

In the reduced normal form, precisely the pure strategies that are realization
equivalent are identified. These lead to the same payoffs for all players. However,
their identification in the reduced normal form does not depend on the particular
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payoff function. In contrast, Dalkey (1953, p. 222) defined the reduced normal
form via payoff equivalence, which may allow the identification of further strate-
gies like(l , R) and(r, ∗) in Fig. 4.1. Other reductions of the normal form have
been considered by Swinkels (1989), that for a “generic” game is the reduced
normal form considered here.

The reduced normal form can easily be constructed directly from the game
tree, without considering the full normal form first. It is smaller than the normal
form, but not necessarily in the same significant way as the sequence form:

DEFINITION 4.3. Two information setsu andv of a player are calledparallel
if σu = σv.

An example of parallel information sets arev and v′ in Fig. 2.1. Parallel
information sets are not distinguished by preceding choices of the same player,
so all combinations of choices at these sets are part of separate pure strategies
in the reduced normal form. Because there may be arbitrarily many parallel
information sets, the reduced normal form may still be exponentially large. Only
if every sequenceσu leading to an information setu identifies the information
set uniquely (like in Fig. 4.1), then the reduced normal form is as compact as the
sequence form.

5. COMPUTING EQUILIBRIA OF TWO-PERSON GAMES

The sequence form leads to an optimization problem whose solutions are the
equilibria of the game. In this section, we derive this problem for the case of a
two-person game (N = 2). The variables of this problem are the realization plans
of the players. We consider first the LP where a best response is sought for one
player, and its dual LP. With the help of these linear programs, we can formulate
an LP whose solutions are the equilibria of a zero-sum game. For a two-person
game with general payoffs, we obtain in a similar way a linear complementarity
problem (LCP), which is studied in detail in Kolleret al. (1996).

In this section, we consider an extensive game with two personal players that
have perfect recall. The game is transformed to its sequence form. We are looking
for a pair of realization plans that represents an equilibrium. As described above,
realization plans are easily converted to behavior strategies. In that sense, a player
is said to play according to a realization plan. The components of the realization
plans, analogous to the mixed strategy probabilities in the normal form, are the
strategic variables of the players.

We will use a notation with vectors and matrices. The realization plansr1

and r2 for player 1 and 2 shall be written as vectorsx and y with |S1| and
|S2| components, respectively. All vectors are column vectors, row vectors are
denoted by transposition as inxT . Theconstraint matrices EandF are used to
express thatx andy are realization plans according to Definition 3.3, with the
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equations

Ex = e and Fy = f. (5.1)

The number of columns ofE andF is |S1| and|S2|, respectively. The number
of rows ofE ande is 1+ |U1|, and forF and f it is 1+ |U2|. The vectorse and
f are equal to the unit vector(1, 0, . . . ,0)T of appropriate dimension. The first
row in each equation in (5.1) represents (3.3), the other rows (3.4).

For the example of Fig. 2.1, these constraint matrices have the following form.
The sequences of player 1 are∅, l , r, L , R, and for player 2 they are∅, c, d. The
constraint matrices are

E =
 1
−1 1 1
−1 1 1

 and F =
(

1
−1 1 1

)
,

with e= (1, 0, 0)T and f = (1, 0)T . The zero entries of the constraint matrices
have been omitted. By (3.3) and (3.4), a constraint matrix has a single 1 in every
column, and an additional−1 in every row except the first. The constraint matrix
is sparse since all other matrix elements are zero.

If player 1 and 2 play according tox and y, respectively, then their ex-
pected payoffs can be represented byxT Ay and xT By, with suitable|S1| ×
|S2| matricesA and B. The matrix entry forA in row s1 and columns2 is∑

s0∈S0
g1(s0, s1, s2) r0(s0), and forB it is the same withg2 in place ofg1. All other

matrix elements are zero. The expected payoffs arexT Ay andxT By by (3.7).
The payoff matricesA andB are “flattened” versions of the three-dimensional

functionsg1 andg2, using the known realization planr0 for the chance player.
The matrices can be constructed directly from the game tree as follows. First,
they are initialized as zero. Then, each leaf of the tree is considered, which defines
a triple s0, s1, s2 of sequences. The player’s payoff at the leaf is multiplied by
the productr0(s0) of chance probabilities along the path to the leaf. The result is
added to the matrix element at positions1, s2. This addition is necessary because,
due to chance moves, more than one leaf may define the same matrix position.
This is done for all leaves. Thus, each payoff matrix has at most as many nonzero
elements as the tree has leaves, and it has linear size if it is represented sparsely.
In the example of Fig. 2.1, with the sequences∅, l , r, L , R and∅, c, d indicating
rows and columns, respectively,

A =

 0
1 −1
−2 4

1

 ;
the first row ofA is zero (and left blank) since the sequence∅ of player 1 is not
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defined by a leaf; the second row has a zero entry that is shown explicitly because
it results from the payoff at a leaf. Because this game is zero-sum,B = −A.

In order to derive algorithms for computing an equilibrium, we consider first
the problem of finding a best response for one player against agivenrealization
plan of the other player. Assume that player 1 plays according tox. Then, finding
a best responsey of player 2 defines the following linear program:

maximize
y

(xT B)y

subject to F y = f,
y ≥ 0.

(5.2)

The dual LP for this problem will be useful. It has 1+ |U2| dual variables
represented by the vectorq. These variables are unconstrained because they cor-
respond to the equalities in (5.2). The|S2| constraints for the dual LP correspond
to nonnegative primal variables (the components ofy), so they are inequalities.
Thus, the dual LP to (5.2) is

minimize
q

qT f

subject to qT F ≥ xT B.
(5.3)

Analogously, a best responsex of player 1, given that player 2 plays according
to y, is a solution to the following problem:

maximize
x

xT (Ay)

subject to xT ET = eT ,

x ≥ 0.
(5.4)

The dual problem to (5.4) uses the unconstrained vectorp with 1+ |U1| com-
ponents and reads

minimize
p

eT p

subject to ET p ≥ Ay.
(5.5)

In order to find an equilibrium, bothx andy have to be treated as variables.
Then, the objective functions in (5.2) and (5.4) are no longer linear. Nevertheless,
a zero-sum game can be solved with a linear program. We consider this case first
and treat general payoffs later.

In a zero-sum game, we regard the dual LP (5.5), but with variablesp andy,
based on the following intuition: The LP (5.4) and its dual (5.5) have the same
optimal valueeT p. This is the payoff that player 2, if he playsy, has to give to
player 1. If player 2 can varyy, he will try to minimize this payoff; an optimal
choice ofy will be a min-max strategy. Thereby,y must be subject toy ≥ 0
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and Fy = f as in (5.1) to represent a realization plan for player 2; it will be
convenient to write the equation with a negative sign. This defines the new LP

minimize
y,p

eT p

subject to −Ay+ ET p ≥ 0
−F y = − f,

y ≥ 0.

(5.6)

Again, consider the dual of this LP:

maximize
x,q

−qT f

subject to xT (−A)−qT F ≤ 0
xT ET = eT ,

x ≥ 0.

(5.7)

In a zero-sum game,−A = B, so (5.7) is just (5.3) but with variablesq andx,
subject tox ≥ 0 andEx = e as in (5.1). The LP (5.7) can be interpreted as the
problem of finding a min-max strategy for player 1. The following result states
that the optimal solutions to (5.6) and (5.7) define indeed an equilibrium of the
zero-sum game. It is proved with the duality theorem of linear programming.

THEOREM5.1. The equilibria of a zero-sum game in extensive form with
perfect recall are the optimal primal and dual solutions of a linear program
whose size, in sparse representation, is linear in the size of the game tree.

Proof. The linear program is (5.6). The number of nonzero entries of the
payoff matrixA and of the constraint matricesE andF is linear in the size of the
game tree. Consider an optimal solutiony, p to (5.6) and a dual optimal solution
x,q to (5.7). Then,y, q, x, and p are feasible solutions to the linear programs
(5.2), (5.3), (5.4) and (5.5), respectively, whereq andx fulfill the constraints of
(5.3) sinceB = −A. Multiplying the equationf = Fy in (5.2) byqT and the
inequality in (5.3) by the nonnegative vectory yields

qT f = qT Fy ≥ xT By. (5.8)

Analogously,

eT p = xT ET p ≥ xT Ay, (5.9)

which implies

eT p ≥ xT Ay= −xT By≥ −qT f. (5.10)

Condition (5.8) is known as the weak duality theorem, that is, the objective
functionxT By of the LP (5.2) is bounded by the objective functionqT f of the
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dual LP (5.3) and vice versa, for any pair of feasible solutions. Similarly, (5.9)
says this for the pair of linear programs (5.4) and (5.5), and (5.10) states it in
effect for (5.6) and (5.7). According to the strong duality theorem, a pair of
primal and dual solutions is optimal if and only if the two objective functions are
equal. Applied to (5.6) and its dual (5.7), this showseT p = −qT f , so equality
holds in (5.10), (5.9) and (5.8). Therefore,x is an optimal solution of the LP
(5.4) and a best response toy, and analogouslyy is a best response tox. That
is, x, y represents an equilibrium.

Conversely, any equilibriumx, y solves the linear programs (5.4) and (5.2)
optimally, and with the corresponding optimal dual solutionsp,q, equality holds
in (5.9), (5.8) and (5.10), so that (5.6) and (5.7) are solved optimally.

Theorem 5.1 shows that a zero-sum game in extensive form can be solved
in polynomial time, using any polynomial linear programming algorithm. In
practice, the LP (5.6) is very suitable for the simplex algorithm, which computes
an optimal pair of primal and dual solutions. Efficient implementations exploit
the sparsity of the matricesA, E, andF (Chvátal 1983, p. 112). The running
time of the simplex algorithm can be exponential but is usually quite short. It is
mostly determined by the number of constraints and very little by the number
of variables (Chv´atal 1983, p. 46). Therefore, it may be advantageous in certain
cases to run the simplex algorithm on the dual LP (5.7) instead of (5.6). There are
|S1| + 1+ |U2| constraints in (5.6) and|S2| + 1+ |U1| constraints in (5.7). Note
that both numbers are of order|U1| + |U2| unless a player has a large number of
choices per information set.

In the case of a non-zero-sum game, we will not consider the LP (5.6). Instead,
we will use the complementary slackness condition that characterizes optimal
LP solutions. As mentioned in the proof of Theorem 5.1,x and p are optimal
solutions to (5.4) and (5.5) if and only if (5.9) holds with equality, that is, if
xT ET p = xT Ay or

xT (−Ay+ ET p) = 0. (5.11)

Equation (5.11) states that the nonnegative vectorx of primal variables is or-
thogonal to the nonnegative vector−Ay+ ET p of slacksin the dual program
(the dual condition(xT ET − eT ) p = 0 holds also but is trivial). In linear pro-
gramming, this orthogonality condition is known ascomplementary slackness.
It characterizesx as a best reponse toy. We will interpret this in the next section.

Similarly, y andq are optimal solutions to (5.2) and (5.3) if and only if (5.8)
holds with equality, that is, ifqT Fy = xT By or

(−xT B+ qT F) y = 0 . (5.12)

An equilibriumx, y is given by simultaneous optimal solutions to the linear
programs (5.4) and (5.2). Considering the dual programs (5.5) and (5.3) as well,
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this defines the following problem: Findx, y, p,q so that the constraints in
(5.2)–(5.5) and the orthogonality conditions (5.11) and (5.12) are fulfilled. This
defines a so-calledlinear complementarity problemor LCP (see Cottle, Pang,
and Stone 1992).

THEOREM5.2. The equilibria of a general two-person game in extensive form
with perfect recall are the solutions of a linear complementarity problem whose
size, in sparse representation, is linear in the size of the game tree.

By using the sequence form, the LCP is of small size. A very similar LCP can
be formulated for a game in normal form, but considered for a game in extensive
form it may have exponential size and the matrices are full and not sparse. For
bimatrix games, the algorithm by Lemke and Howson (1964) finds at least one
LCP solution, that is, one equilibrium. Unfortunately, the LCP for the sequence
form is not suitable for a direct application of the Lemke–Howson algorithm.
However, one can use the more general algorithm by Lemke (1965) instead. This
is shown in detail by Kolleret al. (1996).

Finally, we note an obvious reduction of the constraint and payoff matrices
which reduces the size of the LP in (5.6) and of the mentioned LCP even further.
It is possible to consider only those sequences of a player that actually lead
to a leaf of the game tree. Other sequencesσu, like the empty sequence∅ for
player 1 in Fig. 2.1, have only zero entries in both payoff matrices. Therefore,
the variabler i (σu) does not appear in the payoff term. In the constraints (5.1),
this variable can be eliminated as follows: There is one equation whereri (σu)

has coefficient 1, and one or more equations where it is the first variable in (3.4)
with a negative sign. For each of the latter equations, take the corresponding sum
in (3.4) and substitute it forr i (σu) in the first equation. The resulting equations
replace the old ones. This eliminates one variable and one equation. Ifσu = ∅,
the discarded equation is (3.3) and the right hand side must also be observed in
these replacements. All variablesr i (σu) corresponding to nonterminal sequences
σu can be eliminated in this way. In the example of Fig. 2.1, the constraint matrix
E and the right hand sidee in (5.1) are thus reduced to

E =
(

1 1
1 1

)
and e=

(
1
1

)
.

Thereby, the componentx∅ of the vectorx is omitted and the payoff matrix has
to be sized accordingly.

By this method, the total number of variables is reduced by less than a half,
since for each choice preceding an information set there are at least two other
choices, at that set, further down the tree. Therefore, the reduction is not sig-
nificant, in particular since (5.1) is always very easy to solve. The reduction
has another disadvantage: The constraints (3.4) are quite canonical since they
correspond to the information sets of the players. As described above, they also
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correspond to dual LP variables, the components ofp andq. As we will show
in the next section, these can be interpreted as “payoff contributions” of optimal
choices at the respective information sets. In certain applications, this interpre-
tation may be interesting, but it is destroyed by the indicated reduction.

6. BEST RESPONSES FOR ANY NUMBER OF PLAYERS

In the previous section, we described the linear program for computing a best
response of one player against a fixed strategy of the other player. The same
can be done for any number of players, where all but one of them play with
a fixed strategy. We will interpret the solutions of this LP with the help of the
dual variables and the complementary slackness condition. This characterizes
a behavior strategy “locally” as a best response, in the sense that it chooses
only moves yielding a maximal payoff “contribution” with positive probability.
Furthermore, we will describe a nonlinear optimization problem whose solutions
are the equilibria of theN-person game.

For illustration, we consider first a two-person game in normal form, that is,
a bimatrix game. Let it have payoff matricesA and B, and letx and y denote
mixed strategies of player 1 and 2, respectively. Then, their expected payoffs are
xT Ay andxT By as above. Assume thaty is fixed. A best responsex of player 1
is a solution to the LP (5.4) whereE is a matrix consisting of the single row
(1 1 · · · 1) ande is the scalar 1. In fact, this constraint matrix for the bimatrix
game can be regarded as a special case of our approach for the sequence form:
To see this, convert the bimatrix game to an extensive game in the usual way,
with one information set for each player where his choices are his strategies in
the given normal form. Then, the sequence form is equal to the normal form
except for the empty sequence∅, which, however, is not defined by a leaf of the
game tree and disappears if the sequence form is reduced as described at the end
of Section 5.

For the bimatrix game, the dual LP (5.5) has a single scalar variablep, whose
optimum is the maximum of the components(Ay)j of the expected payoff vector
Ay. In other words,p is the best possible payoff for a pure strategyj of player 1.
The complementary slackness condition (5.11) says thatx is a best response toy
if and only if for all j ,

xj > 0 H⇒ (ET p)j = (Ay)j , (6.1)

where(ET p)j is here simplyp. Condition (6.1) states that only best responsesj
are chosen with positive probabilityxj , which is the familiar criterion of a best
response due to Nash (1951, p. 287).

The same can be done with the sequence form. We consider first, in a technical
way, the example of Fig. 2.1, and will explain the general case later. Lety be
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a fixed realization plan for player 2, sayy = (1, 2/3, 1/3)T in correspondence to
the sequences∅, c, d (this is not the optimal realization plan for player 2). The
LP (5.5) has the dual vectorp = (p0, pv, pv′) of variables, wherep0 is the
first component and the other components correspond to the information sets of
player 1. The constraintsET p ≥ Ay have the form

1 −1 −1
1
1

1
1

 p ≥


0

1 −1
−2 4

1

 y =


0
0
1/3
0
1

 . (6.2)

The objective functioneT p, that is,p0, is minimized bypv′ = 1, pv = 1/3 and
p0 = 4/3. The expected payoff that player 1 receives isp0. Only the first, third,
and fifth inequalities in (6.2) are tight, that is, hold with equality, the others have
positive slacks. Therefore, by the complementary slackness condition (5.11),
analogous to (6.1), onlyx∅, xr , andxR can be positive, so that the unique best
response of player 1 isx = (1, 0, 1, 0, 1)T in correspondence to her sequences
∅, l , r, L , R. For the optimal realization plany = (1, 1/2, 1/2)T of player 2, the
best response of player 1 is not unique since all inequalities in (6.2) are tight. As
in the normal form, we see a connection between complementary slackness and
best responses. We make this explicit in the following discussion.

We consider now a general game with any numberN of players, and assume
that all players play according to certain realization plans except for one player,
say player 1. As before, let her realization planr1 be denoted byx, and now let
y denote the given realization plansr2, . . . , r N of all remaining players. We are
interested in finding and characterizing the best responsesx to y. Analogous to
the components ofAy for the two-person game, we denote thepayoff contribution
of the sequences1 by

G1(s1, y) =
∑

s0,s2,...,sN

g1(s0, s1, s2, . . . , sN) r0(s0)r2(s2) · · · r N(sN), (6.3)

where the sum is taken over allsi ∈ Si for i = 0, 2, . . . , N. If we denoter1(s1)

by x(s1), then the expected payoff to player 1 in (3.7) has the form

G1(x, y) =
∑
s1∈S1

x(s1)G1(s1, y) ,

which corresponds to the termxT (Ay) for the two-person game. As before, this
is a linear expression in the variablesx(s1) for s1 ∈ S1. Maximizing it subject
to Ex = e as in (5.4) determines a best responsex to y. For the dual LP (5.5),
the vectorp of dual variables has the componentsp0, corresponding to the first
equation (3.3) ofEx = e, and pu for u ∈ U1. Then (5.5) says: Minimizep0
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subject to

p0−
∑

v∈U1, σv=∅
pv ≥ G1(∅, y) (6.4)

and

pu −
∑

v∈U1, σv=σuc

pv ≥ G1(σuc, y) for u ∈ U1, c ∈ Cu. (6.5)

An example of these constraints is (6.2). The entries of the constraint matrix
E appear here inET as follows: Each inequality corresponds to a sequences1

in S1. The coefficient 1 ofr1(s1) in the primal constraints (3.3) and (3.4) is the
coefficient ofp0 in (6.4) fors1 = ∅, and ofpu in (6.5) for a nonempty sequence
s1 = σuc. For each information setv in U1, there is an additional coefficient−1
in (3.4). It is the coefficient ofpv in (6.4) or (6.5) for the sequences1 = σv that
leads tov, where parallel information setsv appear in a single inequality.

With this notation, the complementary slackness condition (5.11) that char-
acterizesx andp as optimal solutions to (5.4) and (5.5) has the following form,
analogous to (6.1):

p0 = G1(∅, y)+
∑

v∈U1, σv=∅
pv (6.6)

becausex(∅) is always positive, and

x(σuc) > 0 H⇒ pu = G1(σuc, y)+
∑

v∈U1, σv=σuc

pv (6.7)

for u ∈ U1, c ∈ Cu. When these conditions hold, the two objective functions are
equal, andG1(x, y) and p0 represent the maximal expected payoff to player 1.

For the realization planx and its corresponding behavior strategyβ1, (6.7) can
be interpreted as a “best response criterion” in terms of the player’s moves. As
(6.2) illustrates, the constraint matrixE has a simple structure resulting from the
game tree. Therefore, a best responsex to y and an optimal dual vectorp can
be found directly by backward induction or “dynamic programming”, without
using an LP algorithm. In this inductive procedure, one starts with the information
setsu that are closest to the leaves and constructs an optimal behavior atu as
well as optimal dual variablespu. For these information setsu, the sum over the
setsv in (6.5) is empty, andpu can be defined as the maximum of the payoff
contributionsG1(σuc, y) for the choicesc atu. (In the example (6.2), these dual
variables arepv′ = 1 andpv = 1/3. They can be interpreted in Fig. 2.1: Player 2,
using y, makes the choicesc andd with probabilities2/3 and 1/3, respectively.
The resulting expected payoffs have to multiplied by the chance probabilities to
determine the payoff contributions for player 1. For her information setv′, these
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are 0 and 1 for her sequencesL and R, shown in (6.2), so her optimal payoff
contribution is 1 with the sequenceR. Similarly, at her information setv it is
1/3 with her sequencer .) To make sure that (6.7) holds, the behavior strategyβ1

should assign positive probabilitiesβ1(c), which can otherwise be arbitrary, only
to the “optimal” choicescatu where the payoff contribution is actually maximal.
(In the above example, this implies the deterministic behavior of player 1 atv′

andv.) If it turns out later thatu is irrelevant, the equationx(σuc) = x(σu) ·β1(c)
implies that the behavior atu can be arbitrary, but forx(σu) > 0 it is necessary
for (6.7) that only optimal moves are made with positive probability.

The dual variablepu and optimal moves atu are defined inductively at infor-
mation setsu higher up in the tree, where the dual variablespv with σv = σuc
for the choicesc at u and the behavior atv are already known. Thereby,pu can
be interpreted as the maximal payoff contribution of a movec at u, regarded as
the collective contribution of the sequenceσuc and of all longer sequences as
expressed by the sum in (6.7). This payoff is also achieved if the choices further
down the tree are made optimally. Eventually, this defines a behavior strategy
β1 that is a best response toy and the realization planx = r1 of β1 according
to (3.1). Finally,p0 as defined by (6.6) is the expected payoffG1(x, y) to the
player at the root of the tree (in the above example,p0 = 0+ pv + pv′ = 4/3).

This best response criterion for behavior strategies says that at each informa-
tion set, only “locally optimal” moves, looking down the tree, should be made
with positive probability, which is in some sense analogous to (6.1) for the nor-
mal form. As there, any best response can be deterministic. However, a behavior
strategy is not necessarily a best response if it is “locally optimal” in terms of
the overall payoff, that is, if the payoff cannot be improved by changing the be-
havior at a single information set. An example (due to Robert Aumann, personal
communication) is Fig. 4.1 where the pure strategy(r, R) is a behavior strategy
that has to be changed at both information sets to improve the payoff. Here, the
choice R is optimal only in terms of the global payoff since it is made at an
irrelevant information setu, but it is not optimal in the inductive construction,
and a corresponding dual variablepu = 0 would not be feasible since (6.5)
would be violated for the sequenceσuc = l L .

A best response behavior strategy is determined by the “bottom up” induction
just described. Nevertheless, it need not be part of asubgame perfectequilib-
rium. If an information setu is not reached due to the behaviory of theother
players, then all choicesc ∈ Cu produce the equally “optimal” payoff contribu-
tion G1(σuc, y) = 0 in (6.5). These arbitrary moves need not be optimal in a
subgame, as it is required by subgame perfectness (see Selten 1975, p. 33).

To conclude this section, we describe a nonlinear optimization problem whose
solutions are the equilibria of anN-person game. In this problem, the components
of all realization plansr1, . . . , r N are treated as variables. The dual constraints
(6.4) and (6.5) are regarded for all players, and the goal is to close the “dual gap”
between dual and primal objective function for all players simultaneously. No-
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tationally, we replace the subscript 1 indicating player 1 in (6.3), (6.4), and (6.5)
by i for 1 ≤ i ≤ N. Correspondingly,y represents(r1, . . . , ri−1, ri+1, . . . , r N),
and (6.3) has the form

Gi (si , y) =
∑

sj∈Sj , j 6=i

gi (s0, s1, . . . , sN)
∏

j 6=i, 0≤ j≤N

r j (sj ). (6.8)

For each playeri , we continue to denote the 1+ |Ui | components of the dual
vector by pu (indexed by the respective information setsu ∈ Ui ), except for
the first componentp0 that shall be calleddi , also representing the value of the
dual objective function. The value of the primal objective function isGi (r ) as
in (3.7). Generalizing the inequalities in (5.3) and (5.5), we obtain the following
constraints from (6.4) and (6.5), with the subscript 1 replaced byi = 1, . . . , N:

− Gi (∅, y) + di −
∑

v∈Ui , σv=∅
pv ≥ 0 (6.9)

and

− Gi (σuc, y)+ pu −
∑

v∈Ui , σv=σuc

pv ≥ 0 for u ∈ Ui , c ∈ Cu. (6.10)

Note that forN > 2 these are nonlinear constraints since the expression in (6.8)
is nonlinear. With this notation, we state the following result.

THEOREM6.1. Consider an extensive N-person game with perfect recall
and its sequence form. Let ri be the realization plan of a behavior strategyβi of
player i, and let r = (r1, . . . , r N). Then(β1, . . . , βN) is an equilibrium if and
only if the reals ri (si ) for si ∈ Si and suitable reals di and pu for u ∈ Ui solve
the following optimization problem:

minimize
N∑

i=1

(di − Gi (r )) (6.11)

subject to(3.3), (3.4), (3.5), (6.9),and(6.10),for 1≤ i ≤ N.

Proof. In equilibrium, each behavior strategyβi is a best response to the
others. An equivalent condition is that for eachi , 1 ≤ i ≤ N, and fixedy, the
primal LP of maximizing the expected payoffGi (r ) to playeri subject to the
constraints (3.3), (3.4) and (3.5), and its dual of minimizingdi subject to (6.9)
and (6.10), are solved optimally, withdi = Gi (r ). For any feasible solution,
di ≥ Gi (r ) by weak duality, so the expression in (6.11) is nonnegative, and its
minimum is attained at zero since an equilibrium always exists.

This optimization problem generalizes the LP and LCP for a two-person game
described in the previous section. With the notation used there, the objective
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function in (6.11) is(eT p − xT Ay) + (qT f − xT By), which is linear for a
zero-sum game withA+ B = 0. Then, the problem is a self-dual LP with the
constraints of both (5.6) and (5.7), and equivalent to either LP. For a general
two-person game, the optimization problem is equivalent to the LCP mentioned
in Section 5 since (6.11) can also be written as a minimization ofxT (−Ay+
ET p) + yT (−BT x + FTq), which has its minimum at zero as required by
(5.11) and (5.12).

Algorithms to solve the multilinear optimization problem in Theorem 6.1 for
more than two players have been described by Rosenm¨uller (1971) and Wilson
(1971) for normal form games. Howson (1972) has solved specialN-person
games that are essentially equivalent to a set of simultaneously played bimatrix
games. There should be no major difficulty in applying this algorithm, and other
methods for solving normal form games, to the sequence form.

7. COMPARISON WITH RELATED WORK AND CONCLUSIONS

In this section, we summarize our contributions and explain their relationship
to earlier work. The most closely related papers are Koller and Megiddo (1992)
and Wilson (1972), which introduced some techniques that we have used. We
will also discuss games without perfect recall, and conclude with perspectives
for further research.

For extensive zero-sum games with perfect recall, we have shown in Theo-
rem 5.1 that optimal strategies for both players are determined by a small LP.
There are two main ideas behind this approach. First, the realization probabilities
for sequences of choices are used for optimization. The expected payoff is linear
in these variables, which is not true for behavior strategy probabilities. Second,
we have taken the LP of finding a best reponse of one player against a fixed
strategy of the other player and considered its dual. In this dual LP (5.5), the
dual variables are separated from the decision variables of the other player so
that one obtains linear constraints that can be used in the LP (5.6) for the entire
game. In summary, we have linearized the problem of using behavior strategy
probabilities by a variable transformation (introducing products over sequences
as in (3.1) as new variables), and by a suitable separation of variables.

The first of these ideas is not new. Koller and Megiddo (1992) presented the
first polynomial-time algorithm for solving an extensive zero-sum game with
perfect recall. They described a behavior strategy by nonnegative variables that
are subject to linear equations analogous to (3.4). Instead of sequences of choices,
they considered nodes of the game tree for defining realization plans, but this
is not essentially different (see also Koller and Megiddo 1992, Remark 3.8,
p. 545). A minor point is that they overlooked the possibilityr i (σu) = 0 in (3.6),
so the behavior strategyβi cannot always be uniquely reconstructed from the
realization planr i as they claimed (Prop. 3.6, p. 543).
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The main difference to our approach is that Koller and Megiddo (1992, p. 546)
still considered pure strategies of the opponent. Namely, if player 1, say, plays
according to realization planx, and player 2 uses the pure strategyπ2, then the
expected payoffG1(x, π2) to player 1 is a linear function ofx. The problem of
finding a max-min strategyx for player 1 can then, in our notation, be written
as: Maximizeλ subject toλ ≤ G1(x, π2) for all pure strategiesπ2 of player 2,
and so thatx defines a realization plan. This is an LP for computing an optimal
realization plan for player 1, but with a generally exponential number of inequal-
ities. However, theseparation problemfor this LP can be solved in polynomial
time. Given a vectorx and a real numberλ, the separation problem is to either
verify that all constraints of the LP are satisfied, or, if not, to find a violated con-
straint. Given a realization planx, this is solved by computing a best response
π2 of player 2, which can be done fast. Using the ellipsoid algorithm for linear
programming, it suffices to evaluate only polynomially many constraints, so that
the LP can be solved in polynomial time. (The ellipsoid algorithm is not very
practical. For the dual LP, however, one could use in the same way the simplex
algorithm with “column generation.”)

In contrast to this approach by Koller and Megiddo, we obtained an LP with
a linear number of variables and constraints by employing the indicated duality.
Our payoff matrix is of small size since we use sequences symmetrically for
both players. This was partly motivated by a “strategic” view of sequences as a
replacement for strategies. For that reason, we have also considered choices and
not nodes of the game tree for defining realization plans.

Another property of the sequence form, for any number of players, is that it
allows to verify quickly whether anN-tupleβ1, . . . , βN of behavior strategies
represents an equilibrium: The realization plans of these behavior strategies are
determined by (3.1), and the conditions (6.6) and (6.7) show that a realization
plan (for player 1, similarly for the other players) is a best response to the others.
If the normal form is used for verifying the equilibrium property according to
(6.1), then it may be necessary to evaluate exponentially many pure strategies.

The fast verification of an equilibrium in behavior strategies has also been
known earlier (this has been pointed out to the author by Daphne Koller). Given
the behavior strategies of the other players, a best response pure strategy can be
found by backward induction as described by Wilson (1972, p. 455): Using the
condition of perfect recall, the game is converted to an equivalent one-person
game with singleton information sets. Then, a best response is found easily. If
the given behavior strategy yields the same payoff, it is also a best response. All
computations take linear time in the size of the game tree. The best response that
has been found serves as a dynamically generated pivot column for the Lemke–
Howson algorithm (Wilson 1972, p. 458). A backward induction method that
is closer to ours was described by Koller and Megiddo (1992, p. 547). There,
the generated best response solves the separation problem for the LP mentioned
above.
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Koller and Megiddo (1992) also studied extensive games without perfect re-
call. We will discuss how the sequence form can be applied to this case. A type
of game that is still tractable is a game where each player hasperfect memory.
By definition, this means that if a nodeb of an information setv of the player
is preceded by a choice at an information setu of the same player, then each
node inv is preceded bysomechoice atu (for perfect recall, which is stronger,
it would have to be the same choice). That is, a player with perfect memory may
forget earlier moves but not earlier knowledge.

Koller and Megiddo (1992, p. 550) showed that in an extensive zero-sum
game, one can compute in polynomial time a max-min behavior strategy for
player 1, say, who has perfect recall, if her opponent has only perfect memory.
They considered thecomplete inflationof the game obtained by partitioning the
information sets of player 2 such that he can distinguish his earlier moves (see
Dalkey 1953, p. 226, Okada 1985, p. 90). In the modified game, player 2 also has
perfect recall, and his best responseπ2 to a realization planx can be computed
as before. Furthermore, his best response can be reinterpreted for the original
game. Essentially, this is possible since the game has the same reduced normal
form as its complete inflation (Dalkey 1953, p. 228).

Using the sequence form, we obtain the following stronger result: For a two-
person game in extensive form with perfect memory, Theorems 5.1 and 5.2 hold
for zero-sum payoffs and general payoffs, respectively, provided a player without
perfect recall may usemixedstrategies. This is easily seen by considering the
complete inflation of the game. It has perfect recall, so the sequence form can be
applied and the theorems hold. Equilibrium realization plans can be translated
to mixed strategies in the reduced normal form of the game (see Section 4
above). Since the original game has the same reduced normal form, they are
also equilibrium strategies there. However, they may no longer be behavior
strategies for a player without perfect recall, since the probability for a move at
an information set that is partitioned in the complete inflation may depend on an
earlier move.

Otherwise, it seems that the sequence form cannot be applied to games without
perfect recall. For a zero-sum game, Koller and Megiddo (1992, p. 534) have
shown that it is NP-hard to find an optimal mixed strategy for a player without
perfect recall. Furthermore, a max-minbehaviorstrategy may involve irrational
numbers, even if the player has perfect memory (p. 537), so it cannot be the
solution of an LP. If a player has no perfect memory as represented by his
information sets and is assumed to “forget” during play, then a proper definition
of the sequence form of the game and its intended “strategic” interpretation is
also difficult.

As a topic for further research, the sequence form may be of conceptual
interest because of its correspondence to the game tree. The constraints in the
sequence form are closely related to backward induction. That notion is used to
distinguish certain equilibria as perfect or subgame perfect (see Selten 1975),
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and in many other definitions of “stability” of an equilibrium (see Kohlberg and
Mertens 1986, van Damme 1987). So far, the equilibria that can be computed
with the sequence form are arbitrary and need not induce an equilibrium in every
subgame, in which case they are not subgame perfect. On the other hand, this
should be easy to accomplish, since equilibria of subgames can be computed
with the presented algorithms.
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