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This article gives an introductory survey of non-cooperative game theory.  Its central concepts 
are illustrated by means of examples, often with reference to economic and business situations 
in information and communication technology. Game theory provides a number of insights. 
Selfish behavior  may lead to inferior  outcomes for all  players,  because a more cooperative 
solution is not stable with respect to individual changes in behavior. The concept of equilibrium 
captures this stability. Game trees represent dynamic interactions, as illustrated with an example 
of market entry and entry deterrence. A game may have more than one equilibrium, which is 
important to note when predicting the outcome of an interaction. Different technologies may be 
adapted as equilibrium solutions due to the number of users already using a technology, as 
shown with the “bandwidth choice game”.  The rules of the game matter, for example when 
introducing commitment power in the “quality game”.  Players may have different information 
about scenarios, and it may be optimal to hide that information from an opponent by actively 
randomizing one's actions.  In network routing, selfish behavior may lead to congestion, which 
can even become worse when increasing network capacity. These concepts and examples show 
the versatility of game theory for analyzing the dynamics of markets and the interactions of 
cooperating and competing participants.

1. What is game theory?

Game theory provides mathematical tools for modeling and analyzing interactive decisions. It 
considers  players that represent decision-making firms or persons, and their possible  actions, 
and models their incentives by payoffs that the players want to maximize. If needed, possible 
scenarios can be represented as “states of nature”. The players may have different information 
about that state and about the actions taken by the other players.

A  game defines how the interaction results in payoffs. The game can have various levels of 
abstraction.  Game  trees and  other  dynamic  games  show sequential  moves  of  players.  The 
strategic form is a table where players' strategies are simply listed and not detailed as in the 
dynamic setting. At the most abstract level,  cooperative games show only the outcomes that 
coalitions of many players can achieve, without detailing how these coalitions are formed. 

We will describe how some economic situations are analyzed by games in strategic form and by 
game trees. These are the basic tools of  non-cooperative game theory, which has become the 
language of modern economic theory. Its basic tenet is that players will cooperate (if they do) 
out of self-interest, and that their incentives to do so have to be explicitly described. 

Given a game in some description, the game-theoretic analysis proposes a solution that suggests 
how players should behave, in their own interest. Such solutions may be compelling to varying 
degrees.  Sometimes a player's action may be  dominant in the sense that it  gives her a best 
possible payoff irrespective of what the other players do. However, as the famous  Prisoner's  
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Dilemma demonstrates, even a dominant solution may be worse than a more cooperative but 
unstable outcome.

Not all games admit a dominant solution. A solution that always exists is an equilibrium (where 
we here mean  Nash equilibrium), which recommends a plan of action to every player that is 
optimal if all other players follow their recommendations. Unfortunately, there may be more 
than one equilibrium, which reduces the use of this concept as a recommendation.

However,  inferior  dominant  solutions  that  result  from  selfish  behavior,  or  equilibrium 
predictions that are not unique, are one of the insights provided by game theory, which we will 
elucidate in the following sections. 

2. Explaining selfish behavior

Figure 1 shows a table that represents a two-player price-setting “duopoly” game in strategic 
form. Two firms can sell  their  competing products at  a  high or  low price.  Firm 1 (in  red) 
chooses a row and, at the same time, firm 2 (in blue) chooses a column of the table as an action. 
The resulting cell gives two payoffs in the respective colors to the two players. The payoffs are 
staggered (in each cell, in the lower left corner for firm 1, in the upper right corner for firm 2) so 
that each player's  payoff matrix (red or blue) is more easily seen when looking at the entire 
table.

Figure 1. Strategic-form price-setting game with dominant solution (low, low).

The best possible pair of actions to the two firms seems clearly that both charge a high price. 
However, if firm 2 charges a high price, then firm 1 can increase her payoff from 2 to 3 by  
playing low rather than high, and if firm 2 charges a low price, then firm 1 can increase in the 
same way her payoff from 0 to 1. Hence, low is a dominant action for firm 1 because it gives 
her a higher payoff for each possible action of firm 2. The same applies when the roles of the 
players are exchanged because the game is symmetric. So both players choose  low, and get 
payoff 1 each. This is smaller than the payoff 2 they would get if both chose high, but that pair 
of actions is not “stable”.

The game in Figure 1 is the well-known “Prisoner’s Dilemma” game (whose name derives from 
a different story, see, for example,  Osborne 2004). In the context  of a duopoly,  the pair  of 
dominant actions that hurts the players has the positive side effect of low prices for the firms’ 
customers. In other situations where this type of game applies, the resulting selfish behavior 
may hurt all, typically in problems of “free-riding” or the “tragedy of the commons” such as 
fish stocks that are depleted by overfishing – which may be individually rational. The game-
theoretic analysis explains this behavior, and illustrates the necessity of regulations that enforce 
the “cooperative” outcome. 
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3. Thinking strategically

Our next  example illustrates  the use of  game trees.  It  shows how game theory might  have 
helped the printer company Epson when it entered the market for laser printers (the example is 
inspired by Dixit and Nalebuff, 1991; the actual game we consider is different). In the 1980s, 
the market for office laser printers was dominated by Hewlett-Packard (HP) who sold them with 
a high profit margin. Epson was the market leader for the cheaper and lower-quality dot-matrix 
printers.  Epson  decided  to  develop  a  laser  printer,  assuming  it  could  enter  that  market 
profitably. However, Epson did apparently not take into account that HP was another  player 
who would react. HP lowered its prices and a price war resulted. After that, apart from lower 
profits and lower market share for Epson than expected, laser printers had become so cheap that 
much fewer people now bought dot-matrix printers – in effect, Epson had destroyed its own 
market. 

Figure 2. Game tree modeling entry of player 1 into a market with incumbent player 2.

The game tree in Figure 2 reflects one possible view of the game between player 1 (Epson) as 
market entrant and player 2 (HP) as incumbent. In a game tree, play progresses sequentially by 
players making  moves at  decision nodes, until a  terminal node is reached where each player 
receives a payoff. Here the game starts at the first node (at the top, the tree grows downwards) 
with a move of player 1. Player 1's first move is either to stay out of the market, or to enter it. If 
player 1 stays out, play ends with payoff 0 to player 1 and payoff 5 to player 2 (in some units, 
for example profits in ten million dollars). If player 1 chooses to enter the market, then player 2 
may react by choosing to  keep prices or to  lower prices. After keeping prices, the game ends 
with payoff 2 to player 1 and payoff 3 to player 2. If player 2 chooses to lower prices, player 1 
has another move and may decide to back out from the market, getting negative payoff -2 and 
player 2 a payoff of 4 (although player 2 has regained the market, profits are now lower). Player 
1 may also decide to  fight a price war, resulting into payoff -1 for player 1 and payoff 1 for 
player 2. 

One  way  to  analyze  a  game  tree  like  in  Figure  2  is  by  a  roll-back  analysis (also  called 
“backward induction”), which essentially means thinking ahead about what players will do. In 
that  analysis,  the most advanced move one has to consider is  when player 1 has to choose 
between back out and fight, where she will prefer fight because the resulting payoff -1 is less 
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negative than -2. Anticipating that move, player 2 would get payoff 1 when choosing to lower 
prices, versus getting payoff 3 when keeping prices, so his best action is to keep prices. In turn, 
the best move at the beginning for player 1 is then to enter the market because she will get 2 
rather than 0 when staying out. 

If players play according to the roll-back analysis, then player 1 will enter the market and player 
2 will keep prices and the game terminates with payoffs 2 and 3 for the two players. However, 
the result of the roll-back analysis is more than just a prediction of the path that a play of the 
game will take, because it also gives a strategy for each player. The term “strategy” for a game 
tree has a precise technical meaning, which agrees with the intuitive understanding of “being 
prepared for every eventuality”. In a game tree, a strategy is a complete plan of action that 
specifies a move for every decision node that a player can reach. Here player 2 has only one 
decision node, so his strategies are just his two moves, keep prices and lower prices. Player 1 
has two decision nodes, and the result from the roll-back analysis  is his move combination 
enter-fight, that is, to enter the market and then, also, to be prepared to fight a price war in case 
player 2 decides to lower prices.

The roll-back analysis specifies a strategy to each player. It can be shown that these strategies 
always define an equilibrium, which means that each player's strategy is optimal for that player, 
given that the other player or players adhere to their strategies. Why is the strategy pair (enter-
fight,  keep prices) an equilibrium in the game tree in Figure 2? For player 1,  enter-fight is 
optimal because her payoff of 2, given that player 2 keeps prices, can only change to 0 with stay 
out, or stays the same when changing to the strategy enter-back out, so player 1 cannot improve 
her payoff. For player 2, given that player 1 chose  enter-fight, his strategy  keep prices gives 
him payoff 3 whereas changing to lower prices would give him a payoff of 1 which is worse. 
Note that the anticipated move of player 1 to fight will not take effect, but is needed to assert 
that player 2 plays optimally. This is why strategies, that is, complete plans of moves are needed 
to specify an equilibrium, not just those moves that lead to a particular terminal node of the 
game tree. 

When Epson entered the market for laser printers, the above prediction of the roll-back analysis 
that HP would keep its prices did not happen, but instead the players wound up at the strategy 
pair (enter-fight, lower prices) with payoff -1 for player 1 and payoff 1 for player 2. What went 
wrong? Did Epson not think strategically at all (assuming that HP would just keep its prices), or 
miscalculate the best response of HP, and was HP responding irrationally? We will show that 
our game-theoretic model, assuming it is correct, gives one possible explanation because the 
game has another equilibrium which is not predicted by the roll-back analysis.
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Figure 3. Strategic form of the market-entry game tree in Figure 2.

In order to identify all equilibria of a game tree, it is converted to strategic form. The strategic 
form tabulates  the  players'  strategies  and  the  resulting  payoffs  when these  strategies  meet. 
Figure 3 shows the strategic form for the game tree in Figure 2. There are six cells in that table, 
some of which list the same payoff pair because the game tree has only four terminal nodes. The 
first row is the strategy stay out of player 1 (in fact, there is no need to combine that move of 
player 1 with the later moves back out or fight because player 1 will not reach that stage due to 
her own first move stay out, so this suffices as a plan of action). Both cells in that row give the 
payoffs that result after stay out, namely 0 and 5 to the two players; note that the columns keep 
prices and lower prices do not have an effect in that first row. The second and third row are the 
two strategies  enter-back out and  enter-fight, and both cells in the left column (keep prices) 
have the same payoffs 2 and 3 to the two players. The remaining two cells in the right column 
(lower prices) give the payoffs from the last two nodes in the game tree.

Given the strategic form, an equilibrium is easily found by finding for each row and column the 
other  player's  optimal  strategy  (or  best  response)  and  checking  the  cells  where  these  best 
responses coincide.  In addition to  the cell  (enter-fight,  keep prices)  found by the roll-back 
analysis, there is another such cell: (stay out, lower prices). The reason is that lower prices is a 
best response to  stay out (player 2 is no worse off than when choosing to  keep prices), and 
conversely player 1 gets the best possible payoff (0, rather than -1 or -2) by choosing to  stay 
out. 

This second equilibrium (stay out,  lower prices) is known as  entry deterrence in the “Chain 
Store paradox” (Selten,  1978).  Player  2  threatens a  move that  is  self-hurting if  it  where to 
implemented, because player 2 would be better off to keep rather than lower prices if player 1 
entered the market. However, given the threat that player 2 executes his move to lower prices, 
player 1 will not enter the market, and so the threat does not result in a lower payoff and is 
therefore a best response. 

The game in Figures 2 and 3 has more than one equilibrium, and if the players do not have the 
same view on which equilibrium should be played, their strategies might fail to match, as when 
player 1 chooses enter-fight and player 2 chooses to lower prices. This is one possible view of 
why Epson and HP did not  play  equilibrium.  In practice,  the  game tree  is  of  course  very 
simplified. Even if Epson and HP planned their moves that way, HP might have had a different 
view on Epson's cost for fighting a price war, for example a more negative payoff (like -3) after 
fight and thus expected that Epson would choose to back out. In order to be successful, a game-
theoretic analysis in management consulting must be sufficiently flexible and robust, by testing 
various scenarios, rather than considering a single detailed model (Lindstädt and Müller, 2010).

4. Equilibrium selection by evolution

We  give  another  example  of  a  game  (from  Turocy  and  von  Stengel,  2002)  that  has  two 
equilibria, and where either equilibrium may be selected via a dynamical process according to 
an evolutionary interpretation (Maynard Smith, 1982; Sandholm, 2010).
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Figure 4. Bandwidth choice game with two equilibria, (high, high) and (low, low).

Two  firms  want  to  invest  in  communication  infrastructure.  They  intend  to  communicate 
frequently with each other using that infrastructure, but they decide independently on what to 
buy.  Each  firm  can  decide  between  high or  low bandwidth  equipment.  A  low bandwidth 
connection works equally well (payoff 1) regardless of whether the other side has high or low 
bandwidth. However, changing from low to  high is preferable only if the other side has high 
bandwidth (payoff 5), otherwise it incurs unnecessary cost (payoff 0). 

The game is shown in Figure 4 and has the two equilibria (high,  high) and (low,  low). The 
strategy  low has the better  worst-case payoff, as considered for all possible strategies of the 
other player, no matter if these strategies are best responses or not. The strategy low is therefore 
also called a max-min strategy. In a sense, investing only in low bandwidth equipment is a safe 
choice.  Moreover, this strategy is part  of an equilibrium, and entirely justified if  the player 
expects the other player to do the same. 

The bandwidth choice game in Figure 4 can be given a different interpretation where it applies 
to a large population of individuals, each of which can adopt one of the two strategies. The 
game  describes  the  payoffs  that  result  when  two  of  these  individuals  meet  randomly.  The 
dynamics of this game depends on the fraction of individuals adopting the respective strategies. 
Given  this  distribution  of  strategies,  individuals  with  better  average  payoff  will  be  more 
successful than others, so that their proportion in the population increases over time. In this 
game, if more than 1/5 of all individuals play the strategy high, then high will get an average 
payoff of more than 1 and be more successful than low, so that the fraction of individuals that 
play  high increases and eventually  the equilibrium (high,  high)  will  result  where everyone 
plays high. If the fraction for high is less than 1/5, then low will become ever more successful 
and  eventually  everyone  will  play  low.  This  typical  network  effect shows  how  starting  
conditions can influence whether a desirable or undesirable equilibrium gets established. 

Evolutionary games, not discussed here, can also demonstrate that an initially small fraction of 
players adopting a superior strategy can rapidly invade an existing population. A modern book 
on evolutionary game theory is Sandholm (2010). 

5. Rules of the game and commitment power

The rules  of  the game matter,  as changing the rules  for the  quality  game in  Figure 5 will 
demonstrate.  The two non-symmetric players are a service provider (player 1) and potential 
customer (player 2). The provider can decide between two levels of quality of service, high or 
low. High-quality service is more costly to provide, and some of the cost is independent of 
whether the contract is signed or not. The level of service cannot be put verifiably into the 
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contract. High-quality service is more valuable than low-quality service to the customer, in fact 
so much so that the customer would prefer not to buy the service if she knew that the quality 
was low. Her choices are: buy or don’t buy the service.

Figure 5. The quality game.

This game can be solved by iterated dominance, not unlike the price-setting game in Figure 1. 
For each choice of player 2, player 1 prefers low to high, so low is his dominant strategy, and 
high is never played in an equilibrium. Given that player 2 knows this, she will only react to 
low and choose don't buy as her best response. The resulting payoff 1 for each player is worse 
than payoff 2 for the strategy pair (high, buy), which is, however, not stable.

Figure 6. Changed quality game where player 1 can commit to his strategy..

Suppose this game can be  changed so that player 1 moves first and can credibly  commit to 
providing high (or low) quality service. Then player 2 can react and choose a different move in 
response, as displayed in the game tree in Figure 6. Roll-back analysis then shows that player 2 
will buy after player 1 chooses high (with payoff 2 to both players), and don't buy after player 1 
chooses low (with payoff 1 to both players), so player 1 chooses high at the first stage – which 
is the desired outcome. 

Here, the game has been changed by introducing commitment power for player 1. This change is 
beneficial for both players. This is not so in bargaining, where a player who can make a “take it 
or leave it” offer has all the power, as described in the “ultimatum game” (see, for example,  
Osborne, 2004). More refined models of bargaining (Rubinstein, 1982; Binmore, Rubinstein, 
and Wolinsky, 1986) describe rounds of alternating offers. Roll-back analysis for this model 
shows that a player who is more  patient (in the sense of paying a lower “interest  rate” for 
waiting) has greater bargaining power in the sense of getting a larger share of the object under 
negotiation. 
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Because the rules of the game matter  so much for what can be achieved,  a  game-theoretic 
analysis often shows the value of changing the game. Brandenburger and Nalebuff (1996) have 
coined the term co-opetition to achieve an improvement for all players in business settings, with 
the help of game theory.

The spectacular success of game theory in defining the rules of the game has been demonstrated 
in  auction design (Milgrom, 2004). In Britain, the 2000 sale of 3G spectrum licenses raised 
billions of pounds (about 2.5 percent of GDP). The auction was designed by game theorists, 
who  also  found  it  crucial  to  test  their  behavioral  predictions  by  laboratory  experiments 
(Binmore and Klemperer, 2002). 

6. Getting and hiding information

Game theory also provides tools to describe and analyze different information that players have, 
which often determines their behavior. In settings without perfect information, especially when 
there are conflicting incentives, optimal play may prescribe some  unpredictability in order to 
leave the opponent in the dark. This is known as a mixed strategy where a player chooses his 
action randomly. 

In Figure 7, different  scenarios are represented by a  chance move at the first stage. A small 
technology startup company (player 2) has just developed a new product. The market leader 
(player 1) is also known to have worked on such a product, but it is only known to him if the 
product can be credibly announced as coming to the market soon (in which player 1 is in a 
strong position),  or not  (player  1 being  weak).  To the outsider,  these two scenarios where 
player 1 is either weak or strong have equal probability 1/2. When player is in a weak position, 
he can decide to quit the competition, with payoff 0 to him and payoff 16 to player 2. He can 
also decide to “bluff” and announce that he has a competing product that is coming to market 
soon, which he would do anyhow if he has such a product and is therefore in a strong position.

Figure 7. Imperfect-information game between a market leader (player 1) and startup company 
(player 2).

Player 2 does not know whether player 1 is weak or strong after getting the announcement. In 
Figure 7, the two decision nodes of player 2 are in an  information set, indicated by the oval 
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around the two nodes, which means that player 2 knows he is in one of the two nodes but not 
which one, and has to make the same move in both situations. The startup can either sell to the 
big company, who will then take over the product, or stay, in the hope that player 1 is in fact 
weak. The two moves sell and stay have different payoffs to player 2 (and opposite payoffs to 
player 1) depending on whether player 1 is strong or weak.

Figure 8. Strategic form of the game in Figure 7. Equilibrium requires randomized strategies.

The strategic form of this game is shown in Figure 8. The numbers in the cells are  expected  
payoffs calculated from the chance probabilities and the terminal payoffs resulting from the two 
strategies for that cell.  For example,  the combination of  quit and  sell gives payoff 1/2×0 + 
1/2×12 = 6 for player 1, and 1/2×16 + 1/2×4 = 10 for player 2.

Interestingly, no cell in this game is an equilibrium, because the best responses are circular.  If 
player 1 chooses quit, then player 2 knows that an announcement comes only from player 1 in 
strong position and prefers to sell. Against  sell, the best response for player 1 is to announce 
even in the weak position. If player 1 does that, however, then player 2 knows that player is 
bluffing half of the time, where on average it is better to stay, but then player 1 would prefer to 
quit in response.

Optimal play in this game is the following randomized behavior of the players (for details see 
Turocy and von Stengel, 2002). Player 1 chooses quit and announce exactly half of the time, so 
that  player  1  will  get  expected  payoff  7  for  either  sell or  stay.  Because  player  2  is  now 
indifferent between his two actions, he can also randomize as a best response, and will choose 
sell with probability 1/4 and stay with probability 3/4. Only then player 1 will get 9 for either 
quit or announce, so that his randomization is also a best response.

In summary, conflicting moves with lack of information may require randomized actions. These 
randomized actions preserve the lack of information which is necessary for randomization to be 
optimal, and thus for obtaining an equilibrium. The probabilities used in randomized actions can 
sometimes also be seen as fractions of a large population adopting the chosen actions, as already 
discussed for the bandwidth choice game in Figure 4.

7. Selfish routing in networks

Network routing games are another class of games with a large number of individuals,  and 
where one studies which fractions  of these individuals  are  choosing particular  actions.  The 
actions are here routes in a transport or communication network. With the decentralized nature 
of the internet and its protocols, packet routing can indeed be considered as a such game (Akella 
et al., 2002).
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The network is specified by points and links connecting them, a certain amount of flow that has 
to be routed between given source and destination points, and delay functions that describe the 
delay for each link depending on how much flow is routed through that link. Individuals always 
seek  the  route  with  shortest  delay  until  they  cannot  do  better  and  an  equilibrium  results 
(Wardrop 1952). In the internet, routing algorithms also choose or predict the best route without 
central coordination.

Figure 9. Pigou's network routing game with two links and flow 1 to be routed from A to B.

A game-theoretic analysis shows that the equilibrium flow resulting from this “selfish routing” 
(roughly corresponding to “best effort” in internet  parlance) is typically worse than optimal 
flow if  network traffic was centrally managed. The simplest  example,  due to the economist 
Pigou, is shown in Figure 9. Points A and B are connected by two links, and a flow of 1 is to be  
routed from A to B. If the top link (in red) takes flow x, then users of that link experience delay 
x. The remaining flow 1-x through the bottom link (in green) has constant delay 1 independent 
of the flow. Optimal flow, which has the smallest average delay, results for x = 1/2 were users 
of the top link have delay 1/2, and those on the bottom link have delay 1, so that the average 
delay is 1/2×1/2 + 1/2×1 = 3/4. However, this flow is not in equilibrium: all users on the bottom 
link would switch to the top link which has less delay as long as x<1, so the unique equilibrium 
flow  has  x=1  with  everyone  experiencing  delay  1,  which  is  a  third  larger  than  3/4. 
(Roughgarden  and  Tardos,  2002,  have  shown that  this  is  the  worst  possible  ratio  between 
equilibrium and optimal flow in any network where delay functions are linear.)

Figure 10. Network with flow 1 to be routed from A to B where selfish routing is optimal.

Equilibrium flow due to selfish routing and optimal managed flow can be the same. Figure 10 
shows a network with two routes from A to B, where the total flow 1 is split into x and 1-x. The  
top and bottom route have delays x+1 and 2-x. Equilibrium results when these are equal, for 
x=1/2, which is also the optimal flow.
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Figure  11  shows  the  same  network  as  Figure  10,  except  that  its  capacity  is  increased  by 
introducing a zero-delay link (in blue) between C and D, which now takes flow z away from x 
at point C. In effect, these are now two Pigou networks as in Figure 9 put in sequence. The first  
Pigou-style network has two routes from A to D, the top route via C of delay x, and the bottom 
green link of delay 1. A second Pigou network connects C to B via two routes, the top green 
link from C to B of delay 1, and the bottom link from C via D to B where the only delay is 
along the red link whose delay is exactly the flow through that link. Now the only equilibrium 
flow is given by x=1 and z=1 where all individuals take the shortcut through the new blue link. 
As in Pigou’s network, they fully congest the red links and do not use the green links any more. 
The average delay has increased from 1.5 to 2.

Figure 11. The network from Figure 10 with an extra link of zero delay. Network capacity 
increases but delay of equilibrium flow worsens (Braess’s paradox).

The comparison between the networks in Figures 10 and 11 is interesting because it shows that 
increasing network capacity can create worse congestion in a routing equilibrium, which is 
known as Braess's paradox (Braess 1969).

In traffic networks, it is usually assumed that there is a certain traffic to be routed, and network 
capacity  should be found to meet that demand. Braess's paradox shows that increasing link 
capacity  should  not  be  done  blindly  but  in  concert  with  equilibrium  considerations.  In 
communication networks like the internet, new network capacity creates new demand which is 
often vastly larger than before. It is an interesting research question to analyze such an increase 
in demand, and possible effects on congestion, with the help of game theory. 

8. Summary

Game theory is a tool for modeling and analyzing interactive decisions. It can be applied to 
situations with a small number of players, or to population dynamics with a large number of 
similar players. It is also very suitable to model competitive dynamics of markets. In business 
decisions, game theory enhances the ability to think ahead and to consider the perspective of 
one's  opponent.  A  game-theoretic  analysis  demonstrates  the  importance  of  individual 
incentives, which can lead to unexpected global behavior, of the information that players have, 
and of the rules of the game. The solutions offered by game theory, in particular the central 
concept  of  equilibrium,  are  not  always unique,  and this  can be an important  insight  of the 
analysis.  The  internet  with  its  selfish  users  and  ever-growing  economic  importance  is  a 
particular rich domain for game-theoretic studies.
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