
Optimal Projective Algorithms
for the List Update Problem

Christoph Ambühl1, Bernd Gärtner1, and Bernhard von Stengel2

1 Institute for Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland.
{ambuehl, gaertner}@inf.ethz.ch

2 Mathematics Department, London School of Economics, London WC2A 2AE,
United Kingdom

stengel@maths.lse.ac.uk

Abstract. The list update problem is a classical online problem, with an optimal
competitive ratio that is still open, somewhere between 1.5 and 1.6. An algorithm
with competitive ratio 1.6, the smallest known to date, is COMB, a randomized
combination of BIT and TIMESTAMP. This and many other known algorithms,
like MTF, are projective in the sense that they can be defined by only looking
at any pair of list items at a time. Projectivity simplifies both the description of
the algorithm and its analysis, and so far seems to be the only way to define a
good online algorithm for lists of arbitrary length. In this paper we characterize all
projective list update algorithms and show their competitive ratio is never smaller
than 1.6. Therefore, COMB is a best possible projective algorithm, and any better
algorithm, if it exists, would need a non-projective approach.

1 Introduction

The list update problem is a classical online problem in the area of self-organizing data
structures [4]. Requests to items in an unsorted linear list must be served by accessing
the requested item. We assume the partial cost model where accessing the ith item in
the list incurs a cost of i − 1 units. This is simpler to analyze than the original full cost
model [12] where that cost is i. The goal is to keep access costs small by rearranging
the items in the list. After an item has been requested, it may be moved free of charge
closer to the front of the list. This is called a free exchange. Any other exchange of two
consecutive items in the list incurs cost one and is called a paid exchange.

An online algorithm must serve the sequence σ of requests one item at a time, without
knowledge of future requests. An optimum offline algorithm knows the entire sequence σ
in advance and can serve it with minimum cost OFF(σ). If the online algorithm serves
σ with cost ON(σ), then it is called c-competitive if for a suitable constant b

ON(σ) ≤ c · OFF(σ) + b

for all request sequences σ. The competitive ratio c in this inequality is the standard
yardstick for measuring the performance of the online algorithm. The well-known move-
to-front rule MTF, for example, which moves each item to the front of the list after it has
been requested, is 2-competitive [12,13]. This is also the best possible competitiveness

U. Montanari et al. (Eds.): ICALP 2000, LNCS 1853, pp. 305–316, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

306 C. Ambühl, B. Gärtner, and B. von Stengel

for any deterministic online algorithm for the list update problem [12]. Another deter-
ministic algorithm that is also 2-competitive is TIMESTAMP due to Albers [1], which
moves the requested item x in front of all items which have been requested at most once
since the last request to x.

Randomized algorithms can perform better on average, as first shown by Irani [10,11].
Such an algorithm is called c-competitive if

E
[
ON(σ)

] ≤ c · OFF(σ) + b,

where the expectation is taken over the randomized choices of the online algorithm.
Randomization is useful only against the oblivious adversary [6] that generates request
sequences without observing the randomized choices of the online algorithm. If the
adversary can observe those choices, it can generate requests as if the algorithm was
deterministic, which is then at best 2-competitive. We therefore consider only the inter-
esting situation of the oblivious adversary.

In this case, lower bounds for the competitive ratio are harder to find; the first non-
trivial bounds are due to Karp and Raghavan, see the remark in [12]. A general technique
is Yao’s theorem [15]: If there is a probability distribution on request sequences so that
the resulting expected competitive ratio for any deterministic online algorithm is d or
higher, then every deterministic or randomized online algorithm has competitive ratio d
or higher [9]. In the partial cost model, a lower bound of 1.5 is easy to find as only two
items are needed. Teia [14] generalized this idea to prove the same bound in the full
cost model, where long lists are needed. Ambühl, Gärtner and von Stengel [5] showed
a lower bound of 1.50084 for lists with five items in the partial cost model, using game
trees and a modification of Teia’s approach. The optimal competitive ratio for the list
update problem (in the partial cost model) is therefore between 1.50084 and 1.6, but the
true value is as yet unknown.

The upper bound of 1.6 is the last link so far in a chain of results, starting with the
observation that MTF acts too eagerly in moving items to the front. The better algorithms
BIT, COUNTER, and RANDOM RESET move the requested item to the front or leave
it at its position, depending on the number of previous requests to the currently requested
item. The elegant BIT algorithm stores a data bit—initially set to a random value—with
each item. The bit is flipped at each request, and the item is moved to the front of the list
when the bit has been set to one. BIT is 1.75-competitive. The related RANDOM RESET
algorithm has competitive ratio

√
3, about 1.73. This ratio is improved to the Golden

Ratio (1 +
√

5)/2, about 1.62, by treating each item with a randomized combination of
TIMESTAMP and MTF [1].

The best randomized list update algorithm known to date is the 1.6-competitive
algorithm COMB [2]. It serves the request sequence with probability 4/5 using BIT
[12]. With probability 1/5, COMB treats the request sequence using TIMESTAMP.

With the exception of Irani’s algorithm SPLIT [10,11], all the specific list update
algorithms mentioned above are projective, meaning that the relative order of any two
items in the list only depends on previous requests to those items. (A simple example for
a non-projective algorithm is TRANSPOSE, which moves the requested item just one
position further to the front.) The main result of this paper is a proof that, surprisingly,
1.6 is the best possible competitive ratio attainable by a projective algorithm. As a tool,

Optimal Projective Algorithms for the List Update Problem 307

we develop an explicit characterization of deterministic projective algorithms in terms
of two functions for every item, responsible for the “macro”- and the “micro”-behavior
of the item.

This result is significant in several respects. First, it puts an end to the search for
improved algorithms via combinations of existing projective ones. This approach has
been used successfully in the past, as the results mentioned above indicate, but it has
reached its limits with the development of the COMB algorithm. New and better algo-
rithms (if they exist) have to be non-projective, and must derive from new, yet to be
discovered, design principles. Second, the characterization of projective algorithms is a
step forward in understanding the structural properties of list update algorithms. Under
this characterization, the largest and so far most significant class of algorithms appears
in a new, unified way. Third, our lower bound construction gives rise to an explicit test
scenario for new algorithms: we construct a set of request sequences with the property
that a randomly chosen instance from the set is “hard” for any projective algorithm. A
new, supposedly better, algorithm should therefore be able to defeat those hard instances,
and this might be more difficult than to defeat some ad-hoc set of instances.

2 Projective Algorithms

Consider a list with n items. For a request sequence σ and two list items x and y,
the projection of σ on the unordered pair {x, y} is denoted by σxy and defined as the
sequence obtained from σ by deleting all requests to items other than x or y. We write
σx instead of σxx. For a given deterministic online algorithm, let S(σ) denote the list
state after the request sequence σ is served. List states are written as [x1x2 . . . xn] where
x1 is the item at the front of the list. The list state projected to the pair {x, y} is denoted
by Sxy(σ), which is either [xy] or [yx], indicating the relative position of x and y after
σ is served.

A deterministic algorithm is projective if the relative order of any two items after
any sequence σ does not depend on requests to the other items:

Definition 1 (Projective Algorithms). A deterministic list update algorithm is projec-
tive if for all request sequences σ and any two list items x and y

Sxy(σ) = Sxy(σxy). (1)

A projective algorithm A can be analyzed in a much simpler way than a general one,
since only two-item lists have to be studied [7]. If the projected cost on two items x, y of
this algorithm is Axy (with each request to x or y contributing either 0 or 1, depending
on whether the requested item is before or behind the other item in the list), then its total
cost is given by

A(σ) =
∑

{x,y}⊆L

Axy(σxy), (2)

where L is the set of list items [2,8]. Furthermore, the optimal offline cost OFFxy of
serving σxy is easy to describe, and gives a lower bound OFF(σ) defined similar to (2)

308 C. Ambühl, B. Gärtner, and B. von Stengel

for the optimal offline cost. This quantity is used to prove the competitive ratio of COMB
and other algorithms. The simple equation (2) holds only in the partial cost model, which
is therefore the natural choice when studying projective algorithms.

Projective algorithms have a natural generalization, where we demand the relative
order of any k-tuple of list items to depend only on the requests to these k items. It turns
out that for lists with more than k items, only projective algorithms satisfy this condition.
This follows from the fact that e.g. for k = 3, Sxyz(σ) = Sxyz(σxyz) implies that the
relative order of any pair from {x, y, z} is independent of the requests to any item in
L \ {x, y, z}. As soon as we have k + 1 list items, it is easy to see that the constraints
for all k-tuples enforce the relative order of any pair of list items to be independent of
the requests to other items.

We define a randomized online algorithm as projective if it is a (not necessarily
finite) probability distribution over deterministic projective algorithms. A less restrictive
definition is conceivable, but would not allow us to prove the lower bound for projective
algorithms that we intend and that we think is useful. Namely, one could call a randomized
online list update algorithm projective if serving any request sequence σ induces a
distribution on list states Sxy(σ) that only depends on σxy . To illustrate the problem
with this definition, consider the following randomized algorithm on a list of two items
only: If the current list state is [xy] and y is requested following a request to x, move y
to the front with probability 1/2, and if y is requested following a request to y (that is,
y was not moved at the preceding request), then move y to the front with certainty. It is
not hard to see that such a randomized online algorithm has competitive ratio 1.5, which
is the best possible. Furthermore, any randomized algorithm showing this as projective
behavior on a longer list would also be 1.5-competitive. It is indeed possible to construct
such an algorithm for lists with up to four items using partial orders [3], but impossible
for lists with five or more items, as recently proved by the authors [5].

In the following, we will characterize the deterministic projective algorithms in a way
that makes their projective behavior transparent, and unifies many known algorithms. By
our above assumption that considers a randomized projective algorithm as a probability
distribution over deterministic ones, we will be able to use this characterization in the
lower bound proof later.

3 Critical Requests

Consider a given deterministic online list update algorithm that is projective according
to Definition 1. In order to obtain a meaningful characterization of such an algorithm,
we assume n > 2 since on lists with only two items, any algorithm is projective. Let
i, j > 0 and consider request sequences σ with exactly i requests to x and j requests to
y (x 6= y), that is, σx = xi (the i-fold repetition of x) and σy = yj . Then we say xi and
yj are equivalent, written xi ∼ yj , if there are request sequences σ and σ′ so that

σx = σ′
x = xi, σy = σ′

y = yj ,

Sxy(σ) = [xy], Sxy(σ′) = [yx]. (3)

In other words, one should be able to shuffle the requests to x and y such that either
x or y is in front after serving the request sequence. Assume, for the moment, that (3)

Optimal Projective Algorithms for the List Update Problem 309

holds for any two items x and y and any i, j > 0 (we deal with the general case in the
next section). Under this assumption, the algorithm can be characterized in terms of the
central concept of critical requests.

For any list item x, let Fx : IN+ → IN+ be a function so that Fx(i) ≤ i for all i. Then
Fx defines the critical request to x in a request sequence σ as the Fx(i)th request to x in σ
if σx = xi. We say that the given algorithm operates according to these critical requests
if, after serving any request sequence σ, the relative order of the items requested at least
once is the reverse order of their critical requests in σ. In other words, x precedes y after
σ with σx = xi, σy = yj , and i, j > 0 if and only if the Fx(i)th request of x was later
than the Fy(j)th request to y. As a simple illustration, observe that MTF uses Fx(i) = i
for all i > 0 and x ∈ L. In the next section we will also deal with non-requested items.
Paid exchanges can be represented by critical request functions that are not monotone.

There is also a natural “dual” way to deal with critical requests: At any time, an
item precedes another if its critical request was earlier. In this case, we say that the
algorithm operates dually according to critical requests. For example, operating dually
on Fx(i) = i, for all i, results in the move-to-back algorithm. Although such behavior
cannot be competitive, it defines a projective algorithm.

Any critical request functions Fx for the list items x therefore define two list update
algorithms. The algorithms are projective since Fx(i) does not depend on requests to
items other than x. Furthermore, condition (3) holds for i, j > 0: sequences σ and σ′

with σxy = xiyj and σ′
xy = yjxi will always result in Sxy(σ) 6= Sxy(σ). The following

theorem shows that, conversely, any projective list update algorithm fulfilling (3) arises
from critical requests.

Theorem 1. Let A be a projective algorithm on a list with n items, n > 2, so that for
all items x, y and all i, j > 0, property (3) holds. Then A operates (or operates dually)
according to suitable critical request functions.

Proof. Assume that i, j, k > 0 and σ and σ′ are request sequences (over only three items
x, y and z) with σx = σ′

x = xi, σy = σ′
y = yj , and σz = σ′

z = zk, so that

Sxy(σxy) = [xy] and Sxz(σxz) = [zx] (4)

and

Sxy(σ′
xy) = [yx] and Sxz(σ′

xz) = [xz]. (5)

Such sequences exist by assumption (3) and projectivity of A, and since the projections
considered in these equations can be combined into sequences σ and σ′ of requests to
the three items.

Note that (4) and (5) imply Syz(σ) = [zy] and Syz(σ′) = [yz], hence by projectivity

σyz 6= σ′
yz. (6)

By labelling each request to an item with its position in the unary projection to that
item (e.g. the fifth request to x will be labelled x(5)), σxy and σ′

xy (and similarly σxz

and σ′
xz) can be considered as permutations that may be transformed into each other by

successively transposing pairs of consecutive requests.

310 C. Ambühl, B. Gärtner, and B. von Stengel

We can even assume that σxy and σ′
xy differ only in a single such transposition,

namely the (not necessarily unique) one responsible for the reversal of the list state Sxy

during the transformation. Similarly, we assume that σxz and σ′
xz differ only in a single

transposition of consecutive requests to x and z.
Suppose the transposition σxy → σ′

xy involves x(q) and y(`), while x(r) and z(m)
participate in the transposition σxz → σ′

xz . We now prove that q = r, which is also
easily seen to imply that this value is well-defined: It neither depends on σ and σ′ nor
on the specific transposition we consider, but only on σx.

For this, assume q 6= r and consider the sequence σ. W.l.o.g., x(q) and y(`) are
consecutive requests in σ—otherwise we can transpose y(`) with all in-between requests
to z without changing the projections to {x, y} and {x, z}. Similarly, suppose that x(r)
and z(m) are consecutive. A sequence σ′ satisfying (5) is now obtained from σ by
transposing both x(q) with y(`) and x(r) with z(m). Under this operation, however, the
projection to {y, z} remains invariant, a contradiction to (6). Hence, we must have q = r.

We have seen that for all items x and all i, there is a unique critical value Fx(i) = q,
and it remains to show that A operates (or operates dually) according to the Fx(i).

First of all, we need to show that the relative order of any two items only depends
on the order of their critical requests. By the above arguments, whenever σxy and σ′

xy

satisfy

Sxy(σxy) 6= Sxy(σ′
xy) (7)

and differ only by a single transposition of consecutive requests, this transposition in-
volves the critical request of x. By symmetry, it also involves the critical request of y. In
general, when we transform σxy into σ′

xy by transposing consecutive requests, property
(7) holds if and only if the two critical requests have been transposed an odd number of
times, which fixes their relative order.

Now consider a request sequenceσ over ann-item list such thatS(σ) = [x1x2 . . . xn].
Let pi be the position of xi’s critical request in σ. If we do not have p1 > p2 > · · · > pn

(A operates on F) or p1 < p2 < · · · < pn (A operates dually on F), we must have
an index i such that either pi < pi+1 > pi+2 or pi > pi+1 < pi+2. In both cases, we
can manipulate σ such that the critical requests of xi and xi+2 change their order, but
both keep their relative order w.r.t. the critical request of xi+1. In the list obtained after
serving σ, items xi and xi+2 change their relative order under this manipulation, while
they keep their relative order w.r.t. xi+1. This is impossible.

The assumption of at least three list items in the preceding theorem is crucial. On
lists with only two items, any algorithm is projective, but cannot always be defined in
terms of critical requests. This follows from cardinality considerations: There are

(
i+j

i

)

request sequences with i requests to x and j requests to y, each of which can have its
own list state after being served, but only i · j many ways of defining critical requests.
As an example, the algorithm that puts the second-to-last requested item at the front of
the two-item list cannot be defined in terms of critical requests.

Optimal Projective Algorithms for the List Update Problem 311

4 Containers

Not all projective algorithms fulfill condition (3) for all xi and yj . As an example,
consider the algorithm where all items requested an odd number of times precede all
items requested an even number of times, and where the items within each of these two
sets are arranged according to the MTF rule. Then (3) fails if i is odd and j is even or
vice versa. According to the general characterization of projective algorithms that we
will give in this section, the odd- and even-requested items in this example form separate
“containers” that represent sublists of the list. Within one container, items are moved
according to critical requests, but items in different containers are always in one and the
same relative position.

To make this precise, consider a given projective list update algorithm and the set

U = {xi | i ∈ IN, x ∈ L}

of unary projections of request sequences, where L denotes the set of items in the list.
Recall that we write xi ∼ yj whenever (3) holds. It makes sense to allow i = 0 and

j = 0 as well. By generalizing (3) we get x0 6∼ yj for all x 6= y and j ∈ IN.
For x, y, z distinct, if xi ∼ yj and yj ∼ zk, then, by projectivity, there are always

two sequences σ and σ′ containing the three unary projections such that S(σ) = [xyz]
and S(σ′) = [zyx], which implies xi ∼ zk. It is easy to see that ∼ is an equivalence
relation on U if we stipulate xi ∼ xi for any xi ∈ U and also xi ∼ xj for i 6= j if and
only if there is a zk with z 6= x such that xi ∼ zk and zk ∼ xj .

An equivalence class under ∼ shall be called a container. Let C denote the set of
containers and cx(i) denote the container containing xi. If xi and yj are in different
containers, we write cx(i) < cy(j) whenever for some σ with σx = xi and σy = yj

we have Sxy(σ) = [xy] (and hence for all such σ, since (3) does not hold). It is easy
to see that this does not depend on the choice of the representatives xi and yj from
each container. A special case occurs if both xi and xj are the only members in their
respective containers. In this case, no canonical order exists, and we set cx(i) < cx(j)
if i < j.

Then < defines a total order on the containers, which has a natural interpretation:
After a request sequence σ, consider the unary projections σx for each item x, and their
corresponding containers. If two projections xi and yj are in different containers, x is
in front of y if and only if cx(i) < cy(j). Hence the containers represent sublists of the
list state S(σ), and we will say that cx(i) contains the item x if σx = xi.

This characterizes any projective algorithm, apart from its behavior within each
container, which is easy to describe: If there is only one item in the container, the position
of the item is that of the container. A container containing only unary projections for
two distinct items can have an arbitrary behavior of its items, since any algorithm on
only two items is projective. If the container contains projections for at least three items,
Theorem 2 applies, that is, the algorithm operates or operates dually according to suitable
critical requests defined for the unary projections in that container. For this, observe that
by definition of ∼, all empty projections x0 are in a container of their own, so whenever
a container has at least two items, each item has been requested at least once, in which
case the critical requests exist.

312 C. Ambühl, B. Gärtner, and B. von Stengel

To summarize, we can express any deterministic projective algorithm by a pair of
functions cx : IN → C and Fx : IN+ → IN+ for all x ∈ L = {x1, x2, . . . , xn}. The
ordering of the values cx(0) corresponds to the initial list state. In the following examples,
we denote the containers by integers, where the ordering of the integers corresponds to
the ordering of the containers.

MTF moves all items into a common container 0 at their first request. All items use
cxi ≡ (i, 0, 0, 0, . . .) and Fxi(k) = k.

TIMESTAMP moves all items into a common container 0 at their second request. By
definition of ∼, an item cannot stay in its initial container after the first request, so
all items will use cxi

≡ (2i, 2i − 1, 0, 0, 0, . . .) and Fxi
(k) = max(1, k − 1).

FREQUENCY COUNT makes heavy use of containers. Items are ordered according
to the number of requests to them, so all items requested k times are in container
−k. The functions used are cxi ≡(i,−1,−2, . . .) and Fxi(k)=k.

BIT is a randomized algorithm. In the beginning, every item tosses a fair coin to decide
whether it uses the pair (F 0

xi
, c0

xi
) or (F 1

xi
, c1

xi
) with c0

xi
≡ (2i, 2i − 1, 0, 0, 0, . . .),

F 0
xi

≡ (1, 1, 3, 3, 5, 5, . . .), c1
xi

≡ (2i, 0, 0, 0, . . .), F 1
xi

≡ (1, 2, 2, 4, 4, 6, 6, . . .).

5 Lower Bound

In this section, we use the characterization of projective algorithms from the previous
section to prove that no such algorithm is better than 1.6-competitive. Algorithms with a
good competitive ratio never operate dually according to critical requests, and have the
critical request close to the last request, for every item. That is, they fulfill i − Fx(i) ≤ 1
most of the time. Therefore we work with fx(i) = i − Fx(i) in the following. Recall
that MTF is defined by fx(i) = 0, and TIMESTAMP by fx(i) = 1.

Motivated by this discussion, we consider projective algorithms A for lists of more
than two items that fulfill the following additional assumptions:

(i) A constant p exists such that after at most p requests to every item, all items
will reside in a single common container, and A operates (i.e. does not operate
dually) according to critical requests within that container, and
(ii) the values fx(i) that determine the critical requests can be uniformly bounded
by some constant M , where w.l.o.g. M ≥ 3.

Let us call an algorithm satisfying (i) and (ii) regular.
Given any ε > 0 and b, we will show that there is a probability distribution π on a

finite set Λ of request sequences so that

∑

λ∈Λ

π(λ)
A(λ)

OFF(λ) + b
≥ 1.6 − ε, (8)

for any deterministic regular algorithm A. Then Yao’s theorem [15] asserts that also any
randomized regular algorithm has competitive ratio 1.6 − ε or larger. This holds for any
fixed p and M . Hence the competitive ratio is at least 1.6. This is achieved by COMB
and therefore a tight bound for projective algorithms.

The same holds for general projective algorithms, but we defer the technicalities of
that to the full paper (see also section 6).

Optimal Projective Algorithms for the List Update Problem 313

All λ ∈ Λ will consist of only two items x and y. With the constant M from (ii), let

φ = xM yxyxM yxM yM xyxyM xyM xM yM . (9)

φ consists of eight blocks, each of which ends in xM or yM . Let H = |φ|/2, and let k
and T be arbitrary positive integers. Then the set of sequences in (8) is given by

Λ = {xtx3+hy3+hφk | 0 ≤ h < H, 0 ≤ t < T}, (10)

where any λ in Λ is chosen with equal probability 1/HT by π.
First, observe that OFF pays ten units for each repetition of φ (which always starts

in offline list state [yx]), and therefore all sequences in Λ have equal offline cost 1+10k.
This and the fact that π(λ) for λ ∈ Λ is constant allows us to rewrite (8) as

∑
λ∈Λ A(λ)∑

λ∈Λ(OFF(λ) + b)
> 1.6 − ε. (11)

The offline cost OFF(λ) in (11), as well as the online cost A(λ), can grow arbitrarily
large with k, so that we can assume w.l.o.g. that b = 0 in (11), adapting ε suitably.

In the rest of this section we show that (10) yields the desired property (11). We say
that A is in state (i, j) if it has served σ with σx = xi and σy = yj , where σ is some
prefix of a sequence λ in Λ. That sequence σ is a random variable since the particular
order of requests to x and y is usually not known.

We say that a sequence λ in Λ switches from x in state (i, j) if λ has the prefix σ
with σx = xi and σy = yj and σ ends in xM . Similarly, we say that λ switches from y
in state (i, j) if that prefix σ ends in yM . A state (i, j) is called good if it fulfills the
following conditions:

(a) there are four sequences in Λ that switch from x in state (i, j). They continue
with the requests yM , yM , yxM , and yxyxM , respectively;
(b) the same holds with x and y interchanged;
(c) properties (a) and (b) also hold for the states (i − 1, j) and (i, j − 1).

This means, for every good state (i, j) and each of the eight blocks in φ, there is
exactly one sequence σ in Λ that starts with this block in state (i, j). Let A(i, j) be
the sum of costs incurred by A on those eight blocks, and OFF(i, j) the corresponding
sum of offline costs. In general, A(i, j) denotes the sum of costs incurred by A on all
next blocks of the (at most eight) sequences switching from x or y in state (i, j), and
OFF(i, j) is the corresponding offline cost.

We will show that for every good state (i, j), A(i, j) is at least 16, while OFF(i, j) is
always 10. Together with the facts that most states are good states (which we will prove
below), and that the cost for serving the initial prefix xtx3+hy3+h is independent of k

314 C. Ambühl, B. Gärtner, and B. von Stengel

and can therefore be neglected for large k, this gives

∑
λ∈Λ A(λ)∑

λ∈Λ OFF(λ)
=

∑

(i,j)

A(i, j) +
∑

h,t

A(xtx3+hy3+h)

∑

(i,j)

OFF(i, j) +
∑

h,t

OFF(xtx3+hy3+h)

≈

∑

(i,j) good

A(i, j)

∑

(i,j) good

OFF(i, j)
≥ min

(i,j) good

A(i, j)
OFF(i, j)

,

thus proving the lower bound, because the minimum is at least 16/10 = 1.6.
By considering each of the four continuing sequences yM , yM , yxM , and yxyxM

in (a), we see that the sum of their offline costs is five. Hence, we have to show that
the sum of online costs is at least eight. This is not always the case: It is possible that a
certain choice of the critical request functions will result in an online cost of only seven
units. However, we will show that those particular critical requests will incur nine units
of online cost in state (i − 1, j), one of which we can “borrow” for A(i, j). This results
in eight units of online cost, for all good states.

Consider a sequence in a good state (i, j) that, as in (a), switches from x, so that
the next requests are yM , yM , yxM , and yxyxM (our reasoning will then apply to (b)
by symmetry). Since the first two of these requests are yy, yy, yx, yx, their total online
cost is six units: By assumption (ii), the critical request to x is among the preceding
requests xM . Hence four units are to be paid for the first request to y, and then two extra
units, namely on the request to x in yx and yx if fy(j + 1) = 0, and on the second
request to y in yy and yy if fy(j + 1) ≥ 1. A seventh unit is spent in serving the second
request to y or to x in yxyxM . The only case where no more than these seven online
cost units occur is if

fx(i + 1) = 0 and fy(j + 2) = 1. (12)

Namely, fy(j + 2) ≤ 1 is necessary since otherwise y would not be in front of x
at the third request to y in the sequences yM , adding at least two more cost units. If
fy(j + 1) = 0, then we need fx(i + 1) = 0 to avoid another cost unit when serving the
second request to x in yxM , and hence fy(j+2) ≥ 1 to avoid that y is moved to the front
at the second request to y in yxyxM since that would create an extra cost unit for serving
the second x. If fy(j + 1) ≥ 1, then we need again fx(i + 1) = 0 and fy(j + 2) ≥ 1
to avoid that y is moved to the front at the second request to y in yxyxM . Together, this
implies (12). Hence, whenever (12) fails, the online algorithm incurs eight or more unit
costs.

The seven online cost units in case (12) create nine online cost units in state (i−1, j)
for the sequences switching from y. Namely, by (c), the subsequent requests are xM ,
xM , xyM , and xyxyM . As before, six online units will be spent on the first two of these
requests which are xx, xx, xy, xy, and a seventh unit either on the second y in xyM

or on the second x in xyxyM . That last sequence, however, will incur two additional

Optimal Projective Algorithms for the List Update Problem 315

cost units: Because of (12), x is in front of y after the third and forth request in xyxyM ,
causing two more units for serving the second and third requests to y.

It remains to show that most states are good. The sequences λ in Λ are, by (10),
essentially k-fold repetitions of φ.

The random initial subsequence x3+hy3+h of λ means that all pairs of states (i, j)
and (i+1, j +1), apart from those with low or high values of i and j, are equally likely
reached by any request in φ. Note that |φx| = |φy|. The additional prefix xt of λ does
the same for the pairs of states (i, j) and (i + 1, j) except for those with small or large
values of i and j. Figure 1 displays the good and the bad states in a diagram. There
are Θ(kHT) good states, but only Θ(kH2) bad ones. By choosing T large enough, the
contribution of bad states can be neglected, so that (8) holds.

T

j

kC
x- counter value

y-
 c

ou
nt

er
 v

al
ue

state (i,j)
kC

i

good

bad

Fig. 1. xy-diagram

We have proved a lower bound of 1.6 for the competitive ratio of any regular pro-
jective algorithm A, defined by a probability distribution over deterministic regular
algorithms. By definition, this means that A is using only one active container in the
long run, and that the distance between current and critical request is bounded for all
items. Because of lack of space, we will deal with the other cases only in the full version.
We thus obtain

Theorem 2. Any projective list update algorithm has a competitive ratio of at least
1.6 in the partial cost model, and this bound is best possible, as the algorithm COMB
demonstrates.

6 Conclusion

An open problem is to extend this result to the full cost model, even though this model
is not very natural in connection with projective algorithms. This would require request
sequences over arbitrarily many items, and it is not clear whether an approach similar
to the one given here can work.

Another ambitious goal is to further improve the lower bound in case of non-
projective algorithms. Here, the techniques of the paper do not apply at all, and to

316 C. Ambühl, B. Gärtner, and B. von Stengel

get improvements that are substantially larger than the ones obtainable with the methods
of [5] requires substantial new insights.

Finally, the search for good non-projective algorithms has become an issue with
our result. Irani’s SPLIT algorithm [10,11] is the only one known of this kind with a
competitive ratio below 2. A major obstacle for finding such algorithms is the difficulty
of their analysis, because pairwise methods are not applicable, and other methods (e.g.
the potential function method) have not been studied in depth. We hope that our result
can stimulate further research in this direction.

References

1. S. Albers (1998), Improved randomized on-line algorithms for the list update problem. SIAM
J. Comput. 27, no. 3, 682–693 (electronic). Preliminary version in Proc. 6th Annual ACM-
SIAM Symp. on Discrete Algorithms (1995), 412–419.

2. S. Albers, B. von Stengel, and R. Werchner (1995), A combined BIT and TIMESTAMP
algorithm for the list update problem. Inform. Process. Lett. 56, 135–139.

3. S. Albers, B. von Stengel, and R. Werchner (1996), List update posets. Manuscript.
4. S. Albers and J. Westbrook (1998), Self Organizing Data Structures. In A. Fiat, G. J. Woegin-

ger, “Online Algorithms: The State of the Art”, Lecture Notes in Comput. Sci., 1442, Springer,
Berlin, 13–51.

5. C. Ambühl, B. Gärtner, and B. von Stengel (2000), A new lower bound for the list update
problem in the partial cost model. To appear in Theoret. Comput. Sci.

6. S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson (1994), On the power of
randomization in on-line algorithms. Algorithmica 11, 2–14. Preliminary version in Proc.
22nd STOC (1990), 379–386.

7. J. L. Bentley, and C. C. McGeoch (1985), Amortized analyses of self-organizing sequential
search heuristics. Comm. ACM 28, 404–411.

8. A. Borodin and R. El-Yaniv (1998), Online Computation and Competitive Analysis. Cam-
bridge Univ. Press, Cambridge.

9. A. Borodin, N. Linial, and M. E. Saks (1992), An optimal online algorithm for metrical task
systems. J. ACM 39, 745–763. Preliminary version in Proc. 19th STOC (1987), 373–382.

10. S. Irani (1991), Two results on the list update problem. Inform. Process. Lett. 38, 301–306.
11. S. Irani (1996), Corrected version of the SPLIT algorithm. Manuscript.
12. N. Reingold, J. Westbrook, and D. D. Sleator (1994), Randomized competitive algorithms

for the list update problem. Algorithmica 11, 15–32.
13. D. D. Sleator, and R. E. Tarjan (1985), Amortized efficiency of list update and paging rules.

Comm. ACM 28, 202–208.
14. B. Teia (1993), A lower bound for randomized list update algorithms, Inform. Process. Lett.

47, 5–9.
15. A. C. Yao (1977), Probabilistic computations: Towards a unified measure of complexity. Proc.

18th FOCS, 222–227.

	Introduction
	Projective Algorithms
	Critical Requests
	Containers
	Lower Bound
	Conclusion

