
Abstract A symmetry of a game is a permutation of the player set and their
strategy sets that leaves the payoff functions invariant. In this paper we
introduce and discuss two relatively mild symmetry properties for set-valued
solution concepts (that are equivalent when the solution concepts are single-
valued) and show using examples that stable sets satisfy neither version. These
examples also show that for every integer q, there exists a game with an
equilibrium component of index q.
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1. Introduction

A symmetry of a game is a permutation of the player set and their strategy
sets that leaves the payoff functions invariant. Nash (1951) proved that every
finite game has an equilibrium point that is invariant under all the symmetries
of the game. This result, and its ready extension to a wider class of games, has
proved to be a very useful property. Indeed, in many economic applications
(for e.g., the theory of auctions) there is a natural symmetry among the
players; and, analyses of these games focus on their symmetric equilibria.
Since the 1970s, a steady stream of refinements have been proposed, with little
or no attention paid to their symmetry properties. (Cf. van Damme, 1991, for
a survey of the refinements literature.) In this paper, we examine the impli-
cations of the symmetry axiom for refinements, especially p-stable sets as
defined by Mertens (1989, 1991).
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For singleton solution concepts, the formulation of a symmetry axiom is
straightforward: we require the existence of a solution that is invariant under
all the symmetries of the game. It is very easily verified then that Nash’s result
extends to (all the different notions of) perfect equilibria, proper equilibria,
and sequential equilibria. In fact, persistent equilibrium seems to be the only
single-valued solution concept that does not satisfy the symmetry axiom:
consider the battle of sexes game; its unique symmetric equilibrium is the
mixed equilibrium, which is not persistent.

Since stability is a set-valued solution concept, there is not a unique for-
mulation of the symmetry axiom. In Section 2 we provide two, relatively mild,
symmetry axioms for stability (that are equivalent for single-valued solution
concepts) and show in Section 4 that p-stable sets fail to satisfy either of these
two axioms. What is not clear to us, at present, is whether stability as defined
by Hillas (see Hillas, 1990, and Hillas et al, 2001) violates these axioms, too.

One by-product of our analysis is that the examples we use to prove our
result show that for any integer q, there exists a game with an equilibrium
component of index q. While the example for the case q ¼ 0 is sufficient for
proving our main result, we present the entire class of examples, since they are
of interest per se.

2. The symmetry axiom

Let G be a finite normal form game with player set N . For each player n, let Sn
(resp., RnÞ be his pure (resp., mixed) strategy set; and let pn : S ! R be his
payoff function, where S ¼ PnSn. We will denote still by pn the extension of
player n’s payoff function to the set R ¼ PnRn of mixed strategy profiles.
Finally, let _nSn ¼ [nðfng � SnÞ be the set sum of the pure strategy sets. The
following definition of a symmetry of a game is due to Nash (1951).

Definition 2.1. A symmetry of a game G is a permutation / of _nSn such that

(a)For each player n, /ðfng � SnÞ ¼ fmg � Sm for some player m.
(b)Let w and u be, resp., the permutations of Nand S that are induced by /;

then, for all n 2 N , and s 2 S, pnðsÞ ¼ pwðnÞðuðsÞÞ.
The permutation u of S in the definition above extends in the obvious way to
a permutation on R, which, too, leaves the payoff functions invariant. Since a
symmetry of G is completely specified by the induced permutation of R, we
will talk about symmetries only in terms of the u’s. We will say that a subset
R� of R is invariant under a symmetry u if uðR�Þ ¼ R�. A subset R� is sym-
metric if it is invariant under all symmetries of the game.

In formulating a symmetry axiom, we could ask for a solution to be
invariant under all symmetries or just the existence of an invariant solution
for each symmetry. The former notion is really strong and intuitively
appealing. On the other hand, if a game admits many different symmetries, it
is conceivable that the equilibrium that is played might depend on which
symmetry the players focus on. Hence, the latter notion of symmetry seems an
acceptable formulation, as well; in any case, it is certainly the weaker of the
two notions and, as such, will be our focus here.

Kohlberg and Mertens (1986) argued that certain basic axioms force us to
consider set-valued solution concepts. For such concepts, there are at least
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two different formulations. One could require that, for each symmetry, there
exists a solution that contains an invariant equilibrium; or that there exists a
solution that is invariant. Both these requirements are equally attractive. If we
interpret solution concepts as saying that nothing outside them is a rational
outcome, then the first formulation would be reasonable since symmetric
equilibria are plausible. The second requirement, on the other hand, is a way
of requiring solutions themselves to treat equilibria symmetrically. Therefore,
we have the following two versions of the Symmetry Axiom.

Axiom 2.2. For every game G, and every symmetry u of G, there exists a
solution R� that is invariant under u.

Axiom 2.3. For every game G, and every symmetry u of G, there exists a
solution R�that contains a point r�that is invariant under u.

The main result of the paper is the following Proposition, which is proved
in Section 4 using the examples constructed in Section 3.

Proposition 2.4. p-stable sets satisfy neither of the two symmetry axioms.

3. Equilibrium components with arbitrary index

The index of a component of equilibria of a game is an integer that is com-
puted as the local degree of a map for which the Nash equilibria of the game
are the zeros. The index is independent of the particular displacement map
used and, for generic bimatrix games, it is the negative of the index defined by
Shapley (1974)—cf. Govindan and Wilson (1997b), and, for games with any
number of players, Demichelis and Germano (2000). In this section, we will
show how games with equilibrium components of arbitrary index can be
constructed. We explain these constructions in some detail, as readers might
find them unfamiliar; they may also be of use in other contexts.

First, consider a 2� 2 coordination game, say

H 2 ¼ 10; 10 0; 0
0; 0 10; 10

� �

(in agreement with the notation in (5) below). This game has two pure strategy
equilibria, and one mixed equilibrium where both players play the mixed
strategy ð12 ; 12Þ. The index of any of these equilibria is easily determined by the
following two properties, which hold for any game: A pure strategy equilibrium
which is strict (that is, all unplayed pure strategies have a payoff that is strictly
lower than the equilibrium payoff) has indexþ1; and the sum over all equilibria
of their indices is þ1. Therefore, the mixed equilibrium in H 2 has index �1.

Next, we add an outside option called Out to the set of pure strategies of
player 1, say, giving the game

G� ¼
10; 10 0; 0
0; 0 10; 10
9; 9 9; 9

2
4

3
5: ð1Þ
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An outside option (which we may add for one or both players) can be thought
of as an initial move that a player can make which terminates further play,
and gives a constant payoff to both players. If the player has not chosen his
outside option, the original game is played. The outside option payoff above
is 9 for both players. This has the effect that an equilibrium of the original
game with payoff less than 9 disappears, in this case the mixed strategy
equilibrium. Geometrically, one can consider the ‘‘upper envelope’’, that is,
the maximum, of the expected payoffs for the pure strategies of player 1 as
functions of the mixed strategy played by player 2. Any equilibrium strategy
of player 2, together with its payoff to player 1, is on that upper envelope.
The outside option gives an additional constant function that ‘‘cuts off’’ any
former equilibrium payoffs below it.

In the game G�, the original pure strategy equilibria of H 2 are unaffected,
and continue to have index þ1. Any such equilibrium, as long as it remains
strict after introducing the outside option, keeps its index, as the index of a
strict equilibrium can be defined in terms of the payoff sub-matrices corre-
sponding to the pure best responses (cf. Shapley, 1974). The mixed strategy
equilibrium of H2 is absorbed into an equilibrium component where player 1
plays his last strategy Out. The original mixed equilibrium strategy ð12 ; 12Þ of
player 2 is part of the outside option component, which is given by the set of
mixed strategies of player 2 so that Out is a best response. In G� above, it is
easy to see that these are all mixed strategies of player 2 where each pure
strategy has probability at most 9=10. In general, the outside option com-
ponent is defined by a set of linear inequalities, one for each pure strategy of
the player who plays Out.

Let c be some game with an outside option. We will denote the outside
option equilibrium component of the game c by CðcÞ. In (1), the index of
CðG�Þ is �1, which is simply the sum of the indices of all equilibria of the
original game H2 that have been obsorbed into the outside option compo-
nent, because the sum of all indices is þ1. Technically, the index of an
equilibrium component can be defined as the sum of the indices of equilibria
near the component when the payoffs are perturbed generically; this sum does
not depend on the perturbation.

It is well known that the best response structure of a bimatrix game re-
mains unchanged when adding a constant to any column of the payoffs to the
row player, or a constant to a row of the column player’s payoffs. This will
allow us to cut off pure strategy equilibria rather than mixed equilibria by
using an outside option. We start with a 2� 2 coordination game with
payoffs 1; 1 on and 0; 0 off the main diagonal, and add the constant 12 to the
first column of player 1 and row of player 2, and 7 to the second column
respectively row. The resulting game H and a corresponding outside option
game G are given by

H ¼ 13; 13 7; 12
12; 7 8; 8

� �
; G ¼

13; 13 7; 12
12; 7 8; 8
9; 9 9; 9

2
4

3
5:

The game H has two pure equilibria with payoffs 13; 13 and 8; 8, respectively,
and one mixed equilibrium where both play ð12 ; 12Þ with payoffs 10; 10. The
outside option with payoff 9 cuts off the pure strategy equilibrium with
payoffs 8; 8 but leaves the other equilibria intact. Consequently, CðGÞ has
index þ1.
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Next, we ‘‘destroy’’ the pure strategy equilibrium in G by adding another
column to the game. Consider the games

H 0 ¼ 13; 13 7; 12 1; 14
12; 7 8; 8 2; 1

� �
; G0 ¼

13; 13 7; 12 1; 14
12; 7 8; 8 2; 1
9; 9 9; 9 9; 9

2
4

3
5:

Compared to H , the pure strategy equilibrium with payoffs 13; 13 is no longer
present in H 0. It is replaced by another, mixed equilibrium where player 1
plays ð67 ; 17Þ and player 2 plays ð12 ; 0; 12Þ, with payoffs 7 to player 1 and 85=7 to
player 2. This new mixed equilibrium has index þ1. Since the payoff to
player 1 in that equilibrium is less than the outside option payoff 9, that
equilibrium disappears in G0. Consequently, CðG0Þ has index þ2, because the
only equilibrium that is not cut off has index �1.

Finally, we consider the following game H� which is a symmetrized ver-
sion of H 0:

H� ¼
13; 13 7; 12 1; 14
12; 7 8; 8 2; 1
14; 1 1; 2 1; 1

2
4

3
5: ð2Þ

In this game, the mixed strategy equilibrium where both players play ð12 ; 12 ; 0Þ
is the equilibrium with the highest payoff, yielding 10 for both players. This
equilibrium has index �1. The other equilibria are as follows: The mixed
strategy ð12 ; 0; 12Þ of player 2, which together with ð67 ; 17Þ of player 1 forms an
equilibrium of H 0, is no longer part of an equilibrium as the third strategy of
player 1 in H� gives a higher payoff. By playing that strategy as well, we
obtain a completely mixed equilibrium where both players play ð12 ; 1

12 ;
5
12Þ,

with resulting payoff 15=2 to both players. This equilibrium has index þ1, as
has the pure strategy equilibrium with payoffs 8; 8. There are no other
equilibria of H�.

We use H� for constructing components with arbitrarily high positive
index. For k � 1, let H�k be the game consisting of k copies of the game H�

on the diagonal and zeros everywhere else, that is,

H�k ¼

H� 0; 0 � � � 0; 0
0; 0 H� 0; 0

..

. . .
. ..

.

0; 0 0; 0 � � � H�

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k copies

: ð3Þ

Each player has 3k strategies in H�k. For any nonempty set of the k copies of
H�, and any equilibrium in such a copy, one obtains an additional equilib-
rium of H�k by suitable probability weights assigned to the copies. All such
mixtures involving more than one copy, however, give payoffs less than 8.
There are no other equilibria of H�k as the payoffs in a copy of H� are all
positive, and the other payoffs are zero.

The superscript in H�k indicates the sum of indices of those equilibria that
are not cut off by adding a suitable outside option. To preserve symmetry
between players, we give both players an outside option Out as an additional
pure strategy, which gives the game
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Gkþ1 ¼

9; 9
H�k

..

.

9; 9 � � � 9; 9

2
664

3
775: ð4Þ

The game Gkþ1 has k þ 1 equilibrium components: the k mixed strategy
equilibria where both players play strategies 1 and 2 in one copy of H� with
probability 1

2 (yielding a payoff of 10 for both), and the equilibrium compo-
nent in which at least one player chooses the last strategy, the outside option
Out. That component CðGkþ1Þ is given by those strategy pairs where at least
one player plays Out, and the other player playing such that Out is a best
response. The unique symmetric strategy pair in that component is ðOut;OutÞ.
All isolated equilibria have index �1. Since the indices of all equilibrium
components have to add up to one, the outside option equilibrium compo-
nent CðGkþ1Þ has index k þ 1, which we chose as a superscript for G in (4).
Therefore, for each positive integer q, the game Gq in (4) has a component
with index q; this includes the trivial case q ¼ 1, k ¼ 0, which is a 1� 1 game.

A similar, simpler construction gives equilibrium components with arbi-
trary negative index. For k � 2, let H k be the following k � k game:

H k ¼

10; 10 0; 0 � � � 0; 0
0; 0 10; 10 0; 0

..

. . .
. ..

.

0; 0 0; 0 � � � 10; 10

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k columns

: ð5Þ

Just as (4) is obtained from (3), we add outside options for both players, and
obtain

G�ðk�1Þ ¼

9; 9
H k

..

.

9; 9 � � � 9; 9

2
664

3
775 ðk � 2Þ: ð6Þ

The equilibria of game G�ðk�1Þ are the k pure strategy equilibria of the
coordination game, yielding a payoff of 10 for both players, and the outside
option equilibrium component CðG�ðk�1ÞÞ. Since pure strategy equilibria have
index þ1, it follows that CðG�ðk�1ÞÞ has index �ðk � 1Þ. Hence, for each
negative integer q, there exists a game that has an equilibrium component
with index q. The case k ¼ 1 gives an equilibrium with index 0, but this game
is too symmetric for our purpose, which is why we require k � 2 in (6).

In order to show that 0-stable sets violate the symmetry axioms, we
construct a game whose only symmetric equilibrium component has index 0.
We are doing this by combining the games Hk and H�ðk�1Þ to a new game by
placing them on the diagonal, and adding outside options as before. For our
purpose, k ¼ 3 is sufficient. Thus, let G0 be the following 10� 10 game:

G0 ¼
H 3 0 9; 9

0 H�2 ..
.

9; 9 � � � 9; 9

2
64

3
75: ð7Þ
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As argued after (3), the only equilibria in G0 that are not cut off are those with
payoffs 10; 10 in H3 or H�2. Thus, by a counting argument, the outside option
equilibrium component CðG0Þ has index 0. Our constructions prove the fol-
lowing proposition.

Proposition 3.1. For each integer q, there exists a (bimatrix) game that has a
component of equilibria with index q.

Let now q 6¼ 1; 2 be some integer and consider the game Gq as defined in
(4), (6), or (7), respectively. Then the component CðGqÞ, which by construc-
tion has index q, is the unique component of equilibria that is symmetric, i.e.,
invariant under all symmetries of the game, and ðOut;OutÞ is the unique
symmetric equilibrium. Moreover, there exists a permutation under which
CðGqÞ is the unique invariant component and ðOut;OutÞ is the unique
invariant equilibrium.

Example 3.2. For the game in ð7Þ, the outside option component
CðG0Þ(respectively, the equilibrium ðOut;OutÞ) is the only equilibrium compo-
nent (respectively, equilibrium) that is invariant under the symmetry that leaves
the players invariant, but permutes the strategies with the following permutation,
written as a product of cycles, assuming the first nine strategies are 1; 2; . . . 9:

ð123Þð47Þð58Þð69ÞðOutÞ:

The first part of the permutation has order 3, and permutes the game H3. The
middle part of the permutation has order 2, and permutes the game H�2. The
last part is the identity on the outside option, having order 1. Hence, the whole
permutation has order 6.

The initial examples show that an outside option for only one player
would be sufficient to construct an equilibrium component with arbitrary
index q. However, since we are interested in the symmetry properties of a
game, we add outside options for both players.

4. Analysis of the game Gq

Before we analyse the stable sets of the games Gq, we characterize the perfect
equilibria of the component CðGqÞ. Let PðGqÞ denote the subset of perfect
equilibria of CðGqÞ.

Lemma 4.1. The subset PðGqÞ of perfect equilibria of CðGqÞis path-connected.

Proof: For a two-player bimatrix game, an equilibrium is perfect if and only
if it is in undominated strategies, i.e., if and only if there exists a completely
mixed strategy against which it is a best reply. This already implies that
ðOut;OutÞ is perfect, since Out is the unique best reply against the uniform
strategy of the other player. We will now show that every other perfect
equilibrium in PðGqÞ can be path-connected with ðOut;OutÞ.

At least one of the two players plays Out with probability 1 in the
component CðGqÞ. Therefore, and for reasons of symmetry, we can restrict
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our attention to perfect equilibria of the form ðr1;OutÞ. Now let g be a
completely mixed strategy against which r1 is a best reply. This implies that
the strategies used in r1 must give a payoff of at least 9 against g. Let H be
the game obtained from Gq by deleting the strategy Out for both players,
and consider the completely mixed strategy equilibrium, call it s, of H
(which exists, see the comments following (2) and (3) above). This equi-
librium gives both players a payoff strictly smaller than 9. Hence there
exists k 2 ½0; 1Þ such that r1 is a best reply against ksþ ð1� kÞg, and the
strategies played in r1 yield a payoff of 9. Note that ~g :¼ ksþ ð1� kÞg is a
completely mixed strategy. But then lr1 þ ð1� lÞOut is a best reply against
~g for all l 2 ½0; 1�, showing that ðlr1 þ ð1� lÞOut;OutÞ 2 PðGqÞ, which
implies that the set PðGqÞ is star-shaped and, hence, path-connected. n

The same analysis is possible in a game where only one player has an
outside option. This gives the following property of generic outside option
equilibrium components:

Corollary 4.2. The set of perfect equilibria in an outside option equilibrium
component is path-connected if the payoffs for the equilibria that have been cut off
are generic and if the original game has an equilibrium in completely mixed
strategies.

Since stable sets are connected sets of perfect equilibria, the following
proposition, in conjunction with the remarks in Example 3.2, proves Prop-
osition 2.4.

Proposition 4.3. Let p be either zero or a prime number greater than 1. Then,
PðGqÞ contains a p-stable set iff q 6¼ 0 and p does not divide q. In particular,
PðG0Þ does not contain a p-stable set for any p.

Before proving the above Proposition, we review the concept of p-stabil-
ity. Let Ri denote the mixed strategy set of player i, and R ¼ R1 � R2. Let m
be the number of pure strategies of each player. Given a vector g 2 Rm

þ � Rm
þ,

one defines a perturbed game GqðgÞ as the game where the strategy sets are the
same as in Gq but where the payoff to player i from a strategy profile r is the

payoff he gets under the profile ð1þ g1Þ�1ðr1 þ g1Þ; ð1þ g2Þ�1ðr2 þ g2Þ
� �

in

Gq, where for each j ¼ 1; 2, gj ¼
Pm

k¼1 gj
k. For each 0 � e � 1, define

Pe ¼ fg 2 Rm
þ � Rm

þ j for i ¼ 1; 2; gi � eg:
We use @Pe to denote the topological boundary of Pe. Let N the graph of the
equilibrium correspondence defined over P1, i.e.,

N ¼ fðg; rÞ 2 P1 � R j r is an equilibrium of GqðgÞg;
and let Ne be defined accordingly. Denote by proj the natural projection from N
to P1. For each X � N , and e � 0, let ðXe; @XeÞ ¼ proj�1ðPe; @PeÞ \ X . In the
following definition, we use simplicial homology with coefficients in Zp (where
Z0 ¼ Z).

Definition 4.4. The p-stable sets of Gq are the Hausdorff limits of the sets
fr j ð0; rÞ 2 Xg where X varies over those closed, semi-algebraic subsets of N
such that:
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(a) Connexity: Xen@Xe is connected and dense in Xe for each sufficiently small
e > 0.

(b) Essentiality: proj : H�ðXe; @Xe; ZpÞ ! H�ðPe; @Pe; ZpÞ is nonzero for some,
and then for all sufficiently small, e > 0.

Each of the isolated equilibria of Gq is p-stable: indeed, since these equi-
libria are regular, the projection map from a neighbourhood of the equilib-
rium in N is a homeomorphism onto Pe for small e and thus satisfies the
connexity and the essentiality condition.

We will now prove Proposition 4.3. By Govindan and Wilson (2001), if
PðGqÞ contains a p-stable set, then PðGqÞ is itself p-stable. Therefore, it suf-
fices to show that this component is not a p-stable set if q ¼ 0 or p divides q.

Choose an open neighbourhood U of C in R such that its closure does not
contain any of the isolated equilibria of Gq. Govindan and Wilson (2001,
Remark 3.3) show that there exists e0 > 0 so that the closure S of the set
fðg; rÞ 2 Ne0n@Ne0 j r 2 Ug satisfies the connexity condition of Definition 4.4.
(The formulation in Govindan and Wilson, 2001, is different from ours in a
few inessential aspects. Firstly, for every perturbation g, they consider the
game Gqðg=ð1� gÞÞ. Secondly, they consider the graph of the perturbed
equilibrium correspondence. Clearly, there is a homeomorphism between the
two equilibrium graphs that commutes with the respective projections, so that
the connexity property is preserved.) Thus, for every 0 < e � e0, the set Sen@Se
is connected and dense in Se, where Se is the closure of the set
fðg; rÞ 2 Nen@Ne j r 2 Ug. Moreover, S is a closed semi-algebraic subset of N
such that PðGqÞ ¼ fr j ð0; rÞ 2 Sg. For future use, we will also assume that e0
is chosen to be small enough such that for each g 2 Pe0 , none of its equilibria
belongs to the boundary of U .

If S contains a set X that satisfies the essentiality condition, then S would
satisfy the essentiality condition as well. Therefore, PðGqÞ is p-stable iff S
satisfies the essentiality requirement.

Let Ai be player i’s payoff matrix in Gq. Every vector ðg1; g2Þ in
C 	 Rm � Rm defines a perturbed game in which player i’s payoff matrix has

Ai
jk þ gi

j as its ðj; kÞ-entry. Define a map f : P1 ! C by f ðgÞ ¼ g with

g1
j ¼ A1

j � g2 and g2
j ¼ A2

j � g1. Then the game f ðgÞ has the same set of equi-

libria as GqðgÞ. Observe that f is a homeomorphism, since A1 and A2 are
nonsingular. For each 0 � e � e0, let ðQe; @QeÞ ¼ f ðPe; @PeÞ and let ðTe; @TeÞ be
the image of ðSe; @SeÞ under the homeomorphism f � id. It is sufficient to
show that PðGqÞ is p-stable iff the projection map from ðTe; @TeÞ to ðQe; @QeÞ
is essential for all small e > 0.

Fix 0 < e � e0. Since f is a homeomorphism, ðQe; @QeÞ is a 2m-ball with
boundary. Let E be the graph of the Nash equilibrium correspondence over
C. By the definition of the set S, we have that Ten@Te equals E \ Qen@Qe � Uð Þ
and is, therefore, open in E. It follows readily from the proof of the Kohl-
berg-Mertens structure theorem (1986, Proposition 3.1) that E is homeo-
morphic to C; hence, Ten@Te, is an open semi-algebraic 2m-manifold.
Moreover, Ten@Te is connected and dense in Te as S satisfies the connexity
condition. Consequently, ðTe; @TeÞ is a pseudomanifold with boundary. (Cf.
Munkres, 1984, x 63 Ex. 3.)

By Govindan and Wilson (1997a), the index of CðGqÞ can be computed as
the local degree of the projection map from a neighborhood of the component
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in E to C, for a suitable orientation of E. By the choice of e0, there exists a
neighbourhood of W of ðQe; @QeÞ such that no game in W has an equilibrium
on the boundary of U . Therefore, the projection map from V :¼ E \ ðW � UÞ
is proper over W . Since the index of the component CðGqÞ is q, for every game
g 2 W , the sum of the indices of the components of its equilibria that are
contained in U is q. Hence, the projection map from ðTe; @TeÞ to ðQe; @QeÞ has
degree q. If q is zero, the map has degree zero; and for q 6¼ 0 the map is
essential mod p iff p does not divide q. Thus PðGqÞ is p-stable iff q 6¼ 0 and p
does not divide q, proving Proposition 4.3. n

As an immediate consequence of the proofproof of Proposition 4.3, we
obtain the following corollary.

Corollary 4.5. Let C be an equilibrium component of index q of a bimatrix
game with payoff matrices A1and A2 for player 1 and 2, respectively. If A1 and
A2 have full rank and if PðCÞis connected, then C is p-stable if and only if q 6¼ 0
and p does not divide q.

Remark 4.6. For every abelian group M and a subgroup M 0, Mertens (1991)
defines ðM ;M 0Þ-stability just like p-stability; with the essentiality condition
modified as follows: proj�ðH�ðSe; @Se; MÞÞ, viewed as a subset of
M 
 H�ðPe; @Pe; MÞ, is not contained in M 0. The special case of
ðM ;M 0Þ ¼ ðZp; 0Þ corresponds to the p-stable sets. It is readily seen that PðG0Þ
does not contain an ðM ;M 0Þ-stable set for any pair ðM ;M 0Þ. Thus all these other
variants fail to satisfy either of our symmetry axioms. Moreover, asking for
essentiality in homotopy—which is the idea of homotopy stability (see Mertens,
1991, Section 4)—does not yield a positive result either: in the game G0, the
projection map from ðSe; @SeÞ to ðPe; @PeÞ is homotopic to a map to the boundary
(as maps between pairs), since the projection map has degree zero as a map
from a pseudomanifold with boundary to a ball pair.

Remark 4.7. As remarked in the introduction, we do not know if the set PðGqÞ
contains a stable set in the sense of Hillas.
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