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The Nash equilibria of a two-person, non-zero-sum game are the solutions of a certain
linear complementarity problem (LCP). In order to use this for solving a game in extensive
form, the game must first be converted to a strategic description such as the normal form.
The classical normal form, however, is often exponentially large in the size of the game
tree. If the game has perfect recall, a linear-sized strategic description is the sequence form.
For the resulting small LCP, we show that an equilibrium is found efficiently by Lemke’s
algorithm, a generalization of the Lemke–Howson method.Journal of Economic Literature
Classification Number: C72. © 1996 Academic Press, Inc.

1. INTRODUCTION

In this paper, we consider extensive two-person games with general payoffs,
where the players have perfect recall. Until recently, most methods for computing
equilibria for extensive games involved converting the game to its normal form.
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While efficient solution algorithms exist for normal-form games, the conversion
itself typically incurs an exponential blowup, since the number of pure strategies,
even in the reduced normal form, is often exponential in the size of the game
tree.

The normal form and the associated blowup can be avoided by considering
sequencesof choices instead of pure strategies. Instead of mixed strategy prob-
abilities, the realization probabilities for playing these sequences can serve as
strategic variables of a player. The number of these variables is linear instead
of exponential in the size of the game tree. They were introduced by Koller and
Megiddo (1992), who used them for one of the players in the game. Thesequence
formof an extensive game, described in the paper by von Stengel (1996) in this
journal issue, is a strategic description where all players are treated symmetri-
cally. The equilibria of a two-person non-zero-sum game are the solutions to
a smalllinear complementarity problem(LCP) corresponding to the sequence
form. (For a summary of these and other results, including some material of the
present paper, see Kolleret al. 1994.)

The LCP arising from a (normal form) bimatrix game can be solved by the
algorithm by Lemke and Howson (1964), which is said to be efficient in practice;
for a nice exposition see Shapley (1974). That algorithm finds a solution to a
certain LCP with arbitrary nonnegative variables. The LCP solutions correspond
to equilibria of the bimatrix game if the variables are normalized so that they rep-
resent mixed strategy probabilities. Unfortunately, the standard Lemke–Howson
algorithm cannot be applied to the LCP resulting from the sequence form, since
realization probabilities for sequences are defined by more complicated equa-
tions. This problem is solved in the present paper. Instead of the Lemke–Howson
method, we use the related but more general algorithm by Lemke (1965). Since
Lemke’s algorithm is also said to be efficient in practice, this provides an effec-
tive algorithm for finding equilibria of general two-person games in extensive
form.

The present paper is self-contained and partly expository. In Section 2, we
briefly define the sequence form for an extensive two-person game, and derive
the corresponding LCP. In Section 3, we give an exposition of Lemke’s algo-
rithm since it is not widely known to game theorists, and since the treatment of
degenerate problems has to be supplemented. We have drawn most of the tech-
nical material on linear complementarity from the book by Cottleet al. (1992).
In Section 4, we prove that Lemke’s algorithm terminates with a solution for
our application. In the concluding Section 5, we compare our result with earlier
work.



EFFICIENT COMPUTATION OF EQUILIBRIA 249

2. THE SEQUENCE FORM FOR EXTENSIVE TWO-PERSON GAMES

We use the following conventions for extensive games; for details see von
Stengel (1996). An extensive game is given by a tree, payoffs at the leaves,
chance moves, and information sets partitioning the set of decision nodes. The
choicesof a player are denoted by labels on tree edges. We assume for simplicity
that any labels corresponding to different choices are distinct. For a particular
player, any node of the tree defines asequenceof choices given by the respective
labels (for his moves only) on the path from the root to the node. We assume
that both players haveperfect recall. By definition, this means that all nodes in
an information setu of a player define for him the same sequenceσu of choices.
Under that assumption, each choicec atu is the last choice of a unique sequence
σuc. This defines all possible sequences except for the empty sequence∅.

Thesequence formof an extensive game is a strategic description similar to
the normal form, but where sequences replace pure strategies. The probabilities
for playing these sequences and the resulting payoffs are specified as follows.

For player 1, a nonnegative vectorx, called arealization plan, represents the
realization probabilities for the sequences of player 1 when he plays a mixed
strategy. These can be characterized by the equationsx(∅) = 1 and

−x(σu)+
∑
c∈Cu

x(σuc) = 0

for all information setsu of player 1, wherex(∅)andx(σuc) for all sequencesσuc
are the components ofx, andCu is the set of choices atu. (A realization plan
x satisfying these equations corresponds to thebehavior strategythat makes the
choicec at u with probability x(σuc)/x(σu) if the denominator of this term is
positive, and arbitrarily otherwise.) A realization plany for player 2 is charac-
terized analogously. We abbreviate these equations for the nonnegative vectors
x andy using theconstraint matrices EandF and right-hand sidese and f by

Ex = e and Fy = f. (2.1)

The first row of these matrix equations represents the realization probability one
for the empty sequence, soe and f are equal to the vector(1, 0, . . . ,0)T of
appropriate dimension. The other rows correspond to the information sets of the
respective player. A typical constraint matrix is

E =


1
−1 1 1

−1 1 1
−1 1 1 1

 (2.2)

for a player 1 with three information sets which have two, two, and three choices,
respectively, and where the first choice at the first information set precedes both
the second and third information set.
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The payoffs to player 1 and 2 are represented by matricesAandB, respectively.
Each row corresponds to a sequence of player 1, each column to a sequence of
player 2. Each leaf of the game tree defines a pair of sequences. Pairs of sequences
not defined by a leaf have matrix entry zero. For a pair of sequences defined by
a leaf, the player’s payoff is his payoff at the leaf if there are no chance moves.
If there are chance moves, a pair of sequences may correspond to more than
one leaf. The payoff entry is then the sum, over all leaves that define the given
pair of sequences, of the payoff at the respective leaf times the probability that
chance moves allow reaching it. The resulting payoff matricesAandB are sparse
and have a linear number of nonzero entries. For realization plansx andy, the
expected payoffs to player 1 and 2 are thenxT Ay andxT By, respectively.

Using these expected payoffs and the linear constraints (2.1), we can charac-
terize anequilibriumof the game as a solution to a certain LCP. An equilibrium
is a pairx, y of mutual best responses. In particular, if the realization plany is
fixed, thenx is a best response toy if and only if it is an optimal solution of the
linear program

maximize
x

xT (Ay)

subject to xT ET = eT ,

x ≥ 0 .

(2.3)

The dual LP to (2.3) has an unconstrained vectorp of variables and reads

minimize
p

eT p

subject to ET p ≥ Ay.
(2.4)

Feasible solutionsx, p of these two LPs are optimal if and only if the two
objective function values are equal, that is,xT (Ay) = eT p. By the constraints
in (2.3) this is equivalent toxT (Ay) = xT ET p or

xT (−Ay+ ET p) = 0. (2.5)

This condition is known as “complementary slackness” in linear programming.
It states that two nonnegative vectors are orthogonal, which means that they are
complementary in the sense that they cannot both have a positive component in
the same position.

In the same way,y is a best response tox if and only if it satisfies the constraints

Fy = f, y ≥ 0 (2.6)

and there exists a vectorq such that

FTq ≥ BT x (2.7)
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and

yT (−BT x + FTq) = 0. (2.8)

The expected payoff to player 2 isyT (BT x).
Thus, any equilibriumx, y is part of a solutionx, y, p,q to the constraints

in (2.3)–(2.8). These constraints define an LCP. An LCP in standard form is
specified by a pairb,M with a vectorb in Rn and ann×n matrix M (see Cottle
et al., 1992, p. 1). The problem is to findz ∈ Rn so that

z ≥ 0

b+ Mz ≥ 0 (2.9)

zT (b+ Mz) = 0.

In order to translate our LCP into this standard form, we introduce nonnegative
vectorsp′, p′′ andq′,q′′ of the same dimension as the unconstrained vectorsp
andq, respectively, and represent the latter byp = p′ − p′′ andq = q′ − q′′.
The nonnegative vectorz of LCP variables is thenz = (x, y, p′, p′′,q′,q′′)T .
Furthermore, we let

M =


−A ET −ET

−BT FT −FT

−E
E
−F

F

 and b =


0
0
e
−e

f
− f

.
(2.10)

Then,b+ Mz ≥ 0 is obviously equivalent to the constraints:ET p ≥ Ay as in
(2.4), (2.7), and (2.1). Finally, the complementarity conditionzT (b+Mz) = 0 in
(2.9) is equivalent to (2.5) and (2.8) since the remaining conditionsp′T (e−Ex) =
0 etc. are implied by (2.1). To this LCP, we will apply Lemke’s algorithm.

3. LEMKE’S ALGORITHM

Lemke (1965) described a complementary pivoting algorithm for finding a
solution to an LCP of the general form (2.9). We describe it briefly in this
section; for more detailed expositions see Murty (1988, pp. 63–84) and Cottle
et al. (1992, pp. 270–280 and 336–342).

For Lemke’s method, the system (2.9) is rewritten and generalized as follows.
Let I be then×n identity matrix andd be ann-vector with positive components
(for example,d = (1, . . . ,1)T ). Using an auxiliary variablez0, the termb+Mz
in (2.9) is replaced byb+ dz0 + Mz, which is denoted by then-vectorw. The
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problem generalizing (2.9) is that of findingw ≥ 0, z0 ≥ 0, andz≥ 0 so that

Iw − dz0− Mz= b (3.1)

andzTw = 0 hold. A solutionw, z0, z to this problem defines a solution to (2.9)
if and only if z0 = 0.

In (3.1), the vectorb is represented as a nonnegative linear combination
of certain columns of the matrix [I ,−d,−M ]. Like the simplex algorithm
for linear programming, Lemke’s algorithm traversesbasic solutions of this
system. These are nonnegative solutions where onlyn linearly independent
columns, calledbasic columns, of the matrix are linearly combined. The corre-
sponding coefficients aren basic variablesand represent thebasis, a subset of
{w1, . . . , wn, z0, z1, . . . , zn}. All nonbasic variables have value zero. The system
(3.1) is callednondegenerateif basic variables are always positive.

Basic solutions are changed by the followingpivoting operation. Then basic
columns of [I ,−d,−M ] define a nonsingularn × n submatrixB, so that the
vectorvB of basic variables isvB = B−1b. The algorithm chooses (see below)
some nonbasic variablevi asenteringvariable; leth denote the corresponding
matrix column. The algorithm then moves to a new basic solution wherevi is a
basic variable. It letsvi become positive and preserves the equation (3.1), that
is, B vB + h vi = b, or equivalently

vB = B−1b− B−1h vi . (3.2)

In the standard case, the entering columnB−1h has at least one positive compo-
nent. Then there is a maximum choice ofvi in (3.2) so thatvB stays nonnegative,
while some component of this vector becomes zero. This is made theleaving
variable. It leaves the basis and is replaced by the entering variablevi . That op-
eration is called apivotand is easily computed fromB−1b andB−1h. It requires
an update of the basis and ofB−1.

For 1≤ i ≤ n, the variableszi andwi are calledcomplementary. Lemke’s
algorithm computes withalmost complementarybasic solutions, where the basis
contains at most one variable of each complementary pairzi , wi for 1≤ i ≤ n,
and may also containz0. For an almost complementary basic solution,zTw =
0. (A nonbasic solutionw, z0, z to (3.1) with zTw = 0 is also called almost
complementary.) Ifz0 is nonbasic, then the LCP is solved. Ifz0 is one of then
basic variables, then there is a complementary pairzi , wi where both variables
are nonbasic, and either can be made an entering variable. This leads to the
following algorithm.

For initialization, letz= 0, sozTw = 0. If w = b+dz0 andz0 is sufficiently
large, thenw is nonnegative sinced > 0, and (3.1) is satisfied. The set of these
almost complementary solutions is called theprimary ray. Let z0 be minimal
such thatw = b+ dz0 ≥ 0. Unlessb ≥ 0 (in which case the LCP is solved
immediately),z0 is positive and some componentwi of w is zero. The resulting
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basis{w1, . . . , wi−1, wi+1 . . . , wn, z0} defines the initial almost complementary
basic solution to (3.1). Decreasingz0 from infinity until the endpoint of the
primary ray is reached wherewi becomes zero can be thought of as a pivot
wherez0 has entered and thenwi leaves the basis. Next, the complementzi of
the variablewi that has just left is chosen to enter the basis; this starts the main
loop of the algorithm.

In the main step of the algorithm, the entering variablevi is increased in (3.2)
until some basic variable becomes zero, which is made the leaving variable. Then,
a pivot is performed. If the leaving variable wasz0, then the LCP is solved. If the
leaving variable was notz0, choose itscomplementas the new entering variable
and repeat the step. (This is known as the “complementary” pivoting rule.)

This algorithm solves the LCP (2.9) except for two possible problems:ray
terminationanddegeneracy. Geometrically, the nonnegative solutions to (3.1)
define a polyhedron where the basic solutions represent vertices. Increasingvi

in (3.2) means moving along an edge to an adjacent vertex. In that way, the
algorithm traces a path consisting of almost complementary edges beginning
with the primary ray. Asecondary rayresults if the entering columnB−1h in
(3.2) has no positive component since thenvi can be increased indefinitely. (The
analogous phenomenon occurs with the simplex algorithm for an unbounded LP
objective function.) For certain LCPs, ray termination can be excluded, which
will be the case in our application.

The second problem iscycling, that is, an almost complementary basis is
repeated in the computation. In that case, the corresponding vertex on the com-
puted path is met by three or more almost complementary edges (two on the path
where the vertex appeared the first time, the third when it is encountered again).
At such a vertex, several edges can be followed, so that there must be a tie as
to which variable should leave the basis. Since only one of them can be chosen
to leave the basis, after pivoting the other will still be basic but have zero value.
This means (3.1) is degenerate. Thus, if we can eliminate degeneracy, the leaving
variable is unique, no basis is revisited, and the algorithm must terminate.

Degeneracy is avoided if the vectorb is slightly perturbed by replacing it by
b(ε) = b + (ε, . . . , εn)T , whereε is positive but very small. As in (3.2), the
value of the entering variablevi is then chosen to be the maximum subject to

B−1b+ B−1 · (ε, . . . , εn)T − B−1h vi ≥ 0. (3.3)

We will show that the increase ofvi is blocked (if at all) by a unique row
in (3.3): Consider any two rowsj and k of the inequalities (3.3) where the
componentscj andck, say, of the entering columnB−1h are positive (only such
rows matter). Denote thej th andkth row of [B−1b, B−1] by (aj 0,aj 1, . . . ,ajn)

and(ak0,ak1, . . . ,akn), respectively. The corresponding inequalities in (3.3) are

aj 0+ aj 1ε + aj 2ε
2+ · · · + ajnε

n − cj vi ≥ 0,

ak0+ ak1ε + ak2ε
2+ · · · + aknε

n − ck vi ≥ 0.
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It is easy to see that ifε is sufficiently small, then rowj blocks the increase
of vi earlier than rowk if and only if the row vector 1/cj · (aj 0,aj 1, . . . ,ajn) is
lexicographically smallerthan 1/ck · (ak0,ak1, . . . ,akn), that is, it is smaller in
the first component where the vectors differ; furthermore, these vectors are not
equal sinceB−1 is nonsingular. In that way, the leaving variable is uniquely de-
termined by a “lexico-minimum ratio test” (which is also known for the simplex
algorithm; see, for example, Chv´atal 1983, p. 36). Thereby,ε can be treated as
if it is “just vanishing” (that is, zero), so that the computed solutions are not
changed. Interpreted for the perturbed system, the lexicographic rule preserves
the invariant that all basic variables are positive (which implies nondegeneracy),
although some of them may be vanishingly small.

4. SOLVING THE LCP FOR THE SEQUENCE FORM

We will apply Lemke’s algorithm to the LCP derived from the sequence form.
In order to show that the algorithm terminates with a solution in this case, we must
show that it cannot terminate with a secondary ray. This latter possibility can be
excluded when the vector and matrix defining the LCP have certain properties;
such “matrix classes” have been widely researched in the literature on LCPs. In
our application, we use such a property stated in Theorem 4.4.13 by Cottleet al.
(1992, p. 277); this theorem is also implicit in earlier work by Lemke (1965)
and Cottle and Dantzig (1968). We state this result in Theorem 4.1 below. The
proof is not new, but we present it here in a single piece as a convenience to
the reader; in the literature, various LCP matrix classes, ray termination, and
degeneracy are often studied separately and with their own terminology that is
not necessary here. Furthermore, we have slightly generalized the theorem to
degenerateLCPs.

For a degenerate LCP, cycling is avoided by the lexicographic method. How-
ever, the mentioned Theorem 4.4.13 could, at first glance, fail because its proof
considers a basic solution (the endpoint of a secondary ray) wherez0 is a ba-
sic variable with positive value. In a degenerate problem,z0 may be zero, and
the conclusion of the theorem is invalid if degeneracy is ignored completely, as
Example 4.4.16 in Cottleet al. (1992, p. 279) shows. This poses no difficulty
since in a basic solution where the variablez0 is basic but zero, it can be chosen
to leave the basis (before invoking the lexicographic rule) and a solution to the
LCP is at hand. As a slight generalization of known results, we show that no
harm is done if the lexicographic rule is used alone; other than in this respect,
the following proof is not new.

THEOREM4.1. If (i) zT Mz ≥ 0 for all z ≥ 0, and (ii ) z ≥ 0, Mz ≥ 0 and
zT Mz = 0 imply zTb ≥ 0, then Lemke’s algorithm computes a solution of the
LCP (2.9)and does not terminate with a secondary ray.
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Proof. SupposeM andb satisfy (i) and (ii), and assume to the contrary that
Lemke’s algorithm terminates with a secondary ray. Let(w, z0, z) denote the
endpoint of the ray. This is a basic solution of (3.1), where the vectorvB of basic
variables includesz0 since it would otherwise solve the LCP. We assume first
thatz0 is positive.

Ray termination means that the entering columnB−1h in Eq. (3.2) is nonpos-
itive. The elements of the secondary ray result ifvi in that equation takes any
nonnegative value. They can be written as(w, z0, z)+λ(w̃, z̃0, z̃) for λ ≥ 0 (with
λ = vi ). The vector(w̃, z̃0, z̃) is nonnegative; its components are the components
of −B−1h, a one in the place of the entering variable, and zero otherwise.

Since the elements of the secondary ray are solutions to (3.1), this equation
for λ = 0 andλ = 1 implies

w̃ = dz̃0+ Mz̃. (4.1)

Furthermore, it is easy to see thatz̃ 6= 0 since the secondary ray is not the primary
ray (Cottleet al. 1992, p. 275). Because its elements are almost complementary,
one can infer

0= z̃T w̃ = z̃Tdz̃0+ z̃T Mz̃.

This equation has been stated by Lemke (1965, p. 687, Eq. (20) withz̃0 = u0,
z̃= u), and by Cottle and Dantzig (1968, p. 116, Eq. (37)). It impliesz̃0 = 0 since
z̃ is nonnegative and nonzero andd > 0, and since the last term is nonnegative
by assumption (i). Thus,̃zT Mz̃ = 0, and by (4.1),w̃ = Mz̃ ≥ 0. Assumption
(ii) therefore implies̃zTb ≥ 0. We derive a contradiction to this conclusion as
follows, where the inequality follows from (i):

0 = (z+ λz̃)T (w + λw̃)
= (z+ λz̃)T (b+ dz0+ M(z+ λz̃))

≥ (z+ λz̃)T (b+ dz0)

= zT (b+ dz0)+ λz̃T (b+ dz0).

The last term is nonpositive for allλ ≥ 0 only if z̃T (b+dz0) ≤ 0, or equivalently,
z̃Tb ≤ −z̃T (dz0) < 0, contradicting (ii).

Permitting degeneracy, let the endpoint(w, z0, z) of the secondary ray be such
thatz0 is a basic variable but has value zero. Because this basic solution has been
computed using lexicographic degeneracy resolution, there is a perturbation of
(3.1) whereb is replaced byb(ε) = b+ (ε, . . . , εn)T for some small positiveε,
and the same basis defines a (perturbed) solution that is nondegenerate so that
z0 is positive. For the perturbed system, there is still a secondary ray since the
nonpositive entering columnB−1h in (3.2) does not depend onb. With the
same argument as before, we can now concludez̃Tb(ε) < 0, which is again a
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contradiction to (ii) sincẽzTb(ε) = z̃Tb+z̃T (ε, . . . , εn)T > z̃Tb. This shows that
the theorem holds even if Lemke’s algorithm encounters degenerate solutions,
provided it uses the lexicographic method.

We apply this theorem to the LCP defined by (2.10) using the following two
lemmas, where the first is immediate from the structure of the constraint matrices,
as example (2.2) illustrates.

LEMMA 4.2. The only nonnegative solutions x and y to Ex= 0 and Fy= 0
are x= 0 and y= 0.

LEMMA 4.3. If ET p ≥ 0 and FTq ≥ 0 then eT p ≥ 0 and fTq ≥ 0.

Proof. Consider the following LP: maximize 0 subject toEx = e, x ≥ 0.
It is feasible, so the value 0 of its objective function is a lower bound for the
objective function of the dual LP: minimizeeT p subject toET p ≥ 0. Hence, if
ET p ≥ 0 theneT p ≥ 0. Similarly, FTq ≥ 0 implies f Tq ≥ 0.

THEOREM4.4. If A ≤ 0 and B ≤ 0, then M and b in(2.10) satisfy all
assumptions of Theorem4.1.

Proof. Let z = (x, y, p′, p′′,q′,q′′)T ≥ 0 andp = p′ − p′′, q = q′ − q′′

as above. ThenzT Mz = xT (−A− B)y ≥ 0, satisfying (i). For (ii),Mz ≥ 0
is equivalent to−Ay+ ET p ≥ 0,−BT x + FTq ≥ 0, Ex = 0 andFy = 0.
This implies, by Lemma 4.2,x = 0 andy = 0, and thereforeET p ≥ 0 and
FTq ≥ 0, so that by Lemma 4.3,eT p ≥ 0 and f Tq ≥ 0. We conclude that
zTb = bT z = eT p + f Tq ≥ 0. (Note that we did not use the assumption
zT Mz= 0.)

The conditionsA ≤ 0 andB ≤ 0 can be assumed without loss of generality,
by subtracting a constant from the payoffs to the players at the leaves of the
tree so that these become nonpositive. This transformation does not change the
game. The same assumption is made for the algorithm by Lemke and Howson
(1964). Without this condition, easy examples show that Lemke’s algorithm may
terminate with a secondary ray instead of an LCP solution.

5. CONCLUSIONS AND COMPARISON WITH RELATED WORK

We have shown that Lemke’s algorithm, applied to our LCP, terminates with
a solution. Since all solutions to the LCP are equilibria, this shows that our al-
gorithm finds some equilibrium of the game in extensive form. Our algorithm
can also be used to solve bimatrix (i.e., normal form) games. The game is rep-
resented as an extensive game in the standard way, where each player has only
one information set and his choices are his strategies. The sequence form of that
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game has essentially the same payoff matrices as the normal form. Clearly, there
is a direct correspondence between the equilibria in the two representations of
the game, so that our algorithm, applied to the sequence form, also constructs
an equilibrium for the bimatrix game. For such games, however, the algorithm
by Lemke and Howson (1964) also finds an equilibrium. It is known that certain
equilibria of bimatrix games may be “elusive” to the Lemke–Howson method
(Aggarwal, 1973). Since the two algorithms operate similarly, we conclude that
certain equilibria may be elusive to our method as well.

The size of the sequence form is linear in the size of the extensive game,
whereas the size of the normal form is generally exponential. Therefore, our
algorithm is exponentially faster than the standard Lemke–Howson method ap-
plied to the normal form. Our method also needs exponentially less space if the
entire normal form is stored. There are two other algorithms for solving two-
person extensive-form games that avoid the conversion to normal form and the
associated exponential blowup. These are based not on the idea of sequences,
but on the idea of mixed strategies with small supports. Thesupportof a mixed
strategy is the number of pure strategies to which it gives positive probability.

Wilson (1972) presented a variant of the Lemke–Howson algorithm for solving
a two-player game with perfect recall that uses the extensive form directly. There
are two important differences between Wilson’s variant and the original Lemke–
Howson algorithm. First, Wilson’s method never deals with the entire LCP.
Rather, it generates pivoting columns for the Lemke–Howson algorithm directly
from the game tree. These columns are best-response pure strategies, and can be
found by backward induction, using the perfect recall structure of the information
sets. This leaves the problem of storing an intermediate solution during the search
for an equilibrium, which still requires exponential space in the size of the game
tree. In order to avoid this problem, Wilson’s algorithm only maintains a subset
of the basic variables at each point, namely those variables corresponding to
mixed-strategy probabilities. The basic variables corresponding to the “slack
variables” are not stored explicitly, but are recomputed as needed.

Wilson did not prove formally why his algorithm should provide significant
savings. He just observed empirically that “the frequency of equilibria using
only a very few of the available pure strategies is very high.” Koller and Megiddo
(1996) proved that Wilson’s approach (or a slight variant of it) is efficient because
it suffices to consider mixed strategies with small support. They showed that
two mixed strategies with the same realization probabilities for the leaves are
realization equivalent. This implies that any mixed strategy has a realization
equivalent mixed strategy whose support is at most the number of possible
sequences (and is hence linear in the size of the game tree). In addition to
showing that Wilson’s empirical observation was justified, Koller and Megiddo
constructed an algorithm for finding all equilibria of an extensive two-person
game that runs in exponential time in the size of the game tree (andnot in the
large size of the normal form). Their algorithm enumerates all small supports for
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both of the players, and attempts to construct an equilibrium over that support
pair. Unlike Wilson’s algorithm and the method presented here, their algorithm
constructs all equilibria, and works in exponential time even if the game has
imperfect recall. However, since it is based on complete enumeration, its running
time is exponential in all cases, not just in the worst case.

The sequence form can also be used in an algorithm that enumerates all equi-
libria. It can be shown that all equilibria of a game can be found by enumerating
the complementary basic solutions to (3.1) (wherez0 = 0). Thereby, each of the
2n sets of variables containing one variable of each complementary pairzi , wi

for 1 ≤ i ≤ n is tested for being a nonnegative basic solution to (3.1). If this is
the case, it solves the LCP (2.9). Mangasarian (1964) showed that in the case of
bimatrix games this suffices to derive all equilibria. It is possible to show that
the same argument applies also to the LCP defined by the sequence form.

The running time of our algorithm is also at worst exponential in the size of the
extensive game (this is known for Lemke’s algorithm even if applied to zero-sum
games). However, this seems to be a rare case, like the exponential worst-case
behavior of the simplex algorithm. In practice, it is likely that our method, like
the simplex method, will be much faster. The complexity of constructing some
equilibrium of a bimatrix game is currently unknown; this is a difficult open
question (Papadimitriou, 1994). Related problems, such as finding an equilibrium
with maximum payoff for a player, were shown to be NP-hard by Gilboa and
Zemel (1989). The problems they discussed can be solved by a process that
enumerates all equilibria.

As a topic for further research, it may be interesting to study further the com-
putation by Lemke’s algorithm in terms of the extensive game. Wilson (1972)
interpreted the entering columns in the Lemke–Howson algorithm as best re-
sponses against the current pair of mixed strategies. In the case of the sequence
form, the components ofp andq in (2.4) and (2.7) can be interpreted as payoff
contributions of optimal choices at information sets (von Stengel 1996, Sec-
tion 6). It is therefore quite possible that, as in Wilson’s algorithm, the entering
columns can be interpreted as choices at information sets that are best responses
against the current pair of realization plans. This might allow us to use the se-
quence form to construct equilibria satisfying certain local optimality conditions,
such as subgame perfection.
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