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CLOSURE PROPERTIES OF INDEPENDENCE CONCEPTS 
FOR CONTINUOUS UTILITIES 

BERNHARD VON STENGEL 

This paper examines nine independence concepts for ordinal and expected utilities: utility 
and preference independence, weak separability (a uniqueness of nonstrict conditional 
preferences), as well as generalizations that allow for complete indifference or reversal of 
preferences. Some of these conditions are closed under set-theoretic operations, which 
simplifies the verification of such assumptions in a practical decision analysis. Preference 
independence is closed under union without assumptions of strict essentiality, which are 
however necessary for closure under differences of preference independence and its men- 
tioned generalizations. The well-known additive representation of a utility function is used, in 
a corrected form with a self-contained proof, to show closure under symmetric difference. 
This generalizes a classical result of Gorman (1968), and supplements its proof. Generalized 
utility independence has all, whereas weak separability has no closure properties. An 
independent set of any kind is utility or preference independent if this holds for a subset. 
Counterexamples are given throughout to show that the results are as strong as possible. The 
approach consistently uses conditional functions instead of preference relations, based on 
simple topological notions like connectivity and continuity. 

1. Introduction. Notions of independence or "separability" have been investi- 
gated in a number of economic settings. They are important for the analysis of 
decisions under certainty and uncertainty (cf. Fishburn [11], Keeney and Raiffa [17]) 
and for measuring preferences (cf. Krantz et al. [19]), or for problems of aggregation 
and decentralization (cf. Blackorby, Primont and Russell [4]). Closure properties, in 
particular with respect to the set-theoretic operations union, intersection and differ- 
ence applied to overlapping sets of essential variables, are of practical importance if 
independence assumptions have to be verified, for instance in order to use a specific 
representation of the utility function (cf. [10], [17]). From a theoretical point of view, 
closure under the mentioned operations leads to a unique hierarchy of "independent 
attributes" with a corresponding functional decomposition. This hierarchy can be 
denoted by a "utility tree" for utility functions (Gorman [14, pp. 373ff]), which can 
also be applied to expected-utility functions (von Stengel [27]), and which is, more 
generally, given by a "composition tree" for quite a number of settings in combinato- 
rial optimization (M6hring and Radermacher [23]). (Interestingly, a typical, rather 
simple argument taken from general topology-Lemma 10 below-can in the present 
context be used to establish this composition tree; the closure under symmetric 
difference is not needed in the general model [23, p. 329], and its proof requires more 
complicated methods; cf. Theorems 21 and 22 below.) We focus here on the closure 
properties alone; the main results are indicated in the abstract. 
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INDEPENDENCE CONCEPTS FOR CONTINUOUS UTILITIES 

Most of the concepts are defined in Fishburn and Keeney [12], whose terminology 
we use. The functional equations that define the independence concepts are given in 
?2; representations with conditional functions and the use of continuity are stated in 
?3. Predominantly technical material has mostly been deferred to appendices. We 
systematically investigate all set-theoretic operations for each single concept in ?4, ?5 
and ?6, and the relationship between any two concepts for the special case of 
comparable sets in ?7. We have not surveyed all operations between sets of any two 
concepts, although most theorems and counterexamples have been designed to 
capture as many results in this direction as possible. ?7 will be of help to the reader 
interested in this, and the spirit of the counterexamples (which are somewhat similar 
to the examples of Fishburn and Keeney [12, pp. 304ff]) should be clear. They have 
been constructed with the aid of the proofs (and vice versa, as usual), which suggests 
that the latter are rather canonical; for instance, Counterexample 24 is a near miss of 
a disproof of Theorem 19. 

The present paper also relates very closely to Gorman [14] and seems to give the 
first correct proof of a main result of that paper. The following connections to [14] 
should be stressed: the closure under union for the condition of preference indepen- 
dence as well as its "weaker" form WPI (s.b.) holds without strict essentiality. It can 
be proved without the additive representation and the "Cauchy-equation" used in 
[14, p. 372], [4, p. 132], and furthermore holds even if this representation does not 
exist (Counterexample 23 below). So this closure condition conveniently replaces one 
of the three main steps in Gorman's proof; the closure under differences, given strict 
essentiality, is here proved as there. The third step for the symmetric difference, in 
[14] also needed for the union, uses a theorem about associative functions, however in 
a stronger form than actually proved by Aczel [1, p. 312], which is cited in [14, p. 371], 
[4, p. 129] as the source for this theorem. This is pointed out in detail in Appendix E; 
the reason is that the respective functions need to be bijective in each argument 
("invertible" in [1]), but are here only injective (cancellative), not necessarily surjec- 
tive. An example is a utility function that is a sum of three real variables ranging in 
finite intervals. Nevertheless, Gorman's theorem is true, actually if and only if the 
result ascribed to Aczel holds, and it is proved in full in Appendix E. Nearly all of the 
technical aspects needed to establish the additive utility function are given there, 
which may be of interest to some readers. 

A few general mathematical methods are used rather uniformly in the proofs. We 
employ functional representations with conditional functions (Lemma 4), which are 
convenient when applying several independence assumptions. In fact, Lemma 6 states 
that a functional representation in terms of a "subutility" function with arbitrary 
reference vector entails the constraints of strict monotonicity given by preference 
independence (compare [4, p. 56f]). We should like to mention that, for general 
multiplace functions, decompositions solely into suitable conditional functions lead 
naturally to closure properties as considered here, but under certain stronger condi- 
tions. This theory is described in von Stengel [28] and sketched further following 
Proposition 16 below. Conditional preference relations are used only in Appendix A 
to provide a simplified version of weak separability. 

The assumptions about the domain of the utility function can be kept very general. 
Instead of finite-dimensional Euclidean spaces [12] or visualizations with "indif- 
ference curves" or "isoquants" [20], we use mere topological connectivity (like 
Debreu [8], [9]), which suffices throughout and is necessary in the important cases (cf. 
Counterexamples 13 and 27). This is also more general than the arcconnectivity 
assumed by Gorman [14, p. 367]. An exception is the assumption of topological 
separability for the existence of a utility function (cf. Appendix A), which is however 
not used in proofs. This condition is essentially implicit if one assumes that the given 
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preference relation is represented by a real-valued utility function; compare Wakker 
[29, p. 106]. Only the basic notions of general topology (cf., e.g., Kelley [18]) are 
employed; there is no need to use arcs, sequences, limits, convexity or even differen- 
tiability. Instead, almost every argument can be carried out considering the ranges, 
generally intervals, of real-valued functions in suitable representations. The most 
involved notion is that of compactness of a real interval in the proofs of Lemma 10 
and Theorem 21. 

The investigation of the assumption of strict essentiality is somewhat incomplete. 
This condition is treated here mainly because corresponding statements have been 
made in the literature, in particular [14, Theorem 1]. In Mak [21], strict essentiality 
for all variables is crucial in deriving closure properties for weak separability [21, 
p. 259]; see also [22]. In comparison, our assumptions are much weaker, and possible 
reversals of preferences are also considered, which however do not lead to greater 
generality (compare Counterexamples 14 and 17 and the second paragraph of ?6). A 
useful tool in using strict essentiality seems to be Lemma 10, as demonstrated in the 
proof of Theorem 19. 

Also, it is open whether separate continuity of the utility function in its individual 
variables would be a sufficient general condition, as mentioned in the beginning of ?3. 
Conceivable counterexamples to joint continuity would have been too arcane, though. 
Finally, the fact that most of the counterexamples are fairly simple might suggest 
even more general independence concepts with new closure properties. Since these 
counterexamples employ functions that are piecewise affine in each variable, such an 
approach would however involve divisions of domains not only into subspaces, but 
into subsets of coordinate axes, which is clearly beyond the scope of this paper. 

As concerns notation, we have tried to use the letters of the alphabet and not the 
popular hats, stars and overbars to distinguish between different objects, with an 
attempt to use at most one prime or subscript. Instead of using superscripts, fixed 
elements are denoted by numerals 0, 1,2, etc. (as in [14, p. 367]), since these are 
immediately recognized as constants. They are elements of abstract sets, and should 
be easily distinguishable from numbers that are used at the same time to count (in 
subscripts of y0, Y1,.. ., say). Furthermore, primed variables tend to be more fixed 
than naked ones, but this will always be indicated; note also the remark following 
Definition 1. A dot as in g[ , y] stands anonymously for a single argument of a 
function that results from a function (here g) of several variables if all variables but 
this one are fixed (at y), as stated in Definition 1. 

2. Definitions and summary of closure properties. We assume a finite set M is 
given, whose elements, which we simply call coordinates, may be used to index, for 
instance, given attributes, goods or time periods. For each i e M let Si be a 
nonempty, topologically connected set (e.g., a real interval), whose elements may 
correspondingly denote possible attribute levels or amounts of consumption. Given a 
set A of coordinates, define SA = I ASi to be the space spanned by the corre- 
sponding "coordinate axes" Si, i e A, equipped with the usual product topology and 
therefore also topologically connected. No particular ordering of the coordinates shall 
be assumed, so that they may be arranged into groups as it is suitable: given a 
partition , of M (that is, a set of nonempty, pairwise disjoint sets whose union is 
M), we can postulate 

SM=- H SB. 
Beg 
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As a special case, if M is the disjoint union of the sets A and B with 9= {A, B}, 
this postulate says SM = SA X SB. 

The set SM may be interpreted, for instance, as the "outcome space" of a decision. 
It is here the domain of a so-called utility function [4], [14] 

f: SM ->R 

(also called ordinal utility function or "value function" [171) that represents a 
preference relation for sure prospects. The concepts defined below apply to this 
preference relation, which we will however not consider further: it is merely impor- 
tant to note that a utility function is unique only up to strictly increasing transforma- 
tions, that is, any concept defined in terms of f must also apply to the function 
mapping x E Sm to Ob[f(x)], where (3: F -> R is a strictly increasing function on the 
image F of f. We assume that a utility function exists that, additionally, is also 
continuous: conditions for its existence are given in Debreu [8] (cf. also Appendix A). 
The image of the continuous function f: SM -- [R is an interval since SM is connected 
by assumption. We also assume usually that all coordinates are essential (with respect 
to f), that is, for i E M, B = M - {i} there are elements y E SB and x, x' E Si such 
that f(x, y) - f(x', y) (arranging coordinates such that SM = Si X SB); this is a 
nugatory assumption since, for inessential coordinates i, the set SB = SM-i can 
serve as a domain for f instead of SM (i.e., inessential variables of f can be dropped). 
Si is called strictly essential [14] if for all y E SB there are x, x' E Si with f(x, y) : 
f(x', y). 

Some concepts require the more restrictive interpretation of f as a so-called 
expected-utility function. Then a preference relation is given on a set of probability 
distributions over outcomes, and the expectation of f represents preferences. An 
expected-utility function is unique up to strictly increasing affine transformations. 
Usually, properties of an expected-utility function that are implied by given condi- 
tions of so-called "utility independence" (s.b.) are purely algebraic in character and 
do not require topological conditions (for instance, Theorems 12 and 22 below; this 
point is stressed further in [27]; for a survey of decompositions of expected-utility 
functions cf. Farquhar [10]). Here, we also suppose continuity in regarding utility 
independence in connection with a concept that also applies to sure-prospect deci- 
sions (cf. Theorem 25 below). Conditions for the existence of a continuous expected- 
utility function on a connected domain are given in Debreu [9, p. 18]. 

For a partition {A, B) of M, SA and SB are topologically connected sets. For 
brevity, let X = S4, Y = SB, thus SM = SA X SB = X X Y. We say X fulfills a certain 
independence concept (where it is understood that X is independent of "of Y" with 
respect to the given function f: X X Y -> R) provided a specific functional represen- 
tation of f(x, y) exists in terms of y E Y and a real value h(x) for x E X, for some 
function h of X. 

DEFINITION 1. Let f: X x Y --> R. In the following definitions, it is assumed that 
functions h: X -> [R and g: H X Y -> [R, where H is the image of h, can be chosen 
suitably such that 

f(x,y) -g[h(x),y] 

holds for x E X, y E Y and such that g fulfills certain properties with respect to its 
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affine UI 
un == WUI 

un = GUI 
un-A 

injective ~ PI un== WPI un= GPI n 
or constant 

WS = GS WII 

T T T T 
strictly increasing monotonic injective 
increasing for some y 

FIGURE 1. Implication Diagram of Independence Concepts, with Restrictions on g[, y] in f(x, y) = 
g[h(x), y]. 

first argument. By g[-, y] we denote the function H -> R that maps h E H to 
g[h, y]. Throughout, y is any element of Y. Then X is called 

PI (preference independent) if g[, y] is strictly increasing, 
WPI (weakly preference independent) if g[., y] is strictly increasing or constant, 
GPI (generalized preference independent) if g[, y] is strictly monotonic (i.e., 

strictly increasing or decreasing) or constant, 
WII (weakly indifference independent) if g[ ,0] is injective for some element 0 

of Y. 
WS (weakly separable) if g[-, y] is (not necessarily strictly) increasing, 
GS (generalized separable) if g[ , y] is monotonic, 
GUI (generalized utility independent) if g[ , y] is affine, that is, g[h, y] = a(y) 

h + b(y) for some a, b: Y -> R, 
WUI (weakly utility independent) if thereby always a(y) > 0, 
UI (utility independent) if thereby a(y) > 0 holds. 
(As notational convention, the ranges for variables or images of functions denoted 

by lower case letters, irrespective of primes or subscripts, shall be those denoted by 
the corresponding upper case letters, if not indicated otherwise.) 

Definition 1 makes sense even if f is not assumed to be continuous on a connected 
domain; we will shortly investigate the implications of this additional hypothesis. In 
Figure 1 we have depicted the various implications that hold between the defined 
independence concepts, which are more or less obvious. To observe that GPI implies 
WII, note that, in f(x, y) = g[h(x), y], the function g[ , y] cannot always be con- 
stant if x is essential (if x is inessential, we can choose h constant, so that g[-, y] is 
trivially injective on the one-point set H; this case shall nevertheless be excluded). 
The prefix "W" (except for "WII", which we named following [12]) indicates that 
g[ ,y] has to be increasing (in the weaker sense) and can therefore also be constant, 
whereas the prefix "G" allows for a change of orientation, that is, g[, y] can be 
increasing as well as decreasing for different y. 

In Figure 1 we have indicated with superscripts under which set-theoretic opera- 
tions the respective independence concept is closed, in the following sense: given 
f: SM---> R and a set A c M of coordinates, a specific independent concept 
either applies to SA or not, viz., if a respective functional decomposition for f: SA X 

SM-A -> R exists or not. Since SA is uniquely identified by A, we also say "A is 
independent" if SA is, and thus investigate whether with independent sets A, B of 
coordinates also A u B, A n B, A - B or AAB = (A - B) U (B - A) are inde- 
pendent. This will generally only hold for overlapping (i.e., intersecting, noncompara- 
ble) sets A, B, if all coordinates in M are essential (which, as mentioned, can be 
assumed without loss of generality). These closure properties are shown in Figure 1 
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under the continuity hypotheses (which can be omitted for UI, WUI and GUI), and 
will be proved below where they are new. We will also give counterexamples for the 
indicated cases that closure properties do not apply, in particular for the concepts 
WS, GS of weak and generalized separability. 

The above concepts have been defined explicitly in the literature (with the excep- 
tion, perhaps, of WUI, WPI and GS), usually with respect to the given preference 
relation the utility function represents. The "utility independence" concepts UI, 
WUI, GUI make sense only for an expected-utility function f since they are not 
invariant under strictly increasing, but only under positive-affine transformations of f; 
for a definition in terms of the represented preference relation over gambles, cf. (for 
example) Fishburn and Keeney [12, p. 297f]. All other concepts apply to utility 
functions and, of course, the more specific expected-utility functions. Preference 
independence of X, also called (strict) separability (Blackorby, Primont and Russell 
[4], Gorman [14]), asserts an independence of the "induced preference relation" on 
the subspace X; cf. Debreu [9, p. 21], Fishburn and Keeney [12, p. 299], Gorman [14, 
p. 367]. For GPI (and WPI in a similar way), cf. Fishburn and Keeney [12, p. 299f]; 
the equivalence of WII with the concept used there will be explained shortly. 

The concept WS of weak separability has been introduced by Bliss [5, pp. 147-151] 
and is named here following Blackorby, Primont and Russell [4, pp. 42-60]. A 
simplified account of their concept is given in Appendix A. 

3. Reference vectors and continuous subutilities. It is well known that if 
f: X x Y -> R is a continuous function on a connected domain, and X is preference 
independent, say, then g and h in the representation f(x, y) = g[h(x), y] can also 
be chosen as continuous functions. In the proofs below, it however suffices to use the 
continuity of the function g[., y]: H -> R for y E Y, on which the restriction (e.g., 
"strictly increasing") is imposed to define the particular type of independence (e.g., 
PI). This separate continuity of g (in its first variable) corresponds to the assumption 
that f(x, y) is continuous in x, as will be shown shortly. Obviously, f(x, y) is 
continuous in y (for fixed x) iff g[h(x), y] is. The separate continuity of f(x, y) in x 
and y follows from joint continuity of f: SM -o> R, where X may be an arbitrary 
subspace SA of SM. If connectivity of Y is not needed, Y may be equipped with the 
trivial topology (and thus be an arbitrary, for instance, finite set), so that f(x, y) is 
trivially continuous in y, and continuity of f is equivalent to continuity of f(x, y) in 
x. In many cases below, we will simply assume that f is continuous, even though 
separate continuity (of f(x, y, z, t) in x, y and z, say) may suffice, if the argument of 
f is split into several parts. 

According to Debreu [9, p. 22], if X is PI, with f(x, y) = g[h(x), y], where f(x, y) 
and h(x) are continuous in x and X is connected, then g[, y]: H -> R is also 
continuous for all y E Y (Gorman [14] assumed arcconnectivity, which is unnecessar- 
ily strong; cf. also the discussion in [15]). This follows from the following, rather 
intuitive lemma; compare also Wakker [33, Lemma 2.1]. 

LEMMA 2. Let g: H ->o , where H is an interval, be monotonic. Then g is 
continuous iff the image G of g is an interval. 

PROOF. A monotonic function on an interval is continuous iff it leaves no gaps. 
The formal details are straightforward. o 

We immediately obtain that, for GS and therefore (cf. Figure 1) for all the 
above independence concepts except WII, g[, y] is continuous provided h and 
f(, y): X -> R are and X is connected, since the images of these functions are 
intervals (note that affine functions are trivially continuous): 
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COROLLARY 3. Let f: X X Y -> R, the set X be topologically connected and h and f 
be continuous, where 

f(x,y) =g[h(x),y]. 

Then if X is PI, PI, , GPI, WS or GS with g, h as in Definition 1, g[, y]: H -o R is 
continuous for all y E Y. 

Lemma 2 also shows that if 4 is a strictly increasing transformation of a continuous 
utility function f: SM -> R, where SM is connected, then ( is continuous on the 
image of f if (and only if) 4[f( )] is; see also Wakker [33]. 

The fact that, in turn, h can be chosen continuous if f(x, y) is continuous in x 
follows for WII (and any stronger concept) from the following lemma. For WS, h in 
Definition 1 can be chosen continuous according to Appendix A; however, we will 
merely show that even if g and h (and thus f) in Definition 1 are restricted to be 
continuous functions on connected domains, no closure properties hold for WS 
or GS. 

LEMMA 4. Given f: X x Y -> R, let 0 be an element of Y and K be the image of the 
function f(f, 0). Then the following statements are equivalent: 

(a) f(x, y) = g[h(x), y] and g[ , 0] is injective for some functions g, h, 
(b) f(x, y) = g'[f(x, 0), y] for a unique function g': K X Y -> 1R. 

These statements remain equivalent if any one of the restrictions given by an indepen- 
dence concept in Definition 1 is imposed on g and g'. 

PROOF. If the equation in (b) holds, then g' is uniquely determined since K is the 
image of f(, 0). The condition (b) implies (a) with g = g' since then g[, 0] is the 
identity idK on K and therefore injective. Here, any restriction imposed on g' applies 
obviously to g. 

Conversely, suppose (a) holds. Let H be the image of h. Since f(x, O) = g[h(x), 01], 
the image of the injective function g[., 0] on H is K. Let 4: K -> H be the inverse of 
this function. Then 

h(x) = b(g[h(x),O]) = 0(f(x,0)) and 

f(x, y) =g[ ( f(x,0)),y] =: g'[f(x,O),y], 

which shows (b). If a restriction given by a concept of Definition 1 is imposed on g in 
(a), it applies to g' in (b) for WII since g'[, 0] = idK. For GS, which subsumes the 
other concepts, note that in this case the function g[', 0] is monotonic and therefore 
strictly monotonic because it is injective. If g[, 0] is affine, strictly increasing or 
strictly monotonic, then so is its inverse b, and these properties, as well as being 
simply increasing or monotonic or constant, carry over, correspondingly, from g[, y] 
to g[b(-), y] = g'[l, y] for all y. a 

If X is WII, the asserted injectivity of g[, 0] thus implies that 0 E Y is a suitable 
reference vector, so that the conditional function f(, 0) (which is called "subutility" 
function in [14, p. 368]) can be used instead of h in Definition 1. The equation in 
Lemma 4(b) also shows the equivalence to Fishburn and Keeney's definition of WII 
[12, p. 297]. If f(x, y) is continuous (it suffices: in x), f(, 0) is continuous, too. For 
WII itself, this does not yield continuity of g[-, y] since no monotonicity constraint is 
imposed on this function; neither will such a condition be necessary in the application 
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of WII (in particular Theorem 25 below). However, this holds for the next stronger 
concept GPI: 

COROLLARY 5. Let f: X X Y -o> R be continuous, where X is topologically con- 
nected. Let X be GPI and let 0 E Y be such that the function f(-, O) is not constant; 
that is, its image is a nondegenerate interval K. Then 

f(x,y) =g[f(x,0),y] 

holds with a function g: K X Y -> R, where g[, y]: K -> lR is continuous and either 
strictly monotonic or constant, respectively. 

PROOF. With f(x, y) = g[h(x), y] as in Definition 1 where X is GPI, the function 
g[t , 0] is not constant if f(*, 0) is not constant and thus strictly monotonic and thereby 
injective. The claim follows from Lemma 4 and Corollary 3. o 

Lemma 4 can in general not be applied to the concepts WS or GS, since if g[-, y]: 
H -> R is always monotonic, and even if for any h, h' E H with h < h' there exists 
y E Y with g[h, y] < g[h', y], then g[., y] may nonetheless never be injective, that is, 
no suitable reference vector exists (otherwise, these concepts would imply WII). 

Applied to preference independence PI, Lemma 4 shows that an arbitrary refer- 
ence vector can be chosen (cf. also [4, p. 56]). Let this vector be denoted by a new 
variable y' E Y instead of 0. In Lemma 4(b), the function g' depends in general on 
the choice of y'; this can be expressed by adding y' as an additional argument to a 
new, single function, call it g again: 

f(x,y) =g[f(x,y'),y',y]. 

Whenever the variable y' is fixed (note that it does not appear on the left-hand side), 
the old equation of Lemma 4(b) is given. The domain of g is here a subset of 
F x Y x Y, where F is the image of f: if y' is fixed, f(., y') does not necessarily take 
all the values of f. So let g[k, y', y] be defined for all y, y' E Y and all k E F such 
that k = f(x, y') for some x E X. Interestingly enough, this functional equation is 
already sufficient for X to be PI, provided X and Y are topologically connected and 
f(x, y) is continuous in x and y. In other words, given these topological conditions, 

PI <> WII with arbitrary reference vector 0 

(compare this also with the assertion "GPI I* II" in Fishburn and Keeney [12, 
p. 300f] for convex X, Y). This is asserted by the following lemma which is proved in 
Appendix B. 

LEMMA 6. Let X and Y be topologically connected and f: X X Y -* R be continu- 
ous. Then 

f(x, y) -g[f(x, y'), y ] 

holds for some function g if and only if X is PI. This equation implies that the function 
gE , y ]: K(y') -* R is continuous and strictly increasing, where K(y') is the image of 
f(, y'), and that g[l, y, y] is the identity on K(y); if X is UI, then, in addition, 
g[, y', y] is affine. 

4. Closure under union. Let f: SM -> [R be the given utility function and assume 
that all coordinates in M are essential. Then, for different sets A, B c M of 
coordinates, the independence of SA and SB (for a given concept) may entail the 
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FIGURE 2 

independence of the spaces corresponding to the three coordinate sets A- B, 
A n B, B -A and their unions AAB, A U B. The only case with interesting 
consequences will be given if all these three sets are nonempty (and thus contain 
essential coordinates), i.e., if A and B overlap. For shorthand, we write X = S_B, 
Y= SAnB, Z = SB-A and T= -SM(AUB) and thus consider f(x, y, z, t) with essen- 
tial variables x, y, z. The set T may contain only the empty vector () if T = So, i.e., if 
A U B = M; otherwise, t is also an essential variable of f(x, y, z, t). 

To show that indeed only overlapping independent sets A, B of coordinates can 
have closure properties, we consider the alternative cases that A, B are comparable 
or disjoint. The respective counterexamples we consider in some detail, since other, 
more complicated ones further below are constructed by similar methods. Assume B 
is contained in A, i.e., Z = So above. So, let f: X X Y x T --> and X x Y and Y 
be independent; the only relevant question is whether X = SA_B is also independent. 
We show that even given the strongest independence assumption UI (cf. Figure 1) for 
X x Y and Y, neither WII nor GS has to hold for X, so no closure properties apply 
to comparable independent sets; in particular, no independence concept is closed 
under complements. We let T be inessential, so f: X x Y --> , and X x Y is trivially 
UI since f(x, y) = g[f(x, y), ()], where g[ , ()] is the identity idF on the image F of 
f and thus positive-affine. 

COUNTEREXAMPLE 7. There is a continuous function f: X X Y -> R with intervals 
X, Y, such that Y is UI but X is not WII. 

PROOF. Consider a function with values as indicated in Figure 2. 
Since only two values for y are given, we can use linear interpolation to obtain a 

function that is affine in y E [0, 1] = Y. The two rows of the table we can extend to 
two continuous functions p, q of x E [-1, 1] = X, e.g., p(x) = Ixl and 

q(x) =(2 
for x <0, 

2 + x for x >0 

(piecewise definitions we usually give in such a way that they are defined twice on the 
border point, here x = 0, with the same value, here q(0)= 2, thus automatically 
obtaining continuity). The resulting function is f(x, y) = p(x) + (q(x) - p(x)) ? y 
(cf. Figure 2), and since the coefficient of y is given by 

q(x)-p(x) =J2 -xl for -1 <x < 0, 
q(x) P(X)J 2 for 0< x <1, 
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i.e., is always positive, it is assured that Y is UI. The idea is that f(x, y) cannot be 
expressed in terms of f(x, y') for any fixed y' E Y, i.e., no representation 

(1) f(x, y) =g[f(x, y'), y] 

exists, which would be the case if X were WII by Lemma 4, for the following reason: 
for any two different x, x' there exists y with f(x, y) f(x', y), so that f(*, y') 
would have to be injective if (1) were to hold. But this is not the case for any y', as is 
easily seen from Figure 2: to be precise, observe that 

f(-1, y') = 1 + (2 - 1) y' = 1 -y' + 2y' =f(1 -y',y') 

(cf. the bold lines in Figure 2), so with (1) we would obtain 

2=q(-1)=f(-1,1) =g[f(-1,y'),1] 

-g[f(1 - y', y'),1] =f(1 - y', 1) = q(1 - y') = 3 -y' 

or y' = 1; but this choice of y' in (1) is certainly not possible since then f(., y') = 
f(, 1) = q and q is constant for negative arguments. Thus X is not WII. The 
counterexample is constructed to obtain certain global properties of the function: 
p(x) and q(x) could have been chosen as polynomials to complete the above table 
(with somewhat more complicated computations to show a specific contradiction), so 
conditions of differentiability would not change the matter. a 

COUNTEREXAMPLE 8. There is a continuous function f: X x Y -> R with intervals 
X, Y, such that Y is UI but X is not GS. 

PROOF. The scheme is similar: take the table 

f(,y) -1 1 

0 0 1 2 
y 

1 3 4 3 

interpolate with p(x) = x + 1 < q(x) = 4 - x2 for -1 < x < 1 so that f(x, y) = 
p(x) + (q(x) - p(x)) y for 0 < y < 1, where Y is UI. The table suffices to see that 
X is not GS: f(, O) increases but f(, 1) partly increases and decreases. So, with 
f(x,y) = g[h(x), y] and h(- 1) < h(O), say (h(- 1) # h(0) is necessary), the function 
g[, 0]-assumed to be monotonic-would be increasing, thus h(0) < h(1); but the 
inequality f(- 1, 1) < f(0, 1) shows that g[-, 1] also increases, with f(0, 1) < f(l, 1) in 
consequence, which is not true. D 

If the sets of coordinates A and B are disjoint and SA and SB are independent, it 
is merely interesting whether the space SAUB that corresponds to their union is 
independent, too, since there are no additional sets given by their intersection, 
differences or symmetric difference. The intersection of two disjoint coordinate sets 
corresponds to the space So with a single element ( ) which can be regarded as the 
value for an additional inessential variable. Similarly, the converse holds: if 
f: X x Y x Z x T - -> is given and y is inessential with respect to f(x, y, z, t), the 
independence of X x Y and Y x Z is equivalent to that of X and Z, regarding 
f(x, z, t) only, since y can be dropped. So any overlap must be regarded with respect 
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to essential coordinates. For no type of independence, any closure properties hold for 
disjoint independent sets: 

COUNTEREXAMPLE 9. There is a continuous function f: X X Z X T --> R with 
intervals X, Z, T, such that X and Z are UI but X X Z is neither GS nor WII. 

PROOF. Consider the function f: X x Z x T - R with X = Z = R and T = [1, 2] 
given by 

f(x, z,t) = t x + (3 - t) z. 

Here, X and Z are certainly UI. For x, z = 0, 1 and t = 1, 2 we have 

t=1 t=2 

f(x,z,t) x x 

0 1 0 1 

0 0 1 0 2 
z 

1 2 3 1 3 

This shows X x Z is not GS, since no total order on X x Z can be established that is 
independent of t E T: if f(x, z, t) = g[h(x, z), t] with monotonic g[-, t], then g[, 1] 
and g[, 2] would have to have the same orientation since both f(0, 0, 1) < f(1, 1, 1) 
and f(0, 0, 2) < f(1, 1, 2) hold; but, in contrast, f(O, 1, 1) > f(1, 0, 1) and f(O, 1, 2) < 
f(1, 0,2). 

To show that X x Z is not WII, assume, to the contrary, that for some fixed 
t' E T, f(x, z, t) = g[f(x, z, t'), t] according to Lemma 4. Geometrically regard- 
ed, the graph of the function f(x, z, t') of x, z is a plane that is tilted-depending 
on the value of t'-around the line given by {f(x, x, t')lx E X}. The solutions of 
f(x, z, t') = constant in X x Z are lines which depend on t': with constant = 1, for 
instance, we obtain f(1/t', 0, t') = f(O, 1/(3 - t'), t'), which would imply f(1/t', 0, t) 

f(0, 1/(3 - t'), t) for all t, or 

1 1 3 - t' 3 - t 
tT = (3 - t) 3_t resp. t' = t 

which is not true for t = t'. So X x Z is not WII. o 
We now proceed to investigate closure under union of overlapping sets of coordi- 

nates for the different independence concepts. First, we will prove it for PI and WPI, 
using the following lemma, which has additional applications further below. 

LEMMA 10. Let Y, Z be nonempty topologically connected sets, k: Y x Z -> , 
k(y,z) be continuous in y and z and A, B be two elements of the image K of k, A < B. 
Then K is an interval, and at least one of the following cases holds: 

(a) there is an element zo of Z such that the function k(, zo) takes a constant value 
C, where A < C < B, or 

(b) with I(z) defined as the interval that is the image of the continuous function 
k(., z) for z E Z, A and B are linked by a finite chain of such intervals, more precisely: 
there are elements zO, 1,..., zn of Z (n > O) such that A E I(zO), B E I(zn) and 

I( zi) I( zi+ 1) has nonempty interior for 0 < i < n. 
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The proof is given in Appendix C. Lemma 10 is concerned with "partial images", 
that is, with the images of the conditional functions k(', z) for a separately continu- 
ous function k of two variables that are given if one of the variables is fixed (at z). 
These images I(z) exhaust the image of k, since k(y, z) E I(z). In case (a), I(z) is 
for some z degenerated to a one-point set {C}. Case (b) states that if this is not the 
case, finitely many of successively intersecting such images connect two arbitrary 
images A and B under k; the fact that the intersections contain at a time not only 
one point but a whole neighborhood of it (and therefore several different points) will 
be useful later. 

The following theorem has been given under stronger hypotheses by Gorman [14, 
p. 372], in particular with strict essentiality of z for f(x, y, z, t), using an additive 
representation like in Theorem 21 below that depends on t. Our proof is independent 
of such a representation, which may not exist under the weaker hypotheses; an 
example is the function f(x, y, z) + t for t E IR with f as in Counterexample 23 
below. Gorman [14, p. 367] also assumed arcconnectivity, which is not necessary; also, 
this condition does not seem to produce additional positive results since in the 
counterexamples below, coordinate axes are intervals which are arcconnected and 
even convex. A second assumption in [14] is topological separability, which is here 
essentially implicit in considering a real-valued utility function instead of a preference 
relation [29, p. 106], as mentioned in the introduction. In the following theorems, only 
those variables are assumed to be essential for which this is necessary (note that 
Theorem 11 is of a certain interest even if z is inessential; compare Proposition 28 
below). 

THEOREM 11. Let X, Y, Z be topologically connected, f: X X Y X Z X T -~ R be 
continuous, where y is essential for f(x, y, z, t), and let X x Y be GPI. Then if Y x Z is 
PI or WPI, so is X x Y x Z. 

PROOF. Let-according to Definition 1- 

(1) f(x, y,z,t) = g[h(x, y),z, t] 

j[x,k(y,z),t], 

where g[, z, t] is strictly monotonic or constant, and j[x, , t] is strictly increasing or 
constant, the latter only if Y x Z is WPI but not PI. By Corollary 5, g and h can be 
chosen such that, for suitable 0 E T, 1 E Z, 

(2) h(x,y) =f(x,y,1,0), 

where f(x, y, 1, O) is not a constant function of x, y. In particular, since y is essential, 
f(2, * ,1, O) is not constant for suitable 2 e X, and, again by Corollary 5, k and j can 
be chosen such that 

(3) k(y,z) =f(2,y,z,0). 

With these choices, each of the functions g, h,j, k is, in its first two arguments, 
separately continuous on a connected domain; this holds for the real-valued argu- 
ments because of Corollary 5, and otherwise because of the properties of f: for 
instance, the function g[h(x, y), , t] is continuous because it equals f(x, y,, ,t). 

Our goal is, first, to show for all t 
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by means of the specialized versions with z = z' and x = x', viz., 

(5) f (x, Y, z, 0) = f ( x , yt' Z 0) (x, Y, Z, t) = f (x', Y" z, t), 

(6) f(x, Y, z,0) = f(x, y',z',0) f(x, y, Z, t) = f(x,y', z',t). 

These last implications hold for the following reason: let f(x, y, z, 0) = f(x', y', z, 0). 
If gA , z, 01 is strictly monotonic, it is injective, i.e., h(x, y) - h(x', y') by (1) and 
therefore also f(x, y, z, t) = f(x', y', z, t). For constant gA , z,0, Af(27,z, 0) is 
constant by (1), which is equal to k(-, z) by (3), so j[2, k(-, z), tI = f(2, , z, t) = 
g[h(2, . ), z, t] and g[-, z, tI is constant (it would be injective otherwise) because 
2 E X was chosen such that h(2, ) = f(2, , 1, 0) is a nonconstant function on Y; so 
in this case, (5) holds, too, irrespective of the values of h(x, y) and h(x', y'). 
Similarly, because Y x Z is also GPI, .(6) holds, too. 

To show (4), let f(x, y, z, 0) - f(x', y', z', 0) and A = k(y, z), B = k(y', z'), where 
w.l.o.g. A < B. The assumptions of Lemma 10 are met. We first treat the case that 
(a) holds in this lemma, i.e., k(-, zo) C for some z0 E Z, A < C < B. Then, since 
ifx', ,01 and j[x, ,0] are increasing, 

i[xi, C, 0] if[x', B,01 = f(x', y, Z,0) 

f(x, Y, z,0) =i[x, A,0] <ij[x, C, 0]. 

Because j[, C, 0] f(-, y0, zo, 0) (for some arbitrary yo), which is a continuous 
function on the connected set X, j[x0, C, 01 = f(x, y, z, 0) holds for some X() e X. 
We have actually proved-and will use again-: 

A<k(yy, zo) <B 

(7) f(x,y,z,0) =f(x0,y0,z0,0) 

f(x',y,z',U0) forsome X0 EX. 

Since k( ,z0) = g[h(2, ), z0, 01 is constant, gL , z0, 01 is constant, so we note 

f(x, y, z, 0) = f(x, y, z0,0) = f(x', y', z0,0) f(x', y', z',0), 

and every single equality holds also with t instead of 0, because of (6), (5), (6), that is, 
f(x, Y, Z, ) =- f(x', y', z, t). 

In the situation of Lemma 10(b), consider first the simplest case n = 0, i.e., A and 
B are in the common image 1(Az) of k(-, z0) for some zo e Z (in particular for 
A = B): let k(y, z) - k(a, z0), k(y', z') = k(b, z0) for suitable a, b E Y. Then obvi- 
ously 

f(X, y, z,0) =f(X,Ia, z0,0), 

f (x', y', z', 0) f (x) b, z(, 0), 

thus 

f (X, a, z(, 0) f (X/, b I zo, 0), 

and these equations carry over from 0 to t, by (6), (6), (5), i.e., f(x, y, z, t)= 
f(x', y', z', t). If A - k(a, z0), B - k(b, zn) for n > 0, let C be a common point of 
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the intervals I(zo), I(z), which can obviously be chosen such that A < C < B: let 
C = k(y0, zo) = k(yl, zl). By (7), there exists xo E X such that 

f(x, y,z,0) = f(x,a, zo,) =f(xo, y, zo, 0) = f(xo, y1,Z,0), 

which implies 

(8) f(x, y,z, t) = f(x,yl,Z,t) 

by (6), (5), (6). The proof of (4) is now easily completed by induction: if n = 1, then 
C = k(yl, z) and B belong to a common interval I(z,), and f(x, y1, z, t)= 
f(x', y', z', t) as before, which shows f(x, y, , t) = f(x', y', z', t) by (8). Otherwise, C 
and B are linked by a chain of n intervals where A and B are linked by n + 1 many 
ones, and the reasoning can be repeated (generalizing (8) to f(x, y, z, t) = 
f(xi_l, yi, zi, t) for 1 < i < n), to finally prove (4). 

With (4) thus shown, it is possible to define unambiguously a function q: P x T -R 
with 

(9) q[f(x,y,z,O),t] =f(x,y,z,t), 

where P is the appropriate subset of the image F of f. We will show, without 
difficulty, that q[, t] is either strictly increasing or constant. The values t E T such 
that q[-, t] is constant are given as follows: suppose j[2, *, t] is constant, which is only 
possible if Y x Z is WPI. Then, for some c e R, 

c = f(2,y,z, t) forall y,z, 

= g[h(2,y),z,t] forally,z, 

which implies g[., z, t] is constant because h(2, ) is a nonconstant function on Y. 
Thus we can continue 

c =g[h(2,y),z,t] for all z, 

=g[h(x,y),z,t] forall x,y,z, 

=f(x, y, z, t) for all x, y, z, 

or q[, t] - c in (9). 
Let therefore, for the rest of the proof, t E T be given such that j[2, *, t] is strictly 

increasing; this is true for all t if Y x Z is PI. Then if g[, z, 0] is strictly increasing 
or decreasing, g[, z, t] has the same orientation: for, let, for some a, b E Y, 
h(2, a) < h(2, b) hold (note h(2, ) is not constant), and assume g[, z, 0] is increas- 
ing, i.e., g[h(2, a), z, 0] < g[h(2, b), z, 0]. This entails the following inequalities: 

f(2, a, z,0) < f(2, b, z,0) by (1), 

k(a,z) < k(b,z) by (3), 

j[2,k(a,z),t] < j[2,k(b,z),t] by assumptionon j[2, t], 

g[h(2, a),z,t] < g[h(2, b),z,t] by(1). 

So g[, z, t ], which is strictly monotonic or constant, is indeed increasing; for strictly 
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decreasing g-, z, 0], the same reasoning with < reversed to > shows that g[, z, t] 
is strictly decreasing, too. 

With z = 1, this implies g[-, 1, t] is strictly increasing since g[ , 1, 0] is the identity 
according to (1), (2). The former reasoning-dually, with g and j, x and z and 2 and 
1 interchanged-then shows that j[x, , t] strictly increases if j[x, , 0] does. In total, 
we obtain 

(10) f(x,y,z,) <f(x',y', ) f(x,y, z, t) <f(x',y', z,t), 

(11) (X, , , 0) O)< (X, y' z',0) f(x y, z, t) < f(x y' z', t), 

that is, in analogy to (5) and (6), inequalities for fixed z or x carry over from 0 to t. 
To show that q[., t] is strictly increasing, let f(x, y, z, 0) < f(x', y, z 0). If 

k(y, z) < k(y', z'), we distinguish two cases according to the value of f(x', y, z, 0). If 

f(x,y, Z,0) <f(x, y, Z,0) <f(x', y' z' 0) 

(note j[x', * ,0] is increasing), these inequalities carry over from 0 to t. If 

f(x', y, z,) <f(x, y, z,0) <f(x', y', z',0), 

f(x, y, z, 0)= f(x', y0, z0,0) holds for some yO E Y, z0 e Z by continuity of 
j[x', ,0], so by (4) and (11), 

f(x, y,z, t) = f(x', yo, o, t) < (x', y', z, t). 

If k(y, z) > k(y', z'), then 

f(x,y,z,0) <f(x',y',',0) <f(x',y,z,0), 

so f(x', y', z', 0) = f(x1, y , z, 0) for some x1 E X, y E Y by continuity of g[,z, 0z, ] 
and we can analogously infer f(x, y, z, t) < f(x', y', z', t). 

We have thus shown that q[, t ] is strictly increasing or constant depending on the 
respective behavior of j[2, , t], which proves the theorem. [ 

The initial reasoning applied in the proof of Theorem 11 can be used to prove very 
easily closure under union of overlapping sets of coordinates for UI, WUI and GUI. 
For UI, this has been proven earlier by Keeney and Raiffa [17, p. 317] and for GUI by 
Fishburn and Keeney [13, p. 931]. 

THEOREM 12. Let X, Y, Z, T be nonempty sets, f: X x Y x Z x T -- R such that 
y is essential for f(x, y, z, t), and let X x Y be GUI. Then if Y X Z is UI, WUI or GUI, 
so is X x Y x Z. 

PROOF. Consider the proof of Theorem 11 up to equation (3). The assertions 
there only rely on the fact that X x Y and Y x Z are GPI, which holds here, and not 
on topological properties. Let the equations (1), (2), (3) there be given, where g[ , z, t] 
and j[x, , t] are affine according to Lemma 4, and j[x, , t] is increasing or strictly 
increasing if Y x Z is WUI or UI. Substituting (2), (3) and (1) into (1) yields 

(4) f(x, y,z,t) = g[f(x, y,1,0), z,t] 

-j[x,g[f(2, y,l,0),z,0],t] , 
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which for x = 2 implies 

g[f(2,y,1,0),z,t] =j[2,g[f(2,y,1,0),z,0],t]. 

This shows that 

(5) g[, z,t]=j[2,g[, z,0],t], 

since both are affine functions that are uniquely determined if two distinct arguments 
are given, which are provided by the values of the nonconstant function f(2, y, 1, 0) of 
y (y is essential and appears only once, and in this term, in (4)). So (5) asserts an 
identity of functions defined for all real numbers (which is not true under the 
hypotheses of Theorem 11). In consequence, 

f(x,y,z,t) =g[f(x,y,1,0),z,t] 

=j[2,g[f(x,y, ,0),z,0],t] 

=j[2, f(x,y,z,0),t], 

and X x Y x Z shares the independence properties given for Y x Z by the restric- 
tions imposed on j[2, , t]. a 

The conditions of topological connectivity in Theorem 11 apply precisely to the 
coordinate axes that belong to an independent subspace (X x Y or Y x Z), not to 
the remaining coordinates corresponding to T. None of these conditions can be 
omitted, in contrast to Theorem 12 which deals with utility independence concepts. 
This is demonstrated by the following counterexample, where the preference inde- 
pendence assumptions about X X Y, Y x Z and X x Z are symmetric in X, Y and 
Z, so that the missing connectivity of X is representative for any one of these sets. 

COUNTEREXAMPLE 13. There is a continuous function f: X x Y X Z x T -o R, 
where Y, Z, T are intervals, all variables are essential, X x Y, Y x Z and X X Z are PI, 
but X x Y x Z is not even GS, since X is not topologically connected (or X is connected 
but f(x, y, z, t) is only continuous in y, z, t but not in x). 

PROOF. Let Y = Z = T = [0, 1], X = {0,1} and consider the function f defined 
by 

f(x, y, z, t) = (t + 1)(2y + z) + (t + 4)x, 

which has the following table: 

x0 x= 1 

f(x,y,z,t) y y 

0 1 0 1 

0 0 2 [ 6 
t=O z 

1 1 [3 5 7 

0 0 4 [5] 9 
t=l 

2 7 11 1 2 [-] 7 11 

Obviously, Y x Z is UI and therefore PI, which can be seen from the table from the 
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fact that the four squares-given by different values for x and t-look alike in their 
ordering; one can also think of these squares as pieces of planes, for continuous 
choices of y and z in Y X Z = [0, 1]2. Likewise, the four rows of the table-given by 
different values for z and t-show a unique ordering, strictly increasing in x 
(irrespective of the value for y) and in y (for fixed x). So X x Y is PI, and, since the 
same argument applies if z is regarded instead of y, X x Z is PI, too. (Also, X, Y 
and Z are PI, which can be seen immediately or according to Proposition 16 below, 
and so x, y, z are even strictly essential; f could also be modified such that subspaces 
involving T are PI.) Nevertheless, X x Y x Z is not GS since for different values of t 
-cf. the indicated places in the table-there are partial changes in the ordering, for 
example f(0, 1, 1, 0) < f(1, ,0, 0) but f(0, 1, 1, 1) > f(1, 0, 0, 1), whereas, for all t, 
f(O, , 0, t) < f(l, 1, 1, t). 

If X is replaced by the interval [0, 1], the same holds if, in the definition of f, x is 
replaced by 

EX for O < x < , 
u(x ) ex + (1- e) for < x <1, 

with E = 1/10, say, which produces the same table, with only small changes if x is 
varied in [0, ] or (, 1]; of course, u(x) and f(x, y, z, t) are discontinuous functions 
of x in this case. o 

In this section, we have shown closure under union of overlapping sets of coordi- 
nates for all independence concepts stronger than GPI. The next counterexample 
shows that this does not hold for GPI, WII or GS. 

COUNTEREXAMPLE 14. There is a continuous function f: X X Y X Z X T -> R, 
where X, Y, Z, T are intervals, y is essential for f(x, y, z, t), X X Y and Y X Z are GPI, 
but X x Y x Z is neither WII nor GS. 

PROOF. Let X = Z = RI and Y= T = (0, oo), and define f according to 
f(x, y, z, t) = g[x . y, z, t] with 

g[h, z, ]=( h z for z < 0or h < 0, 
g[h,z,t] = lh z - t forz > Oand h > 0. 

g[', z, t] is strictly decreasing (for z > 0), constant (for z = 0) or strictly increasing 
(for z > 0), so X X Y is GPI. Since always y > 0 holds, the conditions x * y < 0 and 
x y > 0 are equivalent to x < 0 and x > 0, respectively, so the entire function is 
given by 

f(x,Y,Zt) x y z for x < 0or z < 0, 
f(x,yz,t) = x y z t forx>Oandz>0, 

which is symmetric in x and z, so Y X Z is also GPI. X X Y X Z is not WII, since 
f(x, y, z, t) cannot be expressed in terms of f(x, y, z, t') (cf. Lemma 4) for any fixed 
t' e T: this would imply f(x, y, z, t') = f(x', y', z', t') ( f(x, y, z, t) = f(x', y', z', t) 
for all t, in particular, 

f(-l, t', -1, t') = t' =f(l,1,, t') => f(-l,t',-1, t) = t' f(,1, t) = t, 

which is not true for t ? t'. 
Furthermore, X x Y X Z is not GS, since 

f(l, ,-1, t) = -1 <f(-1,1,-1, t) =1 for all t, 
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but, for instance, 

f(-1,2, -1,3) = 2 <f(1,1,3) = 3 

and 

f(-1,2, -1,1) = 2 >f(1,1,1,1) = 1. o 

Finally, weak separability WS is also not closed under union of overlapping sets. In 
the literature, the closure property has been stated for PI with an additional 
assumption of strict essentiality for one of the variables (cf. Gorman [14, p. 369]), 
which by Theorem 11 is not necessary. Nevertheless, even with this assumption, the 
respective closure is not given for WS; the question was mentioned, for instance, in 
Blackorby, Primont and Russell [4, p. 134]. However, Mak [21, p. 259], [22, p. 600] 
states this closure property for WS if all coordinates are strictly essential; his methods 
are considerably more complex than our proof of Theorem 11. 

COUNTEREXAMPLE .15. There is a continuous function f: X x Y Z x T ->, 
where X, Y, Z, T are intervals, x and y are essential and z is strictly essential for 
f(x, y, z, t) and X x Y and Y x Z are WS, but X X Y x Z is not GS. 

PROOF. The counterexample is based on Counterexample 9, using the fact that y 
can be (partly) inessential if x, z range in suitable subsets of X, Z. Let X = Z = [R, 
Y = (0, oo) and T = [1, 2], and define 

f-xyz for x < 0, z < 0, 
f(x, y, z,t)= for xz < 0, 

xtz3-t for x > 0, z > 0. 

The function f is continuous and depends always on z, so z is strictly essential. We 
have f(x, y, z, t) = g[h(x, y), z, t], where 

, y = xy for x <0, 
h(x, ) 

(x forx > 0 

(note h(x, y) < 0 is equivalent to x < 0), and 

(-z) . h for h <0, z <0, 
g[h,z,t] = 0 for hz <0, 

htz3- t for h > 0, z > 0. 

g[, z, t] is increasing for all z E Z, t e T, so X x Y is WS. The functions h and g 
are also continuous. Y x Z is WS since f(x, y, z, t) is symmetric in x and z except 
for a necessary replacement of t by 3 - t (both ranging in T = [1, 2]). X x Y x Z is 
not GS, since f(-1, 1,1, t) = -1 <f(1,1, 1, t) = 1 for all t, but (for any y) 
f(l, y, 2,1) = 4 > f(2, y, 1,1) = 2, whereas f(l, y, 2,2) = 2 < f(2, y, 1,2) = 4. o 

5. Closure under intersection. Given two sets A, B of coordinates, where SA 
and SB are independent for some given concept, SA B may be independent as well; 
this is only nontrivial if A and B overlap. In this case, Lemma 4 immediately gives a 
positive answer for any independence concept that is at least as strong as WII (cf. 
Figure 1). The result is very easy and does not even rely on topological conditions. 
(For some cases, the property has been stated previously, as in Gorman [14, p. 370] 
and Keeney and Raiffa [17, p. 316].) 
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PROPOSITION 16. Let f: X X Y X Z X T -> R. Then if X x Y and Y x Z are both 
UI, WUI, GUI, PI, WPI, GPI or WII, so is Y. 

PROOF. Let one of the given independence concepts hold for X X Y and Y x Z. 
Then, according to Lemma 4(b), f(x, y, z, t) = g[f(x, y, 1, 0), z, t] for suitable 1 E Z, 
0 E T, and f(x, y, z, t) = j[x, k(y, z), t], which by substitution yields 

(1) f(x,y,z,t) =g[j[x,k(y,l),0],z,t]. 

Since the function g[j[x, ,0], z, t] shares the restrictions imposed by GPI or any 
stronger concept on g[, z, t] and j[x, ?, t] for all x E X, z E Z, t E T (for instance, 
being affine or increasing), the respective concept holds for Y as well. As concerns 
WII, note that for suitable 3 E X, 2 E T, k can be chosen such that k(y, z)= 
f(3, y, z, 2) holds, which shows that for x = 3, z = 1, t = 2 in (1), the function 
g[j[3, ,0], 1, 2] is the identity and therefore injective. o 

The preceding-rather canonical-proof "by substitution" suggests that the condi- 
tion of WII, which allows this substitution using the representation with a canonical 
function given in Lemma 4(b), is the reason why GPI and all the stronger concepts 
are closed under intersection. As mentioned in the introduction, [28] describes a 
theory of decomposing general multiplace functions into conditional functions. De- 
pending on the considered function, properties like continuity or monotonicity are 
thereby simply inherited and not imposed initially. The important new element is to 
request that not only the function h, but also g in Lemma 4(a) can be obtained from 
f by fixing variables suitably. Dually to Lemma 4(b), this is equivalent to a certain 
surjectivity with respect to single variables, which is here in general missing and needs 
to be replaced by continuity arguments. The additive representation as in Theorem 
21 below is more generally given by a representation with an associative operation, 
whose characterization is a separate matter. A number of elements of this theory are 
already visible in the proofs of Theorems 12 and 21 and of Proposition 16. The main 
technical difficulty is to assert a certain "compatibility" of the reference vectors 
without restricting the considered functions too much. A number of applications in 
Operations Research, like decompositions of switching functions, can be obtained as 
special cases; see [28]. 

Indeed, closure under intersection is not given for WS or GS, the only concepts 
defined here that do not imply WII; the question was posed in Blackorby, Primont 
and Russell [4, p. 120]. For WS, this has been shown by Mak [20, Example 4.2]. 
According to the following observation, this does not change even if reversals of 
preferences are admitted. If all coordinates are strictly essential, however, WS is 
closed under intersection according to Mak [21, ?5]. 

COUNTEREXAMPLE 17. There is a continuous function f: X X Y x Z -> R with 
intervals X, Y, Z, such that X X Y and Y x Z are WS but Y is not GS. 

PROOF. Let X = Y = Z - [-1 1,]. The idea is somewhat similar to Counterexam- 
ple 15: to construct a function f(x, y, z) that is symmetric in x and z, and has 
different behavior in y according to whether x and z are positive or negative. In 
particular, we let f(x, y, z) always be positive for the first quadrant of X x Z (i.e., 
x > 0, z > 0), zero for the second and fourth quadrants (xz < 0) and negative for the 
third one. With f(l, y, 1) = IyI and f(-1, y, -1) = (y - 1)/2 for y E Y, the sub- 
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space Y is not GS (as argued in detail in Counterexample 8). Let 

(max{x,z,(y- 1)/2} for x 0, z < 0, 

f(x,y,z)= i forxz < 0, 
min{x, z, lyl} for x > 0, z > 0, 

which is a continuous function, symmetric in x and z. Then f(x, y, z) = g[h(x, y), z] 
with 

max{x,(y - 1)/2} for x < 0, 
h(x,y) =min{x,lyl} for x >O, 

(note h(x, y) > 0 < x > 0), and 

h min{O, max(h, z}} for z < 0, 
g[hv,zJ] \max{0,min{h,z}} forz > 0. 

The operations min{0, * } and max{O, * }, which are increasing, are used to cut off the 
respective (positive or negative) part of the definition of h(x, y) that is not needed in 
the second (x > 0, z < 0) and fourth (x < 0, z > 0) quadrants of X X Z. Since 
g[, z] is increasing, X x Y is WS, and so is Y x Z. But, as mentioned, Y is not GS. 

6. Closure under set-theoretic difference and symmetric difference. Given two 
overlapping independent sets A, B of coordinates, their set-theoretic differences 
A - B and B- A may be independent, too, as well as their symmetric difference 
AAB. Table 1 gives a survey of these results for the different independence concepts, 
which will be shown in this section. As before, let X, Y, Z denote the spaces 
SA-B,SAnB,SB-A. The abbreviation "s.e." (in the column for Z) means "strict 
essentiality", and a prefixed " " indicates that one cannot necessarily conclude that 
the respective independence property holds. Probably the most interesting result in 
this respect applies to preference independence PI under the assumption of strict 
essentiality of one of the differences, which has been proved by Gorman [14, pp. 
369-373]. It implies that PI holds for the other difference. We have generalized this 
such that-in analogy to Theorem 11--the weaker property WPI or GPI can be 
inferred, too, if this concept applies to one of the given independent sets of 
coordinates. The proof employs Lemma 10, and contains the first part of Gorman's 
proof. The assertion for the symmetric difference is proved, by different methods, 
with the aid of the important additive representation for utility functions that holds for 
overlapping PI sets. As indicated in the introductory section, some amendments of its 
proof in [14] are necessary, which will be given in Appendix E. (The reasoning in 
Blackorby, Primont and Russell [4, p. 115] is nearly identical to the proof of Gorman 
[14], except that the two parts for difference and symmetric differences are also 
presented separately.) 

As already remarked in an earlier paper [27], the differences of overlapping UI sets 
A,B are not necessarily UI, but only GUI, since a change of orientation for 
multiplicatively represented expected-utility functions is possible (cf. Theorem 22 
below). This holds, of course, only if strict essentiality is violated, but A and B can 
even be GUI in this case. In full generality, differences of overlapping PI sets can 
therefore at most be expected to be GPI. Since GUI has the nicest closure properties, 
the same might apply if GPI is regarded instead of PI; this conjecture was the starting 
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TABLE 1 

assumptions conclusions 
XXY YXZ Z X Z XXZ 

UI GUI -GUI, - WUI GUI, - WUI GUI UI 
GUI GUI GUI GUI GUI 
PI PI s.e. PI PI PI 

WPI PI s.e. WPI -GS -mGPI 

GPI PI s.e. GPI GS - GPI 
PI PI -, GS, -1WII - GS, -WII -nWII 

WS,WII PI s.e. -IGS,- WlI --GS, --WII -GS, -WII 

point for the investigations of this paper. It proved false, however: GPI is not closed 
under union (Counterexample 14), and differences of PI (and thus GPI) sets need 
neither be WII nor GS. Furthermore, even with the assumption of strict essentiality 
for one of the differences, closure under differences is not given for WS, GS and WII, 
and neither under symmetric difference, which is also not given for WPI or GPI. (The 
question was posed for weak separability WS in [4, p. 120].) 

The closure under union for overlapping PI or GUI sets simplifies our investiga- 
tions since the "outer" coordinates (here denoted throughout by the subspace T) can 
be dropped. This is stated in the next lemma, which asserts a certain "transitivity" of 
the independence concepts PI and GUI. It is used in the following theorems. 

LEMMA 18. Let X be topologically connected, f: X x Y x T --> and X x Y be PI 
with f(x,y,t) = g[f(x,y,0),t], where g[-,t] is strictly increasing. Then X is 
PI/WPI/GPI if and only if there are suitable functions j, k such that 

f(x,y,O) =j[k(x),y] 

holds, and j[', y] is strictly increasing/or constant/or strictly decreasing, and continu- 
ous if f is continuous. If X x Y is GUI with g[ , t] affine, then X is GUI iff this equation 
holds with affine j[., y]. 

PROOF. The "if' part is given since strictly increasing as well as affine functions 
are closed under composition. The converse is immediate, since if X is PI/WPI/GPI 
(resp., GUI), then the equation f(x, y, z) = j[k(x), y, t], with appropriate restric- 
tions on j[., y, t], holds in particular for t = 0. o 

THEOREM 19. Let X, Y, Z be topologically connected, f: X x Y x Z X T -- R be 
continuous, where x and y are essential and z is strictly essential for f(x, y, z, t), and let 
Y X Z be PI. Then 

(a) if X x Y is GPI, WPI or PI, so is X, and 
(b) it is possible that X X Y is WPI but Z is not GS. 

The proof of this theorem is somewhat technical and has therefore been deferred 
to Appendix D. Its hypotheses are chosen as close as possible to those of Theorem 
11, but need to be stronger; the important additional assumption is that of strict 
essentiality of z. With this assumption, weak preference independence of Y x Z 
(which is admitted in Theorem 11) is equivalent to preference independence, since if 
Y X Z is WPI, with f(x, y, z, t)= j[x, k(y, z), t], where j[x, , t] is either strictly 
increasing or constant, the latter is not possible if z is strictly essential, since for such 
choices of: x E X, t E T, z would not matter. The reader may verify that, with strict 
essentiality of z and (additionally) connectivity of T, Y x Z is also GPI only if it is PI, 
since a change of orientation of j[x, . , t] is only possible if this function is some- 
where constant, by continuity in x and t (as proved for Lemma 6 or Theorem 26 

366 



INDEPENDENCE CONCEPTS FOR CONTINUOUS UTILITIES 

below). In summary, Theorem 19 can be regarded as a statement of closure under 
set-theoretic difference for PI, WPI and GPI, if the other difference is strictly 
essential. 

If strict essentiality of z is dropped, to account for the possibility that Y x Z is 
properly WPI, assertion (b) of Theorem 19-regarded with X and Z 
interchanged-shows that one can no longer infer that X is GS, let alone PI, even if 
X x Y is PI. Furthermore, it also demonstrates that the symmetric difference X x Z 
is not necessarily GPI, since otherwise this would hold for Z by Proposition 16. 
Counterexample 23 below also shows that even if both X x Y and Y x Z are PI, the 
respective inferences fail without strict essentiality of z. 

If in Theorem 19(a), X x Y is PI, X is PI and therefore strictly essential, so that 
the theorem, applied again with X and Z interchanged, yields that Z is PI, too. 
These assertions have been stated by Gorman [14]. As mentioned, the corresponding 
part of his proof ([14, pp. 369-371]; cf. also [4, pp. 115-120]), except for a shortcut 
provided by Lemma 10, appears as part of our proof of Theorem 19 (cf. Appendix D). 

COROLLARY 20. Let X, Y, Z be topologically connected, f: X x Y x Z x T - R 
be continuous, where x and y are essential and z is strictly essential for f(x, y, z, t), and 
let X X Yand Y x Z be PI. Then X and Z are PI. 

Furthermore, the following theorem (stated by Gorman [14, Theorem 1]) yields 
closure under symmetric difference for overlapping PI sets (given strict essentiality), 
since addition is a symmetric operation and increasing in both arguments. Gorman 
[14] employed slightly stronger assumptions mentioned before Theorem 11 above but, 
more importantly, used results on functional equations from [1] incorrectly, as 
mentioned in the introduction. These inaccuracies will be pointed out in the cor- 
rected proof of Theorem 21 given in Appendix E, which seems to be the first correct 
proof of this result. 

THEOREM 21. Let X, Y, Z be topologically connected, f: X x Y x Z x T -* l be 
continuous, where x and y are essential and z is strictly essential for f(x, y, z, t), and 
X x Y and Y x Z are PI. Then there are real-valued continuous functions a, b, c 
(defined on X, Y, Z, respectively) and g, such that 

f(x, y,z,t) = g[a(x) + b(y) + c(z),t] 

holds, where g[, t] is strictly increasing for all t E T. Consequently, X, Y, Z, X x Z 
and X X Y X Z are also PI. 

It should be mentioned that the function g in Theorem 21 cannot necessarily be 
assumed to be the identity function if t is inessential, for instance if f is a product of 
three positive real variables. In that case, one however obtains an additively repre- 
sented utility function by applying to f the inverse of g, which is admitted as a strictly 
increasing transformation. The result can also be applied to a larger number of given 
overlapping PI sets in order to obtain an additive utility function with more than 
three summands (cf. Gorman [14, p. 388]). 

As far as the utility independence concepts UI, WUI and GUI are concerned, the 
function f(x, y, z) = xyz with x > 0, y E [R, z > 0 shows that if X x Y and Y x Z 
are UI, then X and Z are not necessarily WUI, but at most GUI. So UI and WUI 
are not closed under differences or symmetric difference (by Proposition 16) of 
overlapping sets; this holds for GUI, however. Similar to Theorem 21, the result is 
due to a representation with an associative and symmetric binary operation, which is 
here affine in both arguments. 
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THEOREM 22. Let f: X x Y X Z X T -> R, where x, y and z are essential for 
f(x, y, z, t), and let X X Y and Y X Z be GUI. Then X, Z and X Z are GUI. 

PROOF. As before, we can assume w.l.o.g. by Lemma 18 that t is inessential and 
consider f(x, y, z) only, since X X Y X Z is GUI by Theorem 12. According to 
Fishburn and Keeney [13, Lemma 2, p. 932], 4[ f(x, y, z)] = a(x)* b(y)* c(z) holds 
with suitable functions a: X - R,I b: Y -X C, c: Z - Rl, where * is either addition or 
multiplication, and <4: R -> is an invertible affine transformation, which can be 
omitted if * is addition. Since, in either case, * is associative, and affine in both 
arguments, X and Z are GUI, and, since * is also a symmetric operation, X x Z is 
GUI. (This is more or less the original proof by Keeney and Raiffa [17, pp. 316-318], 
which however disregards a possible change of orientation if * is multiplication, so 
UI has to be replaced by GUI there; cf. also [27, Theorem 8].) u 

We conclude this section with the remaining negative results listed in Table 1. 

COUNTEREXAMPLE 23. There is a continuous function f: X x Y x Z -o R with 
intervals X, Y, Z, such that x, y and z are essential for f(x, y, z), and X x Yand Y x Z 
are PI, but both X and Z are neither GS nor WII. 

PROOF. Let X= Y= Z = lR, and a, b: R --> R be defined by a(r) = 11 - r + 
1 > 0 and b(r) = I1 + r + 1 > 0 for r e R. The function f defined according to 

f(x,,z) a(x) y a(z) for y <0, 
b(x) 'y b(z) for y > 0, 

is continuous and symmetric in x and z. X x Y (and thus Y x Z) is PI since 

a(r) . s for s <0, 
f(x, y, z) = g[h(x, y), z] with h(r, s) = g[s, r] b(r) s for s > 0, 

(note h(x,y) < 0 = y < 0), where g[-,z] is strictly increasing. X is not GS: 
f(x, -1, 1)= -a(x) and f(x, 1, -1) = b(x), and these two functions cannot be 
expressed as monotonic transformations of one single function, since both -a(O) = 
-2 < -a(1) = -1 and b(0) = 2 < b(1) = 3, but -a(1) > -a(2) = -2 and b(1) < 
b(2) = 4. If X were WII, f(x, y, z) should be expressible in terms of f(x, y', z')-for 
some fixed y', z'-and y, z by Lemma 4. The term f(x, y', z') is a multiple either of 
a(x) or of b(x), depending on the sign of y'. But neither function of x can be 
expressed in terms of the values of the other: b(x) (or any nonzero multiple of it) 
cannot be expressed in terms of a(x) for all x E X since a(0) = a(2) but b(0) = b(2), 
and vice versa, since a(x) = b(-x) (a and b interchange meaning if x is replaced by 
-x). So X is not WII, and by symmetry, Z is also neither GS nor WII. o 

The next counterexample, finally, shows that the independence assumptions in 
Theorem 19(a) cannot be weakened to WS or WII (which may even hold at the same 
time) in order to obtain any independence property for the differences X and Z or 
the symmetric difference X x Z. That is, even under the assumptions of strict 
essentiality of Theorem 19 or Corollary 20, none of the concepts WS, GS or WII is 
closed under set-theoretic difference or symmetric difference. Mak [20, Example 4.3] 
shows this for WS if no strict essentiality is assumed, but states that, with strict 
essentiality for all coordinates, WS is closed under differences [21, pp. 259ff] and 
claims this also for the symmetric difference [21, p. 259]. The results of von Stengel 
[28] indicate that closure under symmetric difference holds because the associative 
operations in the considered class of functions happen to be commutative, as is here 
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the case via Theorem 21, and also in [21, p. 261], but not in general [28, Theorem 
4.10]. A "composition tree" can be constructed without this closure property [23, p. 
329] (compare [21, p. 262]), so it is not essential for a unique hierarchical decomposi- 
tion. A theory for decomposing monotonic multiplace functions as proposed by Mak 
is desirable, but in view of the complexity of the proofs in [21], [22] it would be 
interesting to compare it with the fairly canonical approach, without monotonicity 
constraints, in [28] of decompositions into conditional functions (or equivalently, 
functions with generalized "neutral elements" [28, Lemma 3.7]). It is not obvious 
whether the regularity conditions in [22, p. 598f] permit substantially more general 
monotonic functions. 

COUNTEREXAMPLE 24. There is a continuous function f: X X Y X Z -> IR, where X, 
Y and Z are intervals, x and y are essential and z is strictly essential for f(x, y, z), 
Y x Z is PI and X X Y is WS and WII, but X, Z and X x Z are neither GS nor WII. 

PROOF. The construction is similar to Counterexample 23. There, f(x, y, z) is 
positive or negative depending on the sign of y, and has a different respective 
behavior in x. The "transition" occurs for y = 0, in which case the value for z does 
not matter, such that z is not strictly essential. Here, this transition is to take place in 
a whole interval [0, 1], where z (but not x) is still of influence on the behavior of the 
function. 

Let X = Y = IR, Z = [-2, oo) and define a, b: X -> R similarly to Counterexample 
23 by a(x) = (|1 - xl + 1)/2 > 0 and b(x) = (11 + xl + 1)/2 > 0, where a(0) = b(0) 
= 1. The function f is so constructed as to depend only on z for z E [- 2, - 1] (so z 
is strictly essential), on y, z for z e (- 1, 0], and on x, y, z for z > 0. For z [ - 2, 1], 
y E [- 1, 2] and, representatively, for x = 0, the graph of f is drawn in Figure 3. Let 

'z + 2 E [0,1] for -2 <z < -1, 
-z E [0,1] for -1 <z < 0, y < 0, 

(y - 1)(z + 1) + 1 [0,1] for -1 <z <0,0 <y < 1, 

f(x,y,z) = 1 [0,1] for-1 <z < 0, y > 1, 
a(x)yz e(-oo,0] for z > 0, y < 0, 

y E [0,1] forz > 0,0 <y< 1, 

b(x)(y - 1)z + 1 E [1,oo) for z > 0, y > 1. 

The function f is continuous. Note that f ranges in [0,1] for z < 0 or z > 0 and 
y E [0, 1]. In fact, for z > 0 (e.g., z = 1), f(x, y, z) is negative or greater than 1 iff 
this holds for y. So the function f(x, , z) captures the case distinctions in the 
definition of f, as follows: f(x, y, z) = j[x, k(y, z)] = g[h(x, y), z] with k(y, z) = 

f(0,y,z) and j[x,k] =f(x,k, 1) for k E R, h(x,y) = f(x,y, 1) and g[h,z] = 
f(0, h, z) for h E [R; note the identity of k, j and g, h. Figure 3 shows in fact a graph 
of k. Since j[x, ] is strictly increasing, Y X Z is PI. By Lemma 4 (g[, 1] = id ), 
X x Y is WII. Since g[, z] is increasing (constant for z < 0, except for strictly 
increasing on [0,1] for -1 < z < 0, otherwise strictly increasing), X x Y is WS. 
Since f(x, -1, 1) = -a(x) and f(x, 2, 1) = b(x) + 1, X is neither GS nor WII, as 
argued in Counterexample 23. So X x Z is not WII, since otherwise X would be WII 
by Proposition 16 (X x Y is WII). X x Z is not GS, either, as is easily seen from 
Figure 3: for y < 0, f(0, y, 1) < f(0, y, -2) < f(0, y, -1), but, for y > 1, f(0, y, -2) 
< f(0, y,-1) < f(0, y, 1), so no monotonic transformation (depending on y) of a 
single function of x, z can represent f(x, y, z) for all y. The same values also show 
that Z is not GS. Z is not WII, since f(x, y, z) cannot be expressed in terms of 
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FIGURE 3 

f(x' y', z) for any fixed x', y': for y' > 1, this function of z is constant on the subset 
[-1, 0] of Z, for 0 < y' < 1 it is constant for z > 0, and for y' < O, f(x' y', - 2) = 0 
= f(x', y', 0) holds, none of which is true for all x', y', which would be the case if Z 
were WII, according to Lemma 4. o 

7. Inheritance of stronger independence properties from subsets. In this final 
section we systematically investigate the relationships that hold between two sets of 
coordinates with different independence properties, for the special case that one of 
these sets contains the other. As pointed out just before Counterexample 7, an 
independence property of the larger set does not imply any of the smaller one, since 
the entire set M of coordinates is UI and fulfills therefore any concept of Definition 1 
(cf. Figure 1), but there are functions for which some subsets of coordinates have no 
independence properties (e.g., in Counterexample 9). However, a strong indepen- 
dence assumption that holds for a small set of coordinates can "propagate up" to 
larger sets that have weaker properties. Indeed, utility and preference independence 
are implied by any concept of Definition 1 as soon as the respective property (UI or 
PI) is known for a smaller set of (essential) coordinates, which may be a singleton. 
This is of practical importance with regard to verification of these strong indepen- 
dence assumptions (in a decision analysis, say), since such a task is conceptually easier 
for smaller rather than for large sets of "attributes" (cf. Keeney and Raiffa [17, p. 
311]). Another application is that certain independence concepts become indistin- 
guishable (in the sense that the stronger one holds) as soon as the utility function has 
a behavior in its individual variables that is more restrictive than mere continuity: for 
instance, if the utility function is strictly increasing in its variables (where these are 
assumed to be real-valued), all singletons are PI, so the concepts PI and WS collapse 
into one (as mentioned in Blackorby, Primont and Russell [4, p. 50]). 

Table 2 gives a summary of these results: the rows refer to the (weak) concept 
known for the larger set of coordinates-the corresponding subspace is referred to as 
X x Y-, the columns to the (stronger) concept that applies to the subspace X, with 
entries as to what property holds for X x Y in consequence. A prefixed " -" means 
the respective concept cannot be inferred, ' - W.." is short for " - WS, -n WII", and a 
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TABLE 2 

XXY X 
(result) UI WUI GUI PI WPI GPI WS 

WUI UI -- UI - 

GUI UI WUI UI WUI - WUI 

PI UI - GUI -1GUI - 

x Y WPI UI -GUI GUI PI - 

(given) GPI UI WPI, GUI - GUI PI WPI 

WS UI -1 WII -WII PI -WII II -- i 

GS UI | WS , - nWII i.. OW.. W.. W -W. 

WII -GS -iG -| GS - GS GS GS 

dash "-" indicates that X x Y has already properties as strong as X. The boxed 
entries imply the other ones in rather obvious fashion, as will be explained below. For 
instance, it can be seen that the assumption WUI for X does not "propagate up" if 
weaker properties (like WII or WS) are known for X x Y. So in particular, if X is 
GPI (which is implied by WUI), no positive inferences can be drawn either, and the 
respective column in Table 2 has only negative entries; columns for the concepts WII 
and GS, which are anyhow very weak, have been omitted for that reason, as well as 
an "all-dash" row for UI. 

The "utility independence" part of the following theorem has been stated by 
Fishburn and Keeney [12, pp. 312-315] for (more restrictive) convex domains, in a 
generalization of an earlier result [16, pp. 28ff], [17, pp. 311-316]. We can give here a 
rather short proof with the aid of Lemma 6 (the easy part) and Lemma 10. 

THEOREM 25. Let X and Y be topologically connected, f: X x Y x T --> be 
continuous, where x is essential for f(x, y, t), and let X x Y be WII. Then if X is UI or 
PI, so isX x Y. 

PROOF. Let X be UI or PI: by Lemma 6, f(x, y, t) = g[f(x, y', t'), y', t', y, t] 
holds for some function g that is strictly increasing in its first argument (whenever it 
is defined) and affine (if X is UI). For no choice of y', t' is f(, y', t') constant, since 
-consider the equation with these values fixed-x would be inessential otherwise. 
Since X x Y is WII, f(x, y, t) = j[f(x, y, 0), t] holds for some function j and some 
0 e T by Lemma 4. With y' = y and t' = 0, thus 

(1) j[f(x,y,0),t] =g[f(x,y,0),y,0,y,t] 

holds. Since the continuous function f(, y, 0) on the set X (which is connected) is 
never constant, its image, call it I(y), is a proper interval. Equation (1) shows that the 
function j[-, t] is strictly increasing (and affine if X is UI) on any I(y) for y E Y 
(note that g[, y, 0, y, t] is not defined elsewhere). To show that j[., t] is not only 
piecewise increasing or affine but uniformly so throughout its domain K, say, Lemma 
10 is used with k(x, y) = f(x, y, 0) (and X, Y instead of Y, Z). According to this 
lemma, K is an interval, and case (b) applies since k(-, y) is never constant: for any 
fixed 1 E Y and A e I(1), A is linked to any B E K by a finite chain 
I(y0), I(yl),..., I(y,) of intervals, with y- = 1, B E I(yn) (if A > B, apply Lemma 
10 with A and B interchanged and consider y0, y,,..., y, in reverse order). These 
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intervals successively intersect: j[*, t] is strictly increasing on I(yo) and on I(yl), and 
thus on I(y0) U (yl) since the two intervals have a common point. If j[, t] is 
furthermore piecewise affine (given X is UI), we use the fact that I(yo) and I(y1) 
intersect in a neighborhood, which contains two distinct points, for which the two 
affine functions g[-, y0,0, Y, t] and g[., y1, , y1, t] have identical values by (1); so 
they are equal, and j[., t] is affine on I(yo) U I(yl). By induction, j[, t] is strictly 
increasing (and, in case, affine) on I(yo) u I (yi) for 1 < i < n, in particular for 
i = n, and thus throughout K, since B (contained in I(yn)) was chosen arbitrarily. So 
X x Y is PI (or UI) like X. o 

The weak concept of generalized separability GS can also be used instead of WII, 
as the following result shows (the only positive one for this concept). A similar (but 
unnecessarily restrictive) theorem is stated in Blackorby, Primont and Russell [4, p. 
501. 

THEOREM 26. Let X, Y, T be topologically connected sets, f: X X Y X T -> lR be 
continuous and x be essential for f(x, y, t), and let X X Y be GS. Then if X is UI or PI, 
so is X X Y; if X X Y is WS, connectivity of T is not needed. 

PROOF. Let X be UI or PI and X X Y be GS. It suffices to show that X x Y is 
PI, since then X X Y is WII, and Theorem 25 shows that X x Y is UI if X is UI. 
Let f(x, y, t) = j[k(x, y), t] hold, where j[i, t] is a monotonic function on the image 
K of k for all t. We first use the connectivity of T to show that X x Y is WS. Rather 
intuitively, j[ , t] is somewhere constant if it changes orientation, which is in contrast 
to the fact that x is strictly essential since it is essential and X is PI. To see this, 
consider the subsets I and D of T defined by 

I = {t E Tlj[k, t] < [l, t] for some k,l K k < I} = g (( ,0)), 
k, leK, k<l 

D = t E Tj[k, t] > j[l,t] for some k,l E K, k<l} = U gkl'((0, ?)), 
k,leK, k<l 

where the functions gkl: T -> R for k, I E K are defined by gkl(t) = j[k, t] - j[l, t]; 
they are continuous since f(x, y, t) is continuous in t. Obviously, j[i, t] is increasing 
and not constant (thus not decreasing) iff t E I, and decreasing and not constant iff 
t e D holds, so the sets I and D are disjoint, open, and they exhaust T since j[-, t] is 
never constant by strict essentiality of x. Since T is connected, either I or D is empty, 
and X X Y is WS, since if j[, t] is always decreasing, consider instead of k, j the 
functions k', j' defined by k' = -k and j'[-k, t] = j[k, t]. 

In f(x, y, t) = j[k(x, y), t] with increasing j[., t], the function k: X x Y -> R can 
be chosen continuous according to Appendix A. Furthermore, there it is also shown 
that k can be assumed to fulfill w.l.o.g. 

(1) k(x, y) < k(x', y') Vt f(x, y, t) f(x', y', t). 

Let f(x, y, t) = g[h(x), y, t] hold where g[, y, t] is strictly increasing, using the fact 
that X is PI. We show that j[, t] is for all y strictly increasing on the image of 
k(, y), which is always a nondegenerate interval (otherwise x would not be strictly 
essential); the respective part of the proof for Theorem 25 (the one that uses Lemma 
10) then shows that X x Y is PI. To this end, let k(x, y)< k(x', y) hold. Then 
f(x, y, t') < f(x, y, t') for some t' (Remark: Mak [21, p. 252] calls in this case j[k, t] 
parsimonious in k), since f(x, y, t) > f(x', y,t) for all t would imply k(x, y) > 
k(x', y) by (1). Since g[ , y, t'] is strictly increasing, h(x) < h(x') holds and thus 
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f(x, y, t) < f(x', y, t) for all t, which proves that j[., t] is indeed piecewise, and thus 
globally, strictly increasing, which was to be shown. o 

Topological connectivity is a necessary assumption to conclude that X X Y inherits 
the property UI or PI (or any weaker one) from X if it is WII or GS. This is 
demonstrated by the following counterexample. 

COUNTEREXAMPLE 27. There are continuous functions f: X X Y X T - R, where X 
and Tare topologically connected sets, but Y (and thus X X Y) is not, such that X is UI 
and XX Y is 

(a) WII and WS but not GPI, or 
(b) PI but not GUI. 

PROOF. Let Y {0,1}, T = [0, 1] and X = [0, 1] to show (a), X= [0, 1) to show 
(b), and define 

f (x y,t) x for y = 0, 
' t (x + 2 - t for y 1. 

Clearly, f is continuous and X is UI (since for fixed y, only one of the two cases 
applies). Then f(x, y, t) = g[h(x, y), t] with h(x, y) = x + 2y (ranging in [0, 1] U 
[2, 3] or [0, 1) U [2,3), respectively) and 

h for h < 1, 
g[h,t] h- t for h >2. 

The function g[, t] is increasing for all t, so X x Y is WS, and in case (b) even 
strictly increasing, so that X x Y is PI. Since g[, 0] is the identity, that is, h(x, y) = 
f(x, y, 0), X X Y is WII, and according to Lemma 4, g would be a suitable choice in 
Definition 1 if X x Y were (a) GPI or (b) GUI, respectively. But g[, 1] is not 
constant, and in case (a) not injective (and thus not strictly monotonic), since 

g[h(l,0), 1] = g[l, 1] = g[h(, 1), 1] = g[2, 1], 

so X x Y is not GPI, and in case (b) not affine on its domain [0, 1) U [2, 3), so X X Y 
is not GUI. o 

If X x Y is GPI, that is, f(x, y, t) is strictly monotonic in a suitable function of 
x, y, a change of orientation cannot occur if f(x, y, t) is increasing in (a function of) 
x: if X is WS, then X x Y is WPI. The reason is, rather intuitively, that changing the 
orientation for a large set of coordinates would entail a change for any coordinates 
therein. If X is WPI, this is already stated in Theorem 11 (with inessential z), but 
continuity assumptions are not necessary. 

PROPOSITION 28. Let f: X X Y X T -> R, where x is essential for f(x, y, t), and let 
X be WS. Then if the subspace X x Y is GPI, it is WPI. 

PROOF. Let f(x,y,t)= g[h(x),y,t] hold with increasing g[.,y,t] and, with 
X x Y GPI, 

(1) f(x, y,t) =j[f(x, y,0), t] 

for some 0 e T by Corollary 5, where j[, t] is strictly monotonic or constant. Since x 
is essential, f(x, y', t') < f(x', y', t') holds for some x, x', y', t', thus h(x) < h(x') 
and 

f(x,y',t) <f(x', y',t) for all t, 

373 

(2) 



BERNHARD VON STENGEL 

since g[, y', t] is increasing. For t = 0, f(x, y', 0) 4 f(x', y', 0) holds since otherwise 
f(x, y', t') = f(x', y', t') by (1). Thus f(x, y', 0) < f(x', y', 0), and (2) shows that j[., t] 
is not strictly decreasing, that is, is only strictly increasing or constant. So X X Y is 
WPI. o 

We summarize the positive results listed in Table 2: if X is UI, X x Y is UI if any 
independence concept holds for X x Y, by Theorems 25 and 26, since WII implies 
any concept except WS and GS. If X x Y is GPI and X is WS (in particular, WPI or 
WUI), then X x Y is WPI by Proposition 28. The column for PI in Table 2 is like 
that for UI, where the two rows for the "affine" concepts WUI and GUI indicate UI 
(if X is PI) or WUI (if X is WS), since the equivalences 

UI GUI and PI, 

WUI GUI and WPI 

hold by Definition 1 (note the restrictions on g[, y], also indicated in Figure 1). 
These are, however, all the positive inferences that are possible. 

COUNTEREXAMPLES 29. There are continuous functions f: X x Y x T - R with 
intervals X, Y, T, such that X is WUI and X x Y is 

(a) PI but not GUI, or 
(b) WS but not WII, or 
(c) GS but not WS, or 
(d) WII but not GS. 

PROOF. In all cases, let X = (0, oo), Y = IR and f(x, y, t) = g[h(x,y), t] with the 
continuous function h defined by 

h(x,y) y for y < 0, 
(XvY^)=\xy for y > 0, 

which fulfills h(x, y) < 0 y < O. The function g[-, t] will be affine and increasing 
for positive arguments, so that X is WUI, and behave differently, according to the 
particular cases, for negative arguments (where x does not matter, so no restrictions 
are given by the fact that X is WUI). 

For (a), let T = (0, oo) and 

r[htfh for h < 0, 
ht for h > 0, 

so that 

for y <0, 
f(i tX y t) =( xyt for y > 0. 

Since t > 0, X x Y is PI. Because h(x, y) = f(x, y, 1), g would be a suitable choice 
in Definition 1 if X x Y were GUI (by Lemma 4), but g[, 2] is not affine, so this is 
not the case. 

To show (b), let T = R and 

g[h f] 
h'It for ht >0, 

'gL \0 for ht < 0, 
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so that 

f-yt for y <0, t 0, 
f(x, y, ) = for yt < 0, 

[xyt for y > 0, t > 0. 

Clearly, g[h, t] is continuous, and increasing in h, so X x Y is WS. But f(x, y, t) 
cannot be expressed in terms of f(x, y, t') for any fixed t' E T since the function 
f(x, *, t') for t' > 0 is constant for negative arguments, and similarly for positive 
arguments if t' < 0, none of which is true for all t'. So X x Y is not WII. 

Case (c) is covered by T = R, where 

g[h, t] = max{ht,0}, 

so that 

yt for y 0, t < 0, 

f(x,y, t)= 0 foryt < 0, 
xyt for y > 0, t > 0. 

The function g is continuous, and g[, t] is monotonic, so X X Y is GS. If X X Y 
were WS, f(1, -1, 1) = 0 < f(l, 1, 1) = 1 would imply f(l, -1, t) < f(l, 1, t) for all t, 
but f(, - 1, - 1) = 1 > f(l, , - 1) = 0. Incidentally, X X Y is in this example not 
WII, either (f is very similar to (b) above). 

Finally, (d) is shown with T = R by 

g[h,t] = ht for h 0, 
gnL J\h forh> 0, 

so that 

, t)=yt for y < 0, 
J^( Y t)-\(xy fory> 0. 

Here, X x Y is WII since g[, 1] is the identity. The function g[, t] has no unique 
monotonicity behavior since t may change sign: if X x Y were GS, the fact that 

f(1, -1,1) = -1 <f(1,0,t) =0 <f(l,1,t) = 1 

holds for all t would entail f(1, -1, t) < (1, 0, t) for all t, but f(1, - 1, -1) = 1 > 0. 

An example similar to (a) is given in Fishburn and Keeney [12, p. 307]. The 
preceding counterexamples show that if any independence concept other than UI or 
PI-of which WUI is the strongest (cf. Figure 1)-holds for X, no property of X x Y 
can be inferred other than one that is already given; the only exception is that X x Y 
is WPI if it is GPI by Proposition 28. If X is WUI (or GUI), the corresponding affine 
representation for f(x, y, t) does not carry over to X X Y by (a) even if X X Y is PI; 
therefore the " -GUI" entries in the rows for PI, WPI, GPI in Table 2. If X x Y is 
WS and X is WUI, no independence property for X x Y (other than GS, which is 
weaker) holds, since it would imply WII, in contrast to (b); so Theorem 26 cannot be 
generalized. Furthermore, GS does not share with GPI an inheritance of unique 
orientation (that is, of being only increasing) from subsets by (c). In other words, it is 
not possible to generalize Proposition 28 from GPI to GS, with WS instead of WPI as 
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a result for X X Y, if X is WS (or even WUI). Finally, the independence assumptions 
for X in Theorem 25 cannot be weakened: given X x Y is WII, any stronger concept 
would imply GS, which does not necessarily hold for X x Y if X is WUI, according 
to (d). 

Appendix A: Weak separability. We will give here an alternative definition of the 
concept WS of Definition 1 of weak separability, which is taken from Bliss [5] and 
Blackorby, Primont and Russell [4], although somewhat simplified. This will be done 
using induced preference relations: given a set S and a function f: S --> R, the binary 
relation R defined on S by sRs' <= f(s) < f(s') is a total preorder on S (a preorder is 
a reflexive and transitive relation, and "total" means that sRs' or s'Rs holds for any 
s,s' E S). We say R is induced (or represented) by f. Given a "preference relation" R 
on S that is a total preorder, a continuous utility function that represents it exists if 
the following conditions hold (according to Debreu [8, Theorem I, p. 162]): S has a 
topology such that S is connected, topologically separable (i.e., containing a count- 
able dense subset), and where the sets {sisRs'} and {sis'Rs} are closed for all s' E S. 
We assume here that each coordinate axis Si, i E M, is topologically connected and 
topologically separable, so that this holds also for any product space SA = iE A Si 
for A c M, in particular for S = SM. 

Given f: X x Y-* R, where X is any subspace of SM, and fixed y E Y, the 
function f(., y): X -o R induces a total preorder on X. The intersection P of these 
preorders (for y E Y) given by 

xPx' Vy f(x, y) f(x', y) 

is again a preorder. Call X weakly separable if P is also total, that is, in other words, 
if no two x, x' are "incomparable" in that f(x, y) > f(x', y) and f(x, y') < f(x', y') 
hold for some y, y'. Equivalently, Blackorby, Primont and Russell [4, pp. 43-45] and 
Bliss [5, p. 147f] consider the function ,3 mapping X x Y to the power set of 
X defined by /3(x, y) := {x' E XIf(x, y) < f(x', y)} and request that the image 
f3(X x Y) of p is "nested", that is, totally ordered by inclusion. 

We show that this definition of weak separability implies the concept of Definition 
1 if the topological assumptions hold (similar proofs are found in [5, p. 149], [4, p. 59f] 
and [21, p. 253f]). Let X be connected and topologically separable and f(x, y) be 
continuous in x. Then, for all a E X, the sets {x E XlxPa} and {x E XlaPx} are 
closed in X: for instance, 

{x XlxPa) = {x e XIy f(x, y) <f(a, y)) 

n {x E Xf(x, y) < f(a, y)} 
yeY 

= nf(.,y)-l((-cO,f(a,y)]), 
yeY 

which is an intersection of closed sets by the assumed continuity of f(', y) for all y. If 
P is total, Debreu's theorem [8, p. 162] then yields the existence of a (continuous) 
function h: X --> that represents P by h(x) < h(x') > xPx'. The function g: 
H x Y -> R (with H as the image of h) can then be defined by g[h(x), y] = f(x, y), 
where g is well defined because h(x) = h(x') => f(x, y) = f(x', y) holds according to 
the definition of P, which also shows that g[-, y] is increasing. 
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The converse is rather obvious. Let X be WS according to Definition 1, that is, let 
f(x, y) = g[h(x), y] hold with functions h: X - lR (with image H) and g: H x Y --> R 
such that g[-, y] is increasing. Then h(x) < h(x') xPx' for all x, x', which implies 
that P is total, i.e., X is weakly separable according to the new definition. 

For this direction, topological conditions are not required, but can be used to show 
that h can be chosen continuous, provided f(x, y) is continuous in x (topological 
separability or connectivity of X is not necessary), as follows: if f(., y) is continuous 
for all y, it was just shown that then the sets {xlxPa} and {xlaPx} for a E X are 
closed, or, in Debreu's terms [8], that the topology on X is "natural". Furthermore, 
there is a countable subset Z of X that is "order-dense" with respect to the total 
preorder represented by h, and thus with respect to P (Birkhoff [3, p. 201]): for each 
closed interval I with rational endpoints (of which there are countably many), pick an 
element z of X with h(z) E I if I intersects H, or otherwise, if there is a largest 
element I of H smaller than the lower endpoint of I, pick z E X such that h(z) = I; 
let Z be the set of these elements z, which is countable. Then, for x, x' e X with 
xPx' but not x'Px, the inequality h(x) < h(x') holds, and there exists z c Z with 
h(x) < h(z) < h(x'): consider rationals p, q with h(x) < p < q < h(x'); if[p, q] n H 
is empty and [h(x), p) n H has no largest element, the latter set contains an element 
h' of H other than h(x), so that [r,p] intersects H, were r is a rational with 
h(x) < r < h' < p; in each case, there is an element z E Z with h(x) < h(z) < h(x') 
and thereby xPz, zPx'. This is the claimed order-density of Z with respect to P. 
According to [8, Lemma II, p. 161], there is a continuous function on X that 
represents P, which can be used instead of h, with g defined anew accordingly, as 
before. 

Appendix B: Proof of Lemma 6. 

PROOF OF LEMMA 6. If X is PI or UI, the existence of g and the restrictions on 
gl, y', y] follow from Lemma 4 and Corollary 5, which proves the "if" part. 
Conversely, assume 

f(x,y) =g[f(x,y'),y',y] 

holds. Let y, y' be fixed. Obviously, for any a, b E X, 

f(a, y) f(b, y) g[f(a, y), y, y'] = g[f(b, y), y, y'], 

which is equivalent to 

g[f(a, y'), y y] = g[f(b, y), y', y] f(a, y') = f(b, y'). 

In other words, the function g[., y', y], call it 4 for short, is injective (as already 
stated in Lemma 4(a)). Let h -f(-, y), and k = f(, y') with image K, which is an 
interval since k is continuous, so h(x) = ,(k(x)). We want to prove monotonicity 
and continuity of 4'; this is trivial for inessential x, where K is degenerated to one 
point, so let this not be the case. Either one of the conditions in question implies the 
other, because of Lemma 2 and since continuous injective functions on intervals are 
strictly monotonic. Does continuity of 04 follow from continuity of h and k? This is 
true if X is arcconnected (cf. Gorman [14, p. 387f] or Wakker [33, Lemma 2.5]), but 
not if X is just connected: consider the (discontinuous) function 6: [0, 1] -* R given 
by 

(0 JOfor r = 0, 
(r)l = sin(l/r) for0 <r < 1, 
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* (b) 

(c) 

? (a) 

H KxH 

a b c 
FIGURE 4 

and let X be its graph, i.e., X = {(r, 0(r))I 0 < r < 1}. X is connected since X - 

{(0, 0)} is obviously arcconnected and (0, 0) is an accumulation point of that set. With 
k and h as projections, i.e., k(r, s) = r and h(r, s) = s for (r, s) = x e X, h(x) = 

((k(x)) holds, where h and k are continuous (compare also [33, Example 2.3]). This 
counterexample, however, gives a clue how to use the injectivity of 4: because the 
functions k, h: X -* R are continuous, so is the pair (k, h): X -> K x H whose image 
{(k(x), h(x))lx E X}, which is the graph of ), is connected. We show that this is not 
the case if 4 is not monotonic. 

Assume that 4 is not monotonic: then it is easy to see that there are three 
elements a, b, c of K with a < b < c such that +(b) does not lie between b)(a) and 
+6(c). W.l.o.g. d>(a) < ((c) < +(b) as depicted in Figure 4, otherwise change signs 
suitably. Then A = k-(( -oo, b)) n h -((- oo, +(c))) is an open subset of X, which is 
not empty since it contains x with k(x) = a (a was taken from the image K of k), 
because k(x) = a < b and h(x) = ((k(x)) = +)(a) < +(c). Similarly, the set B = 
k- ((b, oo)) u h - ((b(c), oo)) is a nonempty open subset of X, containing k- ({c}), for 
instance. A and B are obviously disjoint (the corresponding two regions of K x H 
are shown in Figure 4). They also form a partition of X: any x not belonging to A or 
B would have to fulfill k(x) = b, h(x) < +(c) or k(x) < b, h(x) = +(c) (the white 
lines in Figure 4). These cases are not possible, the first since it implies h(x)= 
)(k(x)) = +(b) > +(c), the second because +6(c) = h(x) = q)(k(x)) implies c = 

k(x) > b by injectivity of 4. But this is a contradiction to the assumption that X is 
connected (for a similar argument see [33, Lemmas 2.2 and 2.4]). So, ) is strictly 
monotonic and thus continuous by Lemma 2. We have now shown that X is GPI even 
without using the connectivity of Y. 

For fixed y' E Y, g[, y', y] is either strictly increasing or strictly decreasing for all 

y E Y: suppose, otherwise, that, for some p, q E Y, g[, y', p] increases: 

g[f(a, y'), y', p] -g[f(b,y'), y', p <0 

and g[-, y', q] decreases: 

g[f(a, y'), y',q] - g[f(b, y'), y',q] > 0 

for suitable a, b E X, f(a, y') < f(b, y'). On the left-hand side are terms of the 
continuous function f(a, y) - f(b, y) of y E Y. Since Y is connected, 

g[f(a, y'), y', y] - g[f(b, y'), y', y] = 0 

holds for some y, which contradicts the injectivity of g[-, y', y]. Since g[-, y', y'] is 
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the identity which is strictly increasing, g[., y', y] is therefore strictly increasing for all 
y, y'. 

Appendix C: Proof of Lemma 10. 

PROOF OF LEMMA 10. Let A = k(a, zO) for suitable a e Y, z0 e Z. If B = 
k(b, z() for some b E Y, (b) holds with n = 0, otherwise let B = k(b, Zn) for some 
b c Y, z, E Z for some as yet unspecified natural number n > 0, i.e., 

AE Ic(zo), B E I(zn). 

Let A < C < B for some C. We show that C belongs to K (thus [A, B] c K, and, 
with arbitrary choices for A, B, this shows K is an interval). This is clearly the case if 
C E I(zn), otherwise k(a, zo) < C < k(a, z,,), thus, since k(a, ) is continuous and Z 
connected, C = k(a, z) for suitable z E Z, i.e., C e K. 

The intervals l(z), z E Z, therefore cover [A, B]. To prove (b), we will essentially 
show that this also holds for the open interiors of these intervals, to apply the 
Heine-Borel covering theorem (i.e., to use the compactness of [A, B]). This does not 
necessarily hold if one of these intervals I(z) is degenerated (which however implies 
assertion (a)), or if A or B is an endpoint of the interval K; in the latter case, a 
suitable subcompactum of [A, B] will serve the purpose. 

Assume therefore for the rest of the proof that (a) does not hold, i.e., a point 
C E [A, B] belongs to I(z) for some z only if I(z) is nondegenerate. 

Let A < C < B, and assume that C does not belong to the interior of any I(z), 
z E Z (it is an endpoint of some I(z) then). Let the subsets L and U of Z be defined 
by 

L = z EZlk(y,z) < C forsome y E Y} = U k(y, )-((-oo,C)), 
yeY 

U={zeZlk(y,z) > C forsome y Y} = Uk(y, )- ((C, o)). 
yEY 

The sets L and U are disjoint, since otherwise C would belong to the interior of I(z) 
for z E L n U, which was excluded. The union of L and U is Z, since for any z that 
does not belong to either set, k(y, z) = C for all y, which was excluded as well. L 
and U are open because k(y, ) is continuous for y c Y. Thus, since Z is connected, 
either L or U is empty. This is only possible if C = A and A is the lower endpoint of 
K (then L is empty), or if C = B and B is the upper endpoint of K (U is empty); 
both A and B could be chosen this way if K has endpoints. Otherwise, we have 
shown that any interior point of K in [A, B] belongs to the interior of I(z) for some 
z e Z. If A (B) is the lower (upper) endpoint of K, let A' (B') be an interior point of 
the-by assumption-nondegenerate interval I(zo) (I(zn)), otherwise let A' =A 
(B' = B). 

The interiors of I(z), z E Z, then form an open covering of the compact interval 
[A', B']. According to the definition of compactness [18, p. 135], there are finitely 
many of these, I(zo), I(zl),..., I(zn), whose interiors still cover [A', B']. Without loss 
of generality, let thereby Zo, zn retain their original meaning (so the intervals 
themselves in fact cover [A, B]), the covering be minimal subject to this constraint, 
and the elements z1,..., z,,- of Z be numbered in such a way that the lower 
endpoints of the intervals I(z,),..., I(z,) are in increasing order; this order is strict 
and, likewise, the upper endpoints of I(zo),..., I(z,_) are in strictly increasing 
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order, for otherwise the covering would not be minimal. By this construction, the 
interiors of I(zi) and I(zi+1) for 0 < i < n intersect in a nonempty open set, thus 
containing a neighborhood of a point, which shows (b). o 

Appendix D: Proof of Theorem 19. 

PROOF OF THEOREM 19. Let X X Y be GPI. By Theorem 11, X x Y x Z is PI, so 
by Corollary 5 and Lemma 18 it suffices to consider f(x, y, z, 0) instead of f(x, y, z,t); 
drop 0 for simplicity of notation. We will show 

(1) f(x,y, z) = r[u(x),y, z], 

where r[., y, z] is strictly monotonic or constant, and strictly increasing (or constant) 
if X X Y is PI (WPI). Since X x Y is GPI and Y x Z is PI, 

(2) f(x,y,z) =g[h(x,y),z] 

=j[x, k(y,z)], 

where g[, z] is strictly monotonic or constant (and further restricted, as usual, if 
X x Y is WPI or PI), and j[x, ] is strictly increasing. By Corollary 5, w.l.o.g. 

(3) h(x,y) =f(x,y,1) and k(y,z) =f(3,y,z) 

hold for suitable elements 1 E Z, 3 E X, where g, h, j, k are separately continuous 
functions (as above, in the proof of Theorem 11). 

Since x is essential in (2), h(, 2) is not constant for some 2 E Y; this function is, by 
Corollary 5, a suitable candidate for u in (1). Let x, x' E X be such that h(x, 2) < 
h(x', 2). Then, for all z, f(x, 2, z) >< f(x', 2, z) or f(x, 2, z) = f(x', 2, z) by (2) de- 
pending on whether g[, z] increases, decreases or is constant, which holds irrespec- 
tive of the particular values chosen for x, x'. So the important part is to generalize 
this for all y' E Y, say, instead of 2. 

Let y' E Y, and A = k(2, 1), B = k(y', 1). For the moment, assume A < B. We 
apply Lemma 10, although with Y and Z interchanged: let I(y) denote the interval 
that is the image of k(y, ? ); since this function on Z is never constant-otherwise, by 
(2), Z would not be strictly essential-case (b) of Lemma 10 applies, that is, k(2, 1) 
and k(y', 1) are linked by a finite chain I(yo), I(yl),..., I(y) of these intervals, 
which successively intersect, where w.l.o.g. yo = 2, y, = y'. (If A > B, interchange A 
and B and consider y,,..., y, in reverse order; so the choice of y' E Y is in fact 
arbitrary.) In other words, there are suitable elements wo,..., w,_1, z,..., Zn of Z 
such that k(yi, wi) = k(yi+, zi+1) for 0 < i < n. If for 0 < i < n, g[',wi] is not 
constant (and therefore injective), the proof is easily completed (this is in fact the 
case if X X Y is PI): assume that y' is given such that w, ..., w- 1 can be chosen 
this way. Then, for h(x, yo) < h(x', yo) (note yo = 2), 

f(x, Yo, w) f(x', Yo, w) 

holds by (2), depending on whether g[ , wo] is strictly increasing or decreasing, thus 

f(x, Yl, z1) > f(x', Y1, Z1), 

which shows that g[-, z1] is also strictly monotonic, and (depending, furthermore, on 
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the orientation of this function) 

h(x, Yl) X h(x', Yl). 

Therefore, by induction, with i, i + 1 (0 < i < n) instead of 0,1, h(x, Yn) > h(x', Yn) 
holds, i.e. (since Yn = Y'), h(x, y') < h(x', y') or h(x, y') > h(x', y'). Whichever of 
these inequalities is given for a particular choice of x, x' E X with h(x, 2) < h(x', 2), 
it holds also for any such x, x', since the reasoning depends only on the orientation 
and injectivity of g[ , wi] and g[ , zi+ ] for 0 < i < n. In a similar fashion, the latter 
also implies 

h(x, 2) = h(x',2) z h(x, y') = h(x', y'), 

so that a function s can be defined according to 

(4) s[h(x, 2), y'] = h(x, y'). 

(Note that so far, there is still a restriction on the choice of y', unless X X Y is PI). 
The established implications 

h(x,2) < h(x', 2) ~ h(x, y') < h(x', y') 

or, for some y' (if X x Y is not WPI), 

h(x, 2) < h(x', 2) h(x, y') > h(x', y') 

show that s[, y'] is strictly monotonic, and thus g[s[., y'], z] =: r[., y', z] is strictly 
monotonic or constant for any z. With u = h(, 2), equation (1) holds by (4) for 
y = y'. If no restriction is imposed on y' E Y, then X is GPI, and, according to the 
above remarks, PI or WPI if this holds for X x Y. 

What remains to consider, in order to prove (a), is the case that A = k(2, 1) and 
B = k(y', 1) are linked by a chain of intervals such that an intersection I(yi) n I(yi+l) 
for some i, 0 < i < n, contains only values k(yi,wi) where g[, wi] is constant. 
Assume this case holds; we will show h(, y') is constant so (4) can also be applied. 
Then, because of (3), k(, wi) is constant, and furthermore even 

(5) g[ , z] is constant < k( , z) is constant 

for z E Z, since g[h(3, ), z] = k(, z) holds, where h(3, ) is a nonconstant function 
on Y (y is essential) and g[., z] is injective if not constant. Let Z( be the set of these 
elements of Z, i.e., Z( = {z E Zk(', z) is constant}, K( be the corresponding set of 
values of k, i.e., Ko = {k(y, z)ly E Y, z E Z0} = {clk(-, z) c for some z}, and 
Z+= Z - Z(. By definition, K( is a subset of I(y) for any y. The above intersection 
I(yi) n I(yi+1) is a proper interval, since it contains a neighborhood, as stated in 
Lemma 10(b). It furthermore contains K0, and in fact equals K0, since any other 
element of the image of k(yi, ) is given by k(yi, wi) with nonconstant k(, wi) and 
thus injective g[., wi], which was excluded from this intersection. So Ko is a proper 
interval, and the chain has only one link: the intervals 1(2) and I(y') both contain Ko 
and can be assumed to intersect in that set (if they have other points in common, we 
can proceed as before). 

Z( is closed: let, for some 4, 5 E Y, h(3, 4) # h(3, 5) hold. Then, for z E Z, g[, z] 
is constant (i.e., z E Z0) iff f(3, 4, z) = g[h(3, 4), z] = g[h(3, 5), z] = f(3, 5, z), that 
is, according to (3), iff k(4, z) = k(5, z). Therefore, with 4: Z - 1R defined by 
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f(z) - k(4, z) - k(5, z), which is a continuous function, ZO = - 1({}0), and ZO is 
closed since {0} is closed. (We have used the fact that Y is GPI; a general argument is 
also possible.) 

The image I(2) of k(2, ) is the disjoint union of the set {k(2, z)lz E Z+}-which 
by (3) contains k(2, 1)-and K0: For, h(, 2) is not constant, but 

(6) k(y, z) E Ko, z E Z+=> h( , y) is constant. 

This holds because for invertible g[', z] and constant g[, zo] (that is, cf. (5), for 
z e Z+ and zo E ZO), the equation k(y, z) = k(yo, zo) (for any yo) implies the 
following identities of constant functions: 

g[h(, y),z] =f(-,y,z) =f(-, yo, ) =g[h(, Yo),zo]; 

thus h(, y) is constant. 
Since we have assumed that k(2, 1) < k(y', 1) holds, and k(2, 1) 0 Ko = 1(2) n 

I(y'), k(2, 1) is a (proper) lower bound for Ko and P = inf Ko E 1(2) exists. (If 
k(2,1) > k(y', 1), consider P = sup Ko instead, and proceed mutatis mutandis.) 
There is an element p of Q = k(2, )-({p}) that is an accumulation point of Z+ 
and Zo, since if otherwise, for each q E Q there were an open neighborhood Nq of q 
contained in Z+ or Zo, then Z+ and Zo would both be open and form a partition of 
Z, which is connected, however: namely, in this case, 

Z+= k(2,.)- ((-oo, P)) u U Nq 
eQanZ+ 

and 

Z k(2, )-((P, )) u U Nq. 
qeQ nZ 

Since ZO is closed, p E ZO and thus k(2, p) = P e K. Since I(2) n I(y') = Ko, 
k(y', z) > P for all z. Ko is a proper interval, so let [P, P + E) c K) for some E > 0, 
which is an open set relative to the image I(y') of k(y', ). Then k(y', ? )-1([P, P + 
E)) is an open subset of Z containing p (since k(y', p)= P because k(, p) is 
constant), which intersects Z+ by construction of p. Thus, k(y', z) E [P, P + E) c KQ 
for some z E Z+, and h( , y') is constant by (6). So for this case, (4) can also be used, 
where correspondingly s[, y'] is constant, and r[-, y', z] is also constant. So (1) holds 
for all y, z, which finally proves assertion (a) of the theorem. 

To show (b), consider the function f: X x Y x Z - lR with X = (0, oo), Y = Z = 
defined by 

z for z < 0, 
f(x,y,z)= yz for y < 0, z > 0, 

xyz for y > 0, z > 0, 

where z is obviously strictly essential. Then 

f(x, y,z) =j[x,k(y,z)] =g[h(x, y),z] with 

k(r, s) =[r,s] = h(r,s)= g[r s] s for s 0, 

for'' r ' s E R note the restrictionrs > for x in ]: thi s that x, is 
for r, s e R; note the restriction r > 0 for r = x in j[r, s]: this implies that j[ x, -] is 
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strictly increasing, that is, Y x Z is PI. Since g[-, z] is strictly increasing or constant, 
X X Y is WPI. However, f(1, 1, z) = z and f(1, -1, z) = -Izl, so Z is not GS. o 

Appendix E: Proof of Theorem 21. In this appendix, we prove Theorem 21 and 
thereby the closure under symmetric difference for PI sets via an additive representa- 
tion, as stated in Gorman [14, Theorem 1]. The closure under union is given by 
Theorem 11, under intersection by Proposition 16 and under differences by Theorem 
19, and these properties will be used below. In the proof, the limitations of the old 
proof in [14, p. 371f] will be indicated, which are due to the fact that certain 
solvability conditions stated in [1, p. 311] do not generally hold here. The result in 
Aczel [1, p. 312], used by Gorman [14, p. 371], is however true without these 
conditions, and follows from our reasoning, or directly from the statement of 
Theorem 21. 

These particular restrictions do not apply to Debreu's construction [9, pp. 22-25] of 
the additive utility function that relies on certain local geometrical regularities given 
by the so-called "Thomsen condition" (cf. also Rad6 [24]). However, a crucial 
additional hypothesis is there that the symmetric difference is PI [9, p. 23]. It is 
possible to only show this condition and then use Debreu's result. However, we found 
that such a proof has all ingredients of showing the additive representation directly, 
including a finer and finer grained use of the Thomsen condition to construct an 
additive function, and a local-global extension (compare Wakker [31]). Below, it is 
also indicated that topological or geometric conditions cannot be replaced by entirely 
abstract "algebraic" ones (cf. Rad6 [25], Taylor [26]): the associative operation 
considered here reduces to addition and is therefore commutative (note [1, p. 267]) 
since it can be continuously "generated" by "powers"and "roots" of a single element, 
like a group that is generated by one element where the group operation reduces to 
addition of exponents. So the following proof seems to be the least complex one that 
is more or less self-contained. 

PROOF OF THEOREM 21. By Theorem 11, X X Y x Z is PI. Call a function well 
behaved [14, p. 370] if it is defined on a real interval and strictly increasing 
and continuous. Let f be denoted by f', and consider the continuous function 
f: X Y X Z - R (with image F) such that 

f'(x,y,z,t) = g'[f(x,y,z),t] 

holds with well-behaved g'[., t], according to Corollary 5. With respect to f' as well 
as to f, the sets X, X x Y, Y X Z and Z are PI by Corollary 20 and Lemma 18. We 
will prove: there is a well-behaved function 4: F -> lR such that 

(1) )[f (x, y, z)] = 0[f(x 1,2)] + )[f(0, y,2)] + b[f(0, 1, z)] 

holds, with suitable elements 0 E X, 1 e Y, 2 e Z. Then the theorem is proved, 
with g[, t] = g'[4 -(),t] and, for instance, [f(f-,1,2)] in place of the func- 
tion a: X -> R. We will establish (1) in several steps. 

(i) Representation with a partial associative operation. Consider any elements 0 E X, 
1 E Y, 2 e Z, and define the functions u: X ---> , v: Y -> R, w: Z -> R, with images 
U, V, W, respectively, by 

u(x) =f(x,1,2), v(y) =f(O,y,2), w(z) =f(O,l,z). 

Let furthermore A denote the image of the function f(x, y, 2) of x, y, and similarly 
let B =- {f(0, y, z)ly E Y, z E Z}, where obviously U, V cA and V, W B. Since 
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Y X Z is PI, there is a function j: X x B -> R, well behaved in its second argument, 
such that f(x, y, z) = j[x, f(O, y, z)] holds, by Corollary 5. Similarly, f(x, y, z) = 
k[u(x), y, z] for a suitable function k, where k[., y, z] is well behaved, since X is PI. 
These two equations show that a function 1: U x B -- R can be unambiguously 
defined by 

(2) l[u(x),f(O, y,z)] =f(x,y,z), 

where 1 is well behaved in both arguments. Similarly, 

(3) f(x, y,z) m[f(x, y,2),w(z)] 

holds for a function m: A x W --> R that is also well behaved in both arguments, 
since X x Y and Z are PI. Then, by (3), f(O, y, z) = m[f(0, y,2),w(z)] = 
m[v(y), w(z)], and f(x, y, 2) = l[u(x), v(y)] by (2), and f(x, 1, z) = I[u(x), w(z)] = 
m[u(x), w(z)]. The latter shows that 1 and m are identical for common arguments, 
where the first argument is, in order to be admissible for 1, of the form u(x) for some 
x e X, and the second of the form w(z), to be admissible for m. Thus both functions 
can be regarded as restrictions of a single binary operation , well behaved in both 
arguments, with domain (U x B) U (A x W). Substitution of the former equations 
into (2) and (3) yields 

(4) f(x,y,z) = u(x) [v(y) ? w(z)] 

= [u(x) v(y)] .w(z). 

The "product" symbol * shall be omitted for simplicity. Furthermore, with e= 
f(O, 1,2) = u(O) = v(l) = w(2), the identities 

(5) ue = u, ve = v = ev, w = ew 

hold for u E U, v e V, w E W (the letters u, v, w shall be used both for the functions 
defined above as well as for variables ranging in U, V, W, respectively). In other 
words, ? is a binary operation defined for uv, vw, u(vw) and (uv)w, that is 
"associative" in the sense that u(vw) = (uv)w holds by (4) and that has unit 
e E U n V n W, since also (uv)e = u(ve) = uv and e(vw) = (ev)w = uw hold by (5); 
note that A and B are the sets of possible values for uv and vw, respectively. 

The operation * is a total function F F -- F if U = W = F (since U c A c F, 
W c B c F), and it is fully associative if also V = F holds. Thus, if 0, 1, 2 can be 
chosen so that the functions u, v, w defined by f(, 1, 2), f(O, ,2) and f(0, 1, ) are 
surjective with respect to the image F of the unrestricted function f, (4) gives a fully 
associative representation. This is stated in Aczel [1, p. 311]; all that is needed are 
these surjectivity assumptions plus the cancellativity conditions asserted by Lemma 
4(a) that are given by (2) and (3) (cf. also Taylor [26, p. 26f]). The additional 
topological condition that * is well behaved in both arguments shows in this case that 
it is a continuous group operation, which can be represented additively [1, p. 57], 
resulting in (1) (cf. Aczel [1, p. 312], cited in [14, p. 371]). 

However, these surjectivity assumptions do not always hold: with X = Y = Z = 
[0, 1] and f(x, y, z) = x + y + z, the function f is well behaved but not surjective in 
its individual variables nor in the sum of any two of them; the above representation 
(4) is given, for instance, with e = 0 = f(, 0, 0), u = v = w = id and A = B = [0, 2], 
where ? is addition with domain ([0, 1] x [0, 2]) U ([0,2] x [0, 1]). So it is necessary to 
provide a more general reasoning (in Rad6 [25, p. 323], the functions I and m of (2) 
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and (3) are also assumed to be separately bijective in each variable, or "quasigroup" 
operations). An approach would be to extend the partial operation in (4) to a fully 
associative operation. To this end, it is necessary to employ the good behavior of * in 
its arguments: without continuity, the associativity condition u(vw) = (uv)w may hold 
for selected choices u c U, v E V, w e W, but not in general (if U is a proper subset 
of F), even if . is a total binary operation on F (an example, which we do not give 
here, is given by a finite "loop" F with nontrivial "left nucleus" U t F, cf. Bruck [6, 
p. 57]). We will proceed by representing (4) locally with an additive function, which 
can then be extended throughout U x V X W. 

(ii) Local additive representation around the origin. Let the operation * be defined, 
as above, on (U x VW) U (UV x W) with image F, where e E U n V n W is given 
so that (5) holds, and VW and UV are defined as the sets of possible values vw, resp., 
uv for u E U, v E V, w E W (similarly for other sets below), and let u(vw) = (uv)w 
hold. The sets U, V, W are nondegenerate intervals (since x, y and z are essential for 
f(x, y, z) and f is continuous), and ? is well behaved in both arguments. We will 
prove the following: if e is in the interior of U, V and W, then it has an open 
neighborhood E c U n V n W, so that 

O4(uvw = ) += 4- (v) + (w), 
(6) 

+'(e) =0 foru e, vE E,w E 

hold with a well-behaved function 0: D -> R, where the open interval D c F is given 
by D = EEE. Instead of 40, we shall first construct its inverse r, following largely the 
proof by Aczel [1, pp. 54-57 and 268f] for unrestrictedly associative functions; the 
reader is referred to this reference for more details. 

Assume that e is in the interior of C = U n V n W: then there are elements c, d 
in the interior of C with d < e < c. Furthermore, we can assume cd = e: for 
instance, if cd < e < c = ce, then cd' = e holds for some d' E C, where d < d' < e, 
since ? is well behaved in its second argument, and d' can be regarded instead of d 
(similarly if cd > e). The function ti with image [d, c] shall first be defined for all 
rationals between -1 and 1. Let tf(1) = c, 4(-1) = d and $(0) = e. For a positive 
integer n, the nth power u" of u E C with respect to * shall be considered in the 
usual way (with u1 u, u = 

u 

u, where the latter is defined as long as un and u 
are in C). The sequence un for n = 1, 2,... is strictly increasing or strictly decreasing 
depending on whether u is greater or smaller than e; it furthermore exceeds c (or 
gets smaller than d) for sufficiently large n (cf. [1, p. 55]; note that d and c are not 
boundaries of C); after that, u" is possibly undefined. As a function of u, u" is well 
behaved for u > e and strictly decreasing and continuous of u < e (u may have to be 
chosen sufficiently close to e), since * is well behaved. So, the equation u" = c has a 
unique solution u in (e,c], which shall be assigned to (l1/n), and let similarly 
?(-1/n) be the unique solution v e [d, e) of Vn = d. For positive integers n, m, 
unum is defined whenever u" and um are in C, and equal to un+m by associativity of * 
on C. For I < m < n define f(m/n) = (4(l/n))m < c and rf(-m/n) 
((--1/n))m > d. Then it is easily seen (note cd = e) that for integers k,l 
with ikl lIjL, Ik + 11 < n, 4(k/n) and 1(l/n) belong to [d, c] and l(k/n + l/n) = 
t(k/n) * (l/n). So if fulfills 4(p + q) = (p)4(q) for all rationals p,q with 
pI, Iql, lp + qf < 1. Furthermore, f is strictly increasing. This still holds if 4p is 
extended to the reals by Dedekind cuts [1, p. 56f], and it is then a well-behaved 
function [-1, 1] -- [d, c] since it leaves no gaps. Its inverse 4): [d, c] -> [-1 1] is also 
well behaved and fulfills 4)(e) = 0 and 4(uv) = ()(u) + +t(v) whenever u, v, uv 
[d, c]. Let E be any sufficiently small open neighborhood of e such that D = EEE c 
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[d, c], which exists by the good behavior of * (the latter implies D is open; note 
E c EE c D). With 0 restricted to D, (6) is shown. 

(iii) Arbitrary local additive representation. Using the fact that the constants 0, 1, 2 
in (i) above are arbitrary elements of X,Y, Z, respectively, we will show next that 
e = f(, 1, 2) is indeed w.l.o.g. in the interior of U, V and W, and will prove the 
following generalization of (6): for each (u', v', w') in the interior of U x V x W, 
there are open neighborhoods I, J, K, L of u'v'w', u', v, w' contained in F, U, V, W, 
respectively, where I = JKL, such that 

I(uvw) = q(uv'w') + f(u'vw') + if(u'v'w), 
(7) 

( u'v'w') =0 for u E J, v E K, w E L 

hold for a suitable well-behaved function f: I -> R. To prove this, let u' u(x'), v' = v(y'), w' = w(z') be interior points of U, V, W, respectively, for suitable x', y', z'. 
Letting the latter take the role of 0,1, 2 in (i) above, we observe that there are 
continuous functions p, q, r (in place of u, v, w) with images P, Q, R, and a well- 
behaved partial associative function o such that, as in (4), 

f(x, y, z) =p(x) q(y)o r(z) 

holds (parentheses have been omitted). Thereby, 

p(x) f(x, y, z') = u(x)v'w', 

q(y) = f(x', y, z') = u'v(y)w', 

r(z) =f(x', y',z) =uv'w(z). 

The functions (-)v'w: U - P, u'()w': V > Q, u'v'(.): W- R are well-behaved 
bijections, mapping, respectively, u', v' and w' to e' - f(x', y', z') = u'vw'. Thus e' is 
in the interior of P, Q and R, and if e is not already in the interior of U n V n W, it 
can therefore be chosen this way. As proved in (ii) (cf. (6)), there are an 
open neighborhood E' c P n Q n R of e' and a well-behaved function ?: I = E' o 
EE' E' - R such that 0(p o o r) = t(p) + q(q) + f(r) holds for p, q, r E', 
and (e') = 0. With J, K and L as inverse images of E' under the above 
well-behaved bijections, (7) holds, because of p(x)o q(y) r(z) = f(x, y, z) = 
u(x)v(y)w(z) and, for instance, p(x) e E' = u(x) E J. 

(iv) Global extension of the additive representation. The function uvw of (u, u, w), 
defined on the product U x V X W of intervals and well behaved in each argument, 
has by (7) a local additive representation throughout the interior of its domain. In 
Debreu [9, pp. 22-25] such a representation is proved under the additional hypothesis 
that X x Z is PI, and it is mentioned [9, p. 25] that this follows in the large from the 
property in the small. Similarly, Rad6 [24, p. 150] states that an equivalent condition 
"B" (similar to the "Thomsen condition") holds globally if it holds locally. Since the 
argument is not spelled out at either place, we give it here in detail; in essence, the 
local additive representations are united to a single global one by suitable positive- 
affine transformations. As pointed out by a referee, this extension has to be done with 
some care, since adding a new three-dimensional rectangle like J x K x L in (7) to 
the domain of the additive function in construction may lead to incompatibilities of 
the transformations, like q, in (7), at different, disconnected places (see Wakker [30, 
Example 3] and [32, ?2.2] for details). Here, we produce by extension only rectangles 
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again and use the global product structure to get rid of the locality dimension by 
dimension, which avoids these complications; for another proof see [31]. 

Consider two local representations as in (7) and assume that they agree in two of 
the open intervals J, K, L, say J and K, that define their respective domain, and let 
the third intervals, say L and L', be intersecting, so that (7) holds with fr, J, K, L and 
also with 6i', J, K, L' instead, where L r L' is not empty. Hereby, the "origin" 
(u', v', w') in (7) with If(u'v'w') = 0 need initially not be the same as that for 6', but 
it can be easily "shifted" since any (necessarily interior) point (a, b, c) of J x K x L 
can take its place by considering f - if/(abc) instead of i?, as is easily seen. So w.l.o.g. 
w' E L n L' and Ir(u'v'w') = u'(u'v'w') = 0. The two additive representations are on 
their common domain related by a positive-linear transformation, that is, 

(8) @'(uvw) = cif(uvw) for u E J, v K, w E L n L' 

holds for a constant c > 0. This is well known; we give references for a standard way 
to prove it, which is not difficult. Let u, v, w be restricted as in (8). With 0(a + 1) := 
?fr'(i-1(a + P)) for a = =(uvw'), 13 = r(u'v'w), so a + 13 = f(uvw), the "Cauchy- 
equation" 0(a + ,3) = 0(a) + 0(13) holds (compare also [1, p. 58]) which is restricted 
to an open rectangle for the values of (a, 3) that contains (0, 0) since f(u'v'w') = 0. 
By Daroczy and Losonczi [7, pp. 239-242] (compare also [2, p. 82]), the function 0 has 
in this case a unique extension to R that fulfills this equation for all reals a, 3, so 
0(a) = ca for a unique c > 0 since 0 is well behaved on an interval [1, p. 34], which 
shows (8). Since i can be replaced by c? without changing (7), let w.l.o.g. c = 1 in 
(8). 

Fixing J and K in the preceding construction has the important consequence that 
the functions ? and ?' have no common arguments s other than those given in (8) 
where f and ?' agree: For, let s = abc = a'b'c' for a, a' e J, , b' E K, c e L, 
c' E L'; the claim is that s = uvw holds for some u e J, v E K, w E L n L'. This is 
immediate if c or c' belongs to L n L', so let this not be the case and assume w.l.o.g. 
c < c', that is, the intervals L and L' overlap so that L' contains the larger elements. 
Taking any w E L n L', which implies c < w < c' and thus abw > s > a'b'w by the 
good behavior of ., one notes that the interval {uvwlu E J, v E K} contains s, which 
proves the claim. Thus, the two functions ? and i' with domains I = JKL and 
I' = JKL' agree by (8) on I n I' = JK(L n L') and can be extended to a single 
function on I u I', call it i again, so that (7) holds with L U L' instead of L. In this 
reasoning, the extension along the third dimension is not special, so replacing J by an 
interval J U J' in (7) while K and L stay fixed is similarly possible, and correspond- 
ingly for the second dimension, enlarging K. 

To extend iteratively the local additive representation in the interior of U x V X W 
to a global one, take first a subcompactum UO X VO X WO with compact intervals 
U0, Vo, Wo and fix u' E Uo, v' E Vo. Consider for all w' e Wo the respective open 
neighborhoods J X K x L of (u', v', w') such that (7) holds. They cover the compact 
set {(u', v')} X WO, so finitely many of them suffice. The corresponding intervals J can 
be replaced by their joint (finite) intersection to become independent of w', and 
similarly for K, since this only restricts the additive representation (7) but J and K 
stay neighborhoods of u', resp., v'. The corresponding intervals L unite to an open 
interval W' that contains WO. For these intervals L, the extension described above 
can be used inductively to eventually get an additive representation on J x K x W', 
that is, (7) with W' instead of L. 

Next, fix only u' E Uo and consider for all v' E Vo the additive representations just 
shown on the open sets J X K X W' (where u' E J, v' E K and Wo c W') that cover 
{u'} x Vo x Wo, of which again finitely many suffice. One gets rid of the dependence 
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of J and W' on v' by taking the respective finite intersections, and this time 
extending along the second dimension by uniting iteratively the sets K, one gets an 
additive representation on J X V' X W' where the open intervals V' and W' contain 
V0, resp., WO and replace K, resp., L in (7). In the same way, one extends along the 
first dimension by considering these representations for all u' e U(. (This construc- 
tion could straightforwardly be carried over to more than three dimensions.) This 
gives an additive representation on an open set U' X V' X W' containing the set 
U0 X V( X W( to which it can be restricted. 

Consider sequences of successively larger compact intervals U, Ul, U2,... (and 
similarly Vv, V1,... and W0, W,... ) that eventually exhaust the interior of U (resp., 
of V, W) and apply the preceding construction to U, X VI X W,. For sufficiently large 
n, this set contains (e, e, e) as interior point (e is the neutral element of ? above) 
which can take the place of the "origin" (u', v', w') in (7). Thus, replacing if by 0, 

(uuw) = +(u) + +(u) + +(w)+ 
(9) 

O(e) - 0 

holds for u E U,, v E V,, w E W,. As n increases, this can obviously be considered 
as the extension of one function d for which (9) eventually holds for any interior 
point (u, v, w) of U x V x W. 

If U, V, W are not all open, equation (9) remains to be shown if some of u, v or w 
are corresponding boundary points of these intervals. Then +(u), ()(v) and )(w) are 
still defined because the entire intervals U, V and W are contained in the interior of 
F = UVW, since e is in the interior of U, V and W: for instance, with e > v for some 
v E V, u ue > uv E F, in particular if u is the lower endpoint of U. If u, v and w 
are all boundary points at the same end of U, V, W, respectively, then and only then 
uvw is a boundary point of F, where 0(uvw) can be defined by (9). Taking limits, the 
continuity of * and + shows that (9) holds for all u, v, w, or, using (4), 

A[f(x, y,z)] = 4[u(x)] + t[v(y)] + O[w(z)], 

which proves (1). n 
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