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1. Introduction. Aumann [1] defined the concept of correlated equilibrium (abbreviated as CE, also for the
plural equilibria) for games in strategic form. Before the game starts, a device selects private signals from a joint
probability distribution and sends them to the players. In the canonical representation of a CE, these signals are
strategies that players are recommended to play.
This paper proposes a new concept of correlated equilibrium for extensive games, called extensive-form corre-

lated equilibrium or EFCE. Like in a CE (which is defined in terms of the strategic form), the recommendations
to the players are moves that are generated before the game starts. However, each recommended move is assumed
to be in a “sealed envelope” and is only revealed to a player when he reaches the information set where he can
make that move.
As recommendations become local in this way, players know less. Consequently, the set of EFCE outcomes

is larger than the set of CE outcomes. However, an EFCE is more restrictive than an agent-form correlated
equilibrium (AFCE). In the agent form of the game, moves are chosen by a separate agent for each information
set of the player. In an EFCE, players remain in control of their future actions, which is important when they
consider deviating from their recommended moves.
The EFCE is a natural definition of correlated equilibrium for extensive games with perfect recall as defined

by Kuhn [25]. Earlier extensions of Aumann’s concept applied only to multistage games, including Bayesian
games and stochastic games, which have a special time and information structure. These earlier approaches are
discussed in §2.4.
The main motivation for the EFCE concept is computational. The algorithmic input is some description of

the extensive game with its game tree, information sets, moves, chance probabilities and payoffs. Polynomial
(or linear or exponential) size and time always refer to the size of this description. The strategic form of the
extensive game has typically exponential size. Hence, there are also exponentially many linear constraints that
define the set of strategic-form correlated equilibria. In this paper, we are interested in the set of all EFCE of
the game, and prove the following result.

Theorem 1.1. For a two-player, perfect-recall extensive game without chance moves, the set of EFCE can
be described by a system of linear equations and inequalities of polynomial size. For any solution to that system
(which defines an EFCE), a pair of pure strategies containing the recommended moves can be sampled in
polynomial time.

This theorem is analogous to the description of the set of CE for a game in strategic form by incentive
constraints. The incentive constraints compare any two strategies of a player, so their number is polynomial
in the size of the strategic form. Consequently, for games given in strategic form, one can find in polynomial
time a CE that maximizes the sum of payoffs to all players, which we call the problem MAXPAY-CE (which
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we consider for various descriptions of games as input). In contrast, the problem MAXPAY-NE (finding a Nash
equilibrium with maximum payoff sum) for games in strategic form is NP-hard (Gilboa and Zemel [17], Conitzer
and Sandholm [6]; see Garey and Johnson [14] or Papadimitriou [30] for notions of computational complexity).
While CE are computationally easier than Nash equilibria for games in strategic form, this is not clear for

games in extensive form, because their strategic form may be exponentially large. The following negative result
confirms that, unless P=NP, the set of (strategic-form) CE does not have a polynomial-sized description.

Theorem 1.2. For two-player, perfect-recall extensive games without chance moves, the problem MAXPAY-
CE is NP-hard.

Theorem 1.1 implies that the problem MAXPAY-EFCE (finding an EFCE with maximum payoff sum) can be
solved in polynomial time for two-player, perfect-recall games without chance moves. Interestingly, that problem
becomes NP-hard when chance moves are allowed, as stated in the following theorem; a closely related result
has been shown earlier by Chu and Halpern [5].

Theorem 1.3. For two-player, perfect-recall extensive games with chance moves, the problems MAXPAY-NE,
MAXPAY-CE, MAXPAY-AFCE, and MAXPAY-EFCE are NP-hard.

For zero-sum, two-player extensive games with perfect recall, a Nash equilibrium can be found in polynomial
time, as shown by Romanovskiı̆ [34], Koller and Megiddo [23], and von Stengel [40]. These methods (most
explicitly von Stengel [40]) use the sequence form of an extensive game where mixed strategies are replaced by
behavior strategies, by Kuhn’s theorem [25]. A behavior strategy is represented by its realization probabilities
for sequences of moves along a path in the game tree. These realization probabilities can be characterized by
linear equations, one for each information set. Thereby, the sequence form provides a strategic description that
has the same size as the game tree, unlike the exponentially large strategic form. The sequence form applies
also to games with chance moves.
Recently, Hansen et al. [20] have found another case where the introduction of chance moves marks the

transition from polynomial-time solvable to NP-hard problems. They give a linear-time algorithm that decides if
a two-player zero-sum extensive game with perfect recall and no chance moves has a pure-strategy equilibrium.
Blair et al. [3] have shown that this problem is NP-hard if chance moves are allowed. (For games with imperfect
recall, even if they are zero-sum and have no chance moves, it is NP-hard to find the unique Nash or correlated
equilibrium payoff; see Koller and Megiddo [23, p. 534].)
For two-player perfect-recall games without chance moves, the set of EFCE has a polynomial-sized description

for the following reason. An EFCE describes correlations of moves between information sets of the two players,
rather than correlations of entire strategies as in a CE. This is similar to using behavior strategies rather than
mixed strategies in a Nash equilibrium. The recommended moves at an information set depend on what has
been recommended to the other player (this is stated as “sampling a pure-strategy pair” in Theorem 1.1 and is
proved in Theorem 3.9). Consider some information set, say k of player 2, where a move is to be recommended.
Perfect recall and the absence of chance moves imply that previous recommendations to the other player must
define a sequence of moves, of which there is only a linear number (see Figure 7). Hence, there are only a few
conditional distributions for generating the move at k. In contrast, a chance move, when learned by a player,
may give rise to parallel information sets (which are preceded by the same own earlier moves of the player;
see von Stengel [40, Definition 4.3]). The number of move combinations at parallel information sets may grow
exponentially, and each of them may produce a different conditional distribution for the recommended move.
This applies in general for CE, with possibly exponentially many recommended strategies and corresponding
conditional distributions.
The polynomially many constraints that describe the set of EFCE according to Theorem 1.1 extend, in a

relatively natural way, the sequence form constraints as used for Nash equilibria. They define joint probabilities
for correlating moves at any two information sets of the two players by means of suitable consistency and
incentive conditions. These constraints are valid even when the game has chance moves or more than two
players, but they do not characterize the set of EFCE in those cases (otherwise, Theorem 1.3 would imply
P=NP). The constraints do suffice for two-player games without chance moves, which needs careful reasoning
because many subtleties arise; for example, there may be cycles (of length four or more) in the possible temporal
order of information sets, as Figure 6 demonstrates.
Papadimitriou and Roughgarden [32] study the computation of CE for various compactly represented games

such as certain graphical games, congestion games, and others. For anonymous games, they give an explicit,
polynomial-sized description of the set of CE, and (in Papadimitriou and Roughgarden [33]) a way to sample
a pure strategy profile from a CE described in that way, analogous to our Theorem 1.1. (The players in an
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anonymous game have equal strategy sets, and a player’s payoff depends only on how many, but not which,
other players choose a particular strategy.)
We consider the problems MAXPAY-CE and MAXPAY-EFCE to see whether the set of CE or EFCE can

be described by a polynomial number of linear constraints. Similar to our Theorem 1.3, Papadimitriou [31]
and Papadimitriou and Roughgarden [33] prove that for many compactly represented games, the problem
MAXPAY-CE is NP-hard. However, their main result (Theorem 3.12 below) states that one CE can often be
found in polynomial time, which shows that finding a CE is usually computationally simpler than payoff maxi-
mization. In §3.8 we confirm this observation by explicitly constructing Nash equilibria for the games used in
the NP-hardness proofs of Theorems 1.2 and 1.3. Moreover, as a corollary to the result of Papadimitriou [31],
our Proposition 3.13 states that for any extensive game, an AFCE can be found in polynomial time. This holds
because the agent form, unlike the strategic form, has few strategies per player. The computational complexity
of finding one CE or EFCE for a general extensive game is an open problem.
Sections 2 and 3 of this paper treat the conceptual and computational aspects of EFCE, respectively; an

overview is given at the beginning of each section. Section 4 discusses open problems.

2. The EFCE concept. This section presents the basic properties of the EFCE. In §2.1, we define the
solution concept in canonical form. As we explain, this can be done without loss of generality. In §2.2, we
show that an EFCE can always be defined with a correlation device that generates profiles of reduced strategies.
Section 2.3 discusses a signaling game with costless signals, in which an EFCE is “type-revealing” while all
CE are nonrevealing. In §2.4, we compare the EFCE with other extensions of the CE, which have been defined
for games with special time or information structures.

2.1. Definition of EFCE. We use the following standard terminology for extensive games. Let N be the
finite set of players. The game tree is a finite directed tree, that is, a directed graph with a distinguished node,
the root, from which there is a unique path to any other node. The nonterminal decision nodes of the game
tree are partitioned into information sets. Each information set belongs to exactly one player i. The set of all
information sets of player i is denoted by Hi. The set of choices or moves at an information set h is denoted
by Ch. Each node in h has �Ch� outgoing edges, which are labeled with the moves in Ch.
We assume each player has perfect recall, defined as follows. Without loss of generality, choice sets Ch

and Ck for h �= k are considered disjoint. A sequence of moves of a particular player is a sequence of his
moves (ignoring the moves of the other players) along the path from the root to some node in the game tree.
By definition, player i has perfect recall if all nodes in an information set h in Hi define the same sequence �h

of moves for player i.
The set of pure strategies of player i is

�i =
∏
h∈Hi

Ch	 (1)

The set of all strategy profiles is
�= ∏

i∈N
�i	 (2)

Definition 2.1. A (canonical) correlation device is a probability distribution 
 on �.
A correlation device 
 makes recommendations to the players by picking a strategy profile � according to

the distribution 
, and privately recommending the component �i of � to each player i for play. It defines a
CE if no player can gain by unilaterally deviating from the recommended strategy, given his posterior on the
recommendations to the other players (see Aumann [1]). We define an EFCE also by means of a correlation
device, but with a different way of giving recommendations to the players.

Definition 2.2. Given a correlation device 
 as in Definition 2.1, consider the extended game in which a
chance move first selects a strategy profile � according to 
. Then, whenever a player i reaches an information
set h in Hi, he receives the move c at h specified in � as a signal, interpreted as a recommendation to play c.
An extensive-form correlated equilibrium 
EFCE� is a Nash equilibrium of such an extended game in which the
players follow their recommendations.
In an EFCE, the strategy profile selected according to the device defines a move c for each information set h

of each player i, which is revealed to player i only when he reaches h. It is optimal for the player to follow
the recommended move, assuming that all other players follow their recommendations. When a player considers
a deviation from a recommended move, he may choose any moves at his subsequent information sets. This
distinguishes the EFCE from the AFCE, where each move is optimal assuming that the behavior at all other
information sets is fixed (see §2.4).
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The above description of an EFCE is in canonical form. That is, the recommendations to players are moves
to be made at information sets and not arbitrary signals. In the same way as for the CE, this can be assumed
without loss of generality (see Forges [10]).

2.2. Reduced strategies suffice. In the reduced strategic form of an extensive game, strategies of a player
that differ in moves at information sets which are unreachable due to an own earlier move are identified. (Defined
in this way, the reduced strategic form only depends on the game tree structure and not on the payoffs.) In our
characterization of EFCE in Theorem 1.1, it is not possible to specify move recommendations for unreachable
information sets, so the device can only generate reduced strategy pairs. As shown in this section, this causes
no loss of generality.
A reduced strategy can still be considered as a tuple of moves, except that the unspecified move at any

unreachable information set is denoted by a new symbol, for example a star “∗,” which does not belong to any
set of moves Ch. We denote the set of all reduced strategies of player i by �∗

i , and the set of all reduced strategy
profiles by

�∗ = ∏
i∈N

�∗
i 	 (3)

By construction, the payoffs for a profile of reduced strategies are uniquely given as in the strategic form. This
defines the reduced strategic form of the extensive game.
In Definition 2.1, a correlation device is defined on �, that is, using the unreduced strategic form. We now

redefine a correlation device to be a probability distribution on �∗. Any CE that is specified using the unreduced
strategic form can be considered as a CE for the reduced strategic form. This is achieved by defining the probability
for a profile �∗ of reduced strategies as the sum of the probabilities of the unreduced strategy profiles � that agree
with �∗ (in the sense that whenever �∗ specifies a move other than “∗” at an information set, then � specifies
the same move). Because the incentive constraints hold for the unreduced strategies, and payoffs are identical,
appropriate sums of these give rise to the incentive constraints for the reduced strategies, which therefore hold as
well.
Conversely, any CE for the reduced strategic form can be applied to the unreduced strategic form by arbitrarily

defining a move for every unreachable information set (which is “∗,” that is, undefined, in the reduced strategy
profile), thereby defining a particular unreduced strategy to be selected by the correlation device.
In the same manner, an EFCE can be defined by assigning probabilities only to reduced strategy profiles.

This defines an EFCE for unreduced strategy profiles by recommending an arbitrary move at each unreachable
information set. Conversely, consider an EFCE defined using unreduced strategy profiles as in Definition 2.2.
Then, just as in the strategic form, this gives rise to an EFCE for reduced profiles, as follows. In the strategy
profile � generated by the correlation device, any recommendation at an unreachable information set is replaced
by “∗.” Suppose a player deviates from his recommended move at some information set, and gets a higher payoff
by subsequently using moves at previously unreachable information sets where he only gets the recommenda-
tion “∗.” Then the player could profitably deviate in the same way when getting recommendations of moves for
these information sets as in �, which he ignores. This contradicts the assumed equilibrium property.

2.3. Example: A signaling game. Figure 1 shows an example of an extensive game. This is a signaling
game as discussed by Spence [38], Cho and Kreps [4], and Gibbons [16, §4.2], but with costless signals (such
games are often referred to as “sender-receiver” games). Player 1, a student, is with equal probability of a good
type G or bad type B. He applies for a summer research job with a professor, player 2. Player 1 sends a costless
signal X or Y (denoted as move XG or YG for the good type, and as XB and YB for the bad type). The professor
can distinguish the signals X and Y but not the type of player 1, as shown by her two information sets. She can
either let the student work with her (lX or lY ), which gives the payoff pair 
4�10� for G, and 
6�0� for B, or
refuse to work with the student (rX or rY ), which for either type gives the payoff pair 
0�6�.
The CE of this game are found as follows. Figure 2 shows the strategic form and the possible CE probabilities

a�a′� a′′� b� b′� � � � , where player 2’s strategy lXlY is strictly dominated by rXrY and never played. The incentive
constraints for player 1 imply that a ≥ a′ (by comparing XGXB with any other row), and similarly d′ ≥ d.
Comparing XGYB with XGXB (respectively, YGYB) implies b

′ ≥ b (b ≥ b′), so b= b′; similarly, c= c′. Intuitively,
this means that player 2 must not give preference to either signal because otherwise the bad type would switch
to that signal. Then the incentive constraints where player 2’s strategies lXrY and rXlY are compared with rXrY
state

5a+ 8b+ 3c ≥ 6a+ 6b+ 6c� 3b+ 8c+ 5d′ ≥ 6b+ 6c+ 6d′�
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Figure 1. Signaling game with costless signals (X or Y ) for player 1.

which when added give 5a+11b+11c+5d′ ≥ 6a+12b+12c+6d′ or 0≥ a+b+c+d′ and thus a= b= c=
d′ = 0= a′ = d. Any CE is therefore a Nash equilibrium where player 1 plays the mixed strategy 
a′′� b′′� c′′�d′′�
and player 2 plays rXrY . The remaining incentive constraints for a

′′� b′′� c′′�d′′ mean that player 1 must not give
player 2 any incentive to accept him (lX or lY ) by making the conditional probability for G too high relative
to B when she receives signal X or Y .
However, there is an EFCE with better payoff to both players compared to the outcome with payoff pair 
0�6�:

A signal XG or YG is chosen with equal probability for type G, and player 2 is told to accept when receiving the
chosen signal and to refuse when receiving the other signal (so XG and lXrY are perfectly correlated, as well as YG
and rXlY ). The bad type B is given an arbitrary recommendation which is independent of the recommendation
to type G. Because the move recommended to G is unknown to B, the bad type cannot distinguish the two
signals and, no matter what he does, will match the signal of G with probability 1/2. When player 2 receives
the signal chosen for G, it is therefore twice as likely to come from G rather than from B, so that her expected
payoff of 20/3 for choosing l is higher than 6 when she chooses r . When she receives the wrong signal, it
comes from B with certainty, and then the best reply is certainly r with payoff 6. The expected payoffs in this
EFCE are 3	5 to player 1 and 6	5 to player 2. In a more elaborate game with M signals instead of just two
signals, where the bad type can only guess the correct signal with probability 1/M , the pair of expected payoffs
is 
2+ 3/M�8− 3/M�.
In the terminology of signaling games, any Nash or correlated equilibrium is the described “pooling equi-

librium” with payoff pair 
0�6�. This is due to the fact that signals are costless and therefore uninformative.
In contrast, the EFCE concept allows for a “partially revealing” equilibrium, where signals can distinguish the
types, which has better payoffs for both players.

2.4. Relationship to other solution concepts. Our definition of an EFCE generalizes the Nash equilib-
rium in behavior strategies and applies to any game in extensive form with perfect recall. Other extensions
of Aumann’s CE have been proposed to take into account the dynamic structure of specific classes of games,
namely Bayesian games and multistage games.
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Figure 2. Left: Strategic form of the game in Figure 1. Right: Correlated equilibrium probabilities.
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In a Bayesian game, every player has a type which can be represented by an information set. Players move
simultaneously and only once, so that an AFCE is the same as an EFCE. For Bayesian games, AFCE have been
studied by Forges [11, 12, 13], Samuelson and Zhang [35], and Cotter [7].
In general extensive-form games, any EFCE is an AFCE, by giving arbitrary recommendations at unreachable

information sets that in an EFCE are left unspecified (see §2.2). However, the set of AFCE outcomes can be
larger than the set of EFCE outcomes. An easy example is a one-player game where the player moves twice,
first choosing either “Out” and receiving zero, or “In” and then choosing again between “Out” with payoff zero
or “In” with payoff one. If the two agents at the two decision points both choose “Out,” this defines an AFCE
but not an EFCE.
In multistage games, the best known extension of the CE is the communication equilibrium introduced by

Myerson [28] and Forges [10]. This solution concept differs from the EFCE, because the players can send inputs
to the device, which they cannot do in an EFCE.
Like the communication equilibrium, the autonomous correlated equilibrium (Forges [10]) applies to multi-

stage games. However, the players cannot make any inputs to the device. They still receive outputs at every
stage. In the canonical version of the solution concept, the output to every player at every stage is a mapping
telling him which move to choose at that stage as a function of his information (i.e., the relevant part of his
strategy for the given stage). However, unlike in an EFCE, the respective signal is known to the player for
the entire stage and not only locally for each information set.1 The set of autonomous correlated equilibrium
outcomes is included in the set of EFCE outcomes, and the inclusion may be strict, as shown in the example
in §2.3, where an autonomous correlated equilibrium is the same as a CE. The inclusion may also be strict for
two-player games without chance moves, which we consider later (see the example in §3.3).
Solan [37] defines the concept of general communication equilibrium for stochastic games, where the device

knows the game state and all past moves. He proves that this concept is outcome equivalent to the autonomous
correlated equilibrium. Because any autonomous correlated equilibrium outcome is an EFCE outcome, which,
by definition, is a general communication equilibrium outcome, these concepts coincide for stochastic games.
Kamien et al. [22] and Zamir et al. [44] study extensive games with a single initial chance move. The game is

modified by introducing a disinterested additional player (the “maven”) who can reveal any partial information
about the chance move to each player. In some games, the resulting set of payoffs has some similarity with that
obtainable in an EFCE. However, the correlation device used in an EFCE is weaker than such a maven, for the
following reasons: Recommendations are generated at the beginning of the game. The device does not observe
play, and “knows” the game state only implicitly under the assumption that players observe their recommended
moves. The device cannot make recommendations conditional on game states that have been determined by a
chance move.
Moulin and Vial [27] proposed a “simple extension” of Aumann’s [1] correlated equilibrium that is completely

different from the ones reviewed above. Like the CE, their solution concept, which is also referred to as a coarse
correlated equilibrium (Young [43]), is described by a probability distribution 
 on pure strategy profiles and
applies to the strategic form of the game. However, the players do not receive any recommendation on how to
play the game: each of them can choose to either adhere to 
 and get the corresponding correlated expected
payoff or to deviate ex ante, by picking some strategy. The coarse correlated equilibrium conditions state that no
player can gain by unilaterally deviating ex ante. Moulin and Vial’s solution concept assumes, in effect, some
limited commitment from the players who let the correlation device play for them at equilibrium. Every EFCE
defines a coarse correlated equilibrium: Namely, given an EFCE, it is clear that no player can benefit by ignoring
the recommendations of the device at his information sets and deviating unilaterally before the beginning of the
extensive-form game.

3. Computational complexity. So far, we have argued that the EFCE is a “natural” concept for games in
extensive form. This section deals with computational aspects of the EFCE. The main technical work is to prove
Theorem 1.1, which concerns two-player games without chance moves. In §3.1, we review the sequence form.
This is a compact description of realization plans that specify the probabilities for playing sequences of moves,
which can be translated to behavior strategy probabilities. Section 3.2 describes how to extend the constraints
for realization plans to consistency constraints for joint probabilities of pairs of sequences, which define what
we call a correlation plan. Section 3.3 gives an example that illustrates the use of the consistency constraints.

1 In Forges [10, p. 1378], a correlated equilibrium based on an autonomous device is called an “extensive-form correlated equilibrium,” but
this is now typically referred to as an “autonomous correlated equilibrium.” We suggest now using “EFCE” in our sense.
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In general, the consistency constraints apply only to mutually relevant information sets that share a path in the
game tree, as explained in §3.4. That section also describes the special structure of information sets in two-player
perfect-recall games without chance moves, and defines the concept of a reference sequence, which is used to
generate move recommendations. Based on these technical preliminaries, §3.5 shows how to use the consistency
constraints as a compact description of a correlation device as used in an EFCE. The incentive constraints are
described in §3.6.
In §3.7, we prove the hardness results of Theorems 1.3 and 1.2. These hardness results do not apply to the

problem of finding one CE, which is the topic of §3.8.

3.1. Review of the sequence form. The sequence form of an extensive game is similar to the reduced
strategic form, but uses sequences of moves of a player instead of reduced strategies. Because player i has perfect
recall, all nodes in an information set h in Hi define the same sequence �h of moves for player i (see §2.1). The
sequence �h leading to h can be extended by an arbitrary move c in Ch. Hence, any move c at h is the last move
of a unique sequence �hc. This defines all possible sequences of a player except for the empty sequence 
. The
set of sequences of player i is denoted Si, so

Si = �
�∪ ��hc � h ∈Hi� c ∈Ch�	

We will use the sequence form for characterizing the set of EFCE of two-player games (without chance moves).
Then we denote sequences of player 1 by � and sequences of player 2 by � , and for readability the sequence
leading to an information set k of player 2 by �k.
The sequence form is applied to Nash equilibria as follows (see also von Stengel [40], Koller et al. [24], or

von Stengel et al. [42]). Sequences are played randomly according to realization plans. A realization plan x

for player 1 is given by nonnegative real numbers x
�� for � ∈ S1, and a realization plan y for player 2 by
nonnegative numbers y
�� for � ∈ S2. They denote the realization probabilities for the sequences � and � when
the players use mixed strategies. Realization plans are characterized by the equations

x

�= 1�
∑
c∈Ch

x
�hc�= x
�h� 
h ∈H1��

y

�= 1�
∑
d∈Ck

y
�kd�= y
�k� 
k ∈H2�	
(4)

The reason is that Equations (4) hold when a player uses a behavior strategy, in particular a pure strategy, and
therefore also for any mixed strategy, because the equations are preserved when taking convex combinations.
A realization plan x (and analogously, y) fulfilling (4) results from a behavior strategy of player 1 (respectively,

player 2) that chooses move c at an information set h ∈ H1 with probability x
�hc�/x
�h� if x
�h� > 0 and
arbitrarily if x
�h�= 0. The probability of reaching any node of the game tree depends only on the probabilities
for the players’ move sequences defined by the path to the node. So, via x, every mixed strategy has a realization-
equivalent behavior strategy, as stated by Kuhn [25]. This canonical proof of Kuhn’s theorem (essentially due to
Selten [36]) works for any number of players. The behavior at h is unspecified if x
�h�= 0, which means that
h is unreachable due to an earlier own move. Not specifying the behavior at such information sets is exactly
what is done in the reduced strategic form.
Sequence form payoffs are defined for profiles of sequences whenever these lead to a leaf (terminal node) of

the game tree, multiplied by the probabilities of chance moves on the path to the leaf. Here, we consider the
special case of two players and no chance moves, and extend the sequence form to a compact description of the
set of EFCE.
The sequence form is much smaller than the reduced strategic form, because a realization plan is described

by probabilities for the sequences of the player, whose number is the number of his moves. In contrast, a mixed
strategy is described by probabilities for all pure strategies of the player, whose number is generally exponential
in the size of the game tree.2 A polynomial number of constraints, namely one Equation (4) for each information
set (and nonnegativity), characterizes realization plans. These constraints can be used to describe Nash equilibria,
as explained in the papers on the sequence form cited above.

2 A class of games with exponentially large reduced strategic form is described by von Stengel et al. [42].
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3.2. Correlation plans and marginal probabilities. In the following sections, we consider an extensive
two-player game with perfect recall and without chance moves. Then any leaf of the game tree defines a unique
pair 
�� �� of sequences of the two players. Let a
�� �� and b
�� �� denote the respective payoffs to the players
at that leaf. Then if the two players use the realization plans x and y, their expected payoffs are given by the
expressions, bilinear in x and y,

∑
���

x
��y
��a
�� �� and
∑
���

x
��y
��b
�� ��� (5)

respectively. The expressions in (5) represent the sums over all leaves of the payoffs multiplied by the prob-
abilities of reaching the leaves. The sums in (5) may be taken over all � ∈ S1 and � ∈ S2 by assuming that
a
�� �� = b
�� �� = 0 whenever the sequence pair 
�� �� does not lead to a leaf. This is useful when using
matrix notation, where the payoffs in the sequence form are entries a
�� �� and b
�� �� of sparse �S1� × �S2�
payoff matrices and x and y are regarded as vectors.
To describe an EFCE, the product x
��y
�� in (5) of the realization probabilities for � in S1 and � in S2

will be replaced by a more general joint realization probability z
�� �� that the pair of sequences 
�� �� is
recommended to the two players, as far as this probability is relevant. These probabilities z
�� �� define what
we call a correlation plan for the game.
As a tentative definition, given in full in Definition 3.8 below, a correlation plan is a function z $ S1×S2 →�

for which there is a probability distribution 
 on the set of reduced strategy profiles �∗ such that for each
sequence pair 
�� ��,

z
�� ��= ∑

p1� p2�∈�∗


p1� p2� agrees with 
�� ��



p1� p2�	 (6)

Here, the reduced pure strategy pair 
p1� p2� agrees with 
�� �� if p1 chooses all the moves in � and p2 chooses
all the moves in � .
In an EFCE, a player gets a move recommendation when reaching an information set. The move corresponds

uniquely to a sequence ending in that move. For player 1, say, the sequence denotes a row of the �S1� × �S2�
correlation plan matrix. From this row, player 1 should have a posterior distribution on the recommendations to
player 2. This behavior of player 2 must be specified not only when player 1 follows a recommendation, but
also when player 1 deviates, so that player 1 can decide if the recommendation given to him is optimal; see
the example in §3.3. The recommendations to player 2 off the equilibrium path are therefore important, so the
collection of recommended moves to player 2 has to define a reduced strategy. Otherwise, one could simply
choose a distribution on the leaves of the tree (with a correlation plan that is a sparse matrix like the payoff
matrix), and merely recommend to the players the pair of sequences corresponding to the selected leaf.
Our first approach is therefore to define a correlation plan z as a full matrix. Except for a scalar factor, a

column of this matrix should be a realization plan of player 1, and a row should be a realization plan of player 2.
According to (4) (except for the equations x
 = 1 and y
 = 1 that define the scalar factor), this means that for
all � ∈ S2, h ∈H1, � ∈ S1, and k ∈H2,

∑
c∈Ch

z
�hc� ��= z
�h� �� and
∑
d∈Ck

z
�� �kd�= z
�� �k�	 (7)

Furthermore, the pair 

�
� of empty sequences is selected with certainty, and the probabilities are nonnegative,
which gives the trivial consistency constraints

z

�
�= 1� z
�� ��≥ 0 
� ∈ S1� � ∈ S2�	 (8)

Clearly, the constraints (7) and (8) hold for the special case z
�� ��= x
��y
�� where x and y are realization
plans. With properly defined incentive constraints that make it an EFCE, such a correlation plan of rank one
should define a Nash equilibrium. In particular, if x and y stand for reduced pure strategies, where each sequence
� or � is chosen with probability zero or one, then the probabilities z
�� ��= x
��y
�� are also zero or one,
and Equations (7) and (8) hold. For any convex combination of pure strategy pairs, as in an EFCE, (7) and (8)
therefore hold as well, so these are necessary conditions for a correlation plan.
Figure 3 shows on the left a correlation plan defined in this manner for the game in Figure 1. Because both

players move only once, every nonempty sequence is just a move. The correlation plan on the left in Figure 3
arises from the pure strategy pair 
XGYB� lXlY �.
Figure 3 shows on the right a possible assignment of probabilities z
�� �� that fulfills (7) and (8). These

probabilities are “locally consistent” in the sense that the marginal probability of each move is 1/2. However,
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Figure 3. Left: Correlation plan representing the pure strategy pair 
XGYB� lXlY �. Right: Distribution on sequence pairs that is “locally”
(in each row and column) consistent, but which is not a convex combination of pure strategy pairs.

they cannot be obtained as a convex combination of pure strategy pairs like the pure strategy pair on the left
in Figure 3. Otherwise, one such pair would have to recommend move XG to player 1 and move lX to player 2 to
account for the respective entry 1/2. In that pure strategy pair, given that player 2 is recommended move lX , the
recommendation to player 1 at the other information set must be YB because the move combination 
XB� lX� has
probability zero. Similarly, move XG requires that move lY be recommended to player 2. This pure strategy pair
is thus 
XGYB� lXlY � as in the left picture of Figure 3, but that pair also selects 
YB� lY �, which is not possible
according to the right picture. This shows that (7) and (8) do not suffice to characterize the convex hull of pure
strategy profiles. For games with chance moves, Theorem 1.3 shows that this convex set cannot be characterized
by a polynomial number of linear inequalities (unless P=NP).
However, we will show that the constraints (7) and (8) suffice to characterize correlation plans when the game

has only two players and no chance moves.

3.3. Example of generating move recommendations. The left picture in Figure 4 shows a game very
similar to Figure 1, except that the initial chance move is replaced by a move by player 1, as if that player
“chose his own type.” A similar analysis as in §2.3 shows that there is only one outcome in a strategic-form or
autonomous correlated equilibrium, or even communication equilibrium (see §2.4), which is nonrevealing.
Figure 4 shows on the right an example of probabilities z
�� �� that fulfill (7) and (8). We demonstrate how to

generate a pair of reduced strategies using z, described in general in §3.5 below. We consider only the generation
of moves, and not any incentive constraints (treated in §3.6), which are in fact violated for this z.
The generation of moves starts at the root of the game tree. The information set containing the root belongs

to player 1 and has the two moves G and B. We consider a “reference sequence” of the other player, which is
here � =
 of player 2 because that is the sequence of player 2 leading to the root. This reference sequence �
determines a column of z describing the probabilities for making a move G or B. In Figure 4, z
G��� =
z
B� ��= 1/2. Suppose that move G is chosen. The next information set belongs again to player 1 with moves
XG and YG. The reference sequence is still � = 
. The moves of player 1 correspond to the sequences GXG

and GYG, which have probabilities z
GXG��� = z
GYG� �� = 1/4 in Figure 4. These probabilities have to be
divided by z
G��� to obtain the conditional probabilities for generating the moves, which are here both 1/2;
the respective general equation is (10) below. Suppose that move XG is chosen.
The next information set to be considered (because it still precedes any information set of player 2) is the

information set of player 1 with moves XB and YB. However, this information set is unreachable due to player 1’s
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Figure 4. Left: Game similar to Figure 1 with a move by player 1 instead of chance. Right: A possible distribution on sequence pairs
for this game.
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earlier move G. Because it suffices to generate only a reduced strategy of player 1 as explained in §2.2, no
move is recommended at this information set. All information sets of player 1 have been considered, so the
generated reduced strategy is 
G�XG�∗�; recall that the moves in that strategy are recommended to player 1
when he reaches his respective information sets.
The remaining information sets belong to player 2. For the information set with moves lX and rX , the reference

sequence is � =GXG because these moves have been generated for player 1 and reach player 2’s information
set. This reference sequence � determines a row in Figure 4 where z
�� lX�= 1/4 and z
�� rX�= 0. Normalized
by dividing by the probability z
��
�= 1/4 for the incoming sequence 
 of player 2, this means lX is chosen
with certainty.
The information set k of player 2 with moves lY and rY is interesting because it will not be reached when

player 1 plays his recommended moves G and XG. Nevertheless, a move at k must be recommended to player 2
because player 1 must be able to decide if choosing his recommended move XG is optimal, or if YG is better.
Player 1 can only decide this if he has a posterior over the moves lY or rY of player 2. The reference sequence for
player 2’s selection is again � =GXG because its last move XG is made at the unique information set of player 1
that still allows player 2 to reach k, described in generality in §3.5. According to Figure 4, z
�� lY � = 1/4
and z
�� rY �= 0, so lY is also chosen with certainty. The reduced strategy whose moves are recommended to
player 2 is therefore 
lX� lY �.
The four squares at the bottom right of Figure 4 describe a correlation between the moves at pairs of infor-

mation sets of player 1 and player 2, with nonzero entries-as in the right picture of Figure 3. However, unlike
in that picture, these numbers are not only “locally” but also “globally” consistent in the sense that they can
arise from a distribution 
 on reduced strategy profiles. The reason is that, for example, the moves lY and rY
of player 2 are correlated with either XG and YG or XB and YB of player 1, depending on the first move G or B
of player 1, but not with both move pairs. In contrast, the conflict in Figure 3 arises because G or B is chosen
by a chance move.

3.4. Information structure of two-player games without chance moves. In the following sections, we
consider only two-player games without chance moves. Using the condition of perfect recall, we describe
structural properties of information sets in such games. We then define the concepts of relevant sequence pairs
and reference sequences, which we use later in Theorem 3.9.

Definition 3.1. Let u and v be two nodes in an extensive game, where u is on the path from the root to v.
Then u is called an ancestor of v (or earlier than v), and v is said to be later than u. If h and k are information
sets (possibly of the same player) with u ∈ h and v ∈ k, then h is said to precede k, and h and k are called
connected (sharing a path).

Lemma 3.2. Consider an extensive game with perfect recall.
(a) If h′, h, k are information sets so that h′ and h belong to the same player, h′ precedes h, and h precedes k,

then h′ precedes k.
(b) Restricted to the information sets of a single player, “precedes” is an irreflexive and transitive relation.

Proof. For (a), some node u in h is earlier than some node v in k, and some node in h has an earlier node
in h′, so by perfect recall all nodes of h have an earlier node in h′, including u, which implies that h′ precedes v.
For (b), it is easy to see that no two nodes in an information set share a path in the tree, so “precedes” is

irreflexive, and by (a) it is transitive. �

By Lemma 3.2(b), any set H ′ of information sets of a single player is partially ordered. We call an information
set h in H ′ maximal if it is not preceded by any other information set in H ′.
The following lemma states that for two-player games without chance moves, “precedes” is antisymmetric

even for information sets of different players (which is easily seen to be false if there are chance moves or a
third player).

Lemma 3.3. Consider a two-player extensive game without chance moves and with perfect recall. Then for
any two information sets h and k, if h precedes k, then k does not precede h.

Proof. Let h and k be two information sets so that h precedes k, let u be a node in h, and let v be a node
in k so that there is a path from u to v in the tree. Suppose that, contrary to the claim, k also precedes h, with
v′ ∈ k and u′ ∈ h so that there is a path from v′ to u′. Let w be the last common ancestor of u and v′. If w= u (or
w= v′), then two nodes in h (respectively, k) share a path, which is not possible with perfect recall. Otherwise,
Figure 5 shows that perfect recall is violated if h and k belong to the same player, or else for the player who
moves at w. �
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Figure 5. Proof of Lemma 3.3.

For two-player games without chance moves, “precedes” is in general not a transitive relation on all informa-
tion sets, and it may even have cycles, as shown in Figure 6.
If � and � ′ are sequences of moves of a player, then the sequence � is called a prefix of � ′ if � = � ′ or if

� ′ is obtained from � by appending some moves. The following lemma is illustrated by Figure 7.

Lemma 3.4. Consider a two-player perfect-recall extensive game without chance moves, and let h�h′ ∈H1

and k ∈H2 so that h and h′ both precede k but are not connected. Then there is an information set h′′ in H1

that precedes both h and h′ with different moves c� c′ ∈Ch′′ leading to h and h′, respectively; that is, �h has a
prefix of the form �h′′c and �h′ has a prefix of the form �h′′c

′.

Proof. Consider two paths from the root to k that intersect h and h′, respectively. These paths split at some
node u because h and h′ are not connected (see Figure 7). That is, from u onwards, the paths follow along
different moves c and c′ to h and h′, respectively, and subsequently reach k. Then u belongs to an information
set h′′ of player 1, because otherwise player 2 would not have perfect recall. That is, c� c′ ∈ Ch′′ so that c �= c′

and h′′ precedes h and h′, as claimed. �

As considered so far in (6), a correlation plan z describes how to correlate moves at any two information sets
of player 1 and player 2. However, it suffices to specify only correlations of moves at connected information
sets where decisions can affect each other during play. We will specify z
�� �� only for “relevant” sequence
pairs 
�� ��.
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Figure 6. Extensive game of two players with perfect recall where the information sets h� k� h′� k′ form a cycle with respect to the
“precedes” relation.
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Figure 7. Proof of Lemma 3.4.

Definition 3.5. Consider a two-player extensive game with perfect recall. The pair 
�� �� in S1 × S2 is
called relevant if � or � is the empty sequence, or if � = �hc and � = �kd for connected information sets h
and k, where h ∈H1, c ∈Ch, k ∈H2, d ∈Ck. Otherwise, 
�� �� is called irrelevant.
Note that in Definition 3.5, the information sets are connected where the respective last move in � and �

is made. It is not necessary that the sequences themselves share a path. In the example in Figure 8, player 1
has information sets h and h′, and player 2 has k and k′. The sets of sequences of players 1 and 2 are
S1 = �
� b� c� cb′� cc′� and S2 = �
�d� e�dd′�de′�. The two information sets h′ and k′ are not connected (all
others are), so the sequence pairs 
cb′�dd′�, 
cb′�de′�, 
cc′�dd′�, and 
cc′�de′� are irrelevant. We will not
specify probabilities z
�� �� for such irrelevant sequence pairs 
�� ��, because correlating the moves at the two
information sets h′ and k′ would not matter. Moreover, such an over-specified correlation plan z would be hard
to translate into a generation of moves.
We do specify correlations of moves at connected information sets, not just of moves that share a path,

because a player may consider deviations from the recommended moves. The following lemma shows that it
makes sense to restrict Equations (7) to relevant sequence pairs.

Lemma 3.6. Consider a two-player extensive game without chance moves and with perfect recall. Assume
that the pair 
�� �� ∈ S1 × S2 of sequences is relevant, and that � ′ ∈ S1 is a prefix of � and that � ′ ∈ S2 is a
prefix of � . Then 
� ′� � ′� is relevant.

Proof. If � or � is the empty sequence, then so is � ′ or � ′, respectively, and 
� ′� � ′� is relevant by definition.
Let � = �hc and � = �kd, where h and k are information sets of players 1 and 2, respectively. Because h

and k are connected, assume that h precedes k; the case where k precedes h is symmetric. If � ′ or � ′ is empty,
the claim is trivial, otherwise let � ′ = �h′c

′ and � ′ = �k′d
′ for h′ ∈H1 and k′ ∈H2.

We first show that 
� ′� �� is relevant, so let h �= h′. Then h′ precedes h, and h′ precedes k by Lemma 3.2(a).
Similarly, 
� ′� � ′� is relevant, which only needs to be shown for k′ �= k: Then k′ and h′ precede k, with some

node v in k having an earlier node u in h′. Because some node in k has an earlier node in k′, node v also has
an earlier node in k′, which is therefore on the path from the root to v which also contains u. This shows that k′

and h′ are connected. �
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Figure 8. Example demonstrating relevant sequence pairs, reference sequences, and the proof of Theorem 3.9.
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For an inductive generation of recommended moves, we restrict the concept of relevant sequence pairs further.
The concept of a “reference sequence” was mentioned in the example in §3.3. A reference sequence � of player 2,
for example, defines a “column” of z (as in Figure 4) to select a move c at some information set h of player 1;
then � is called the reference sequence for �hc. We give the formal definition for both players.

Definition 3.7. Consider a two-player extensive game without chance moves and with perfect recall, and
let 
�� �� ∈ S1 × S2. Then � is called a reference sequence for � if � = �hc and
(a1) � =
, or � = �kd and k precedes h, and
(a2) there is no k′ in H2 with �k′ = � so that k′ precedes h.

Correspondingly, � is called a reference sequence for � if � = �kd and
(b1) � =
, or � = �hc and h precedes k, and
(b2) there is no h′ in H1 with �h′ = � so that h′ precedes k.
If � is a reference sequence for �hc, then all information sets where player 2 has made the moves in �

precede h, according to Definition 3.7(a1), and by (a2), � cannot be extended to a longer sequence with that
property (because the next move in such a longer sequence would be at an additional information set k′ with
�k′ = � that precedes h). Note, however, that if � = �kd, the information set h may not be reachable after the
move d of player 2; it is only required that the information set k precede h.
In Figure 8, any sequence of player 2 has the reference sequence 
 of player 1. For the sequences of player 1

that end in a move at h, the possible reference sequences are dd′, de′, or e. For the sequences that end in a
move at h′, the reference sequences are d or e.

3.5. Using the consistency constraints. In this section, we first restrict the definition (6) of correlation plan
probabilities z
�� �� to pairs of relevant sequences 
�� ��. We then show the central result that the constraints (8)
and (7), restricted to relevant sequence pairs, characterize a correlation plan. For that purpose, any solution z to
these constraints is used to generate, as a random variable, a pair of reduced pure strategies to be recommended to
the two players. The moves in that reduced strategy pair are generated inductively, assuming moves at preceding
information sets have already been generated; each time, these moves define a suitable reference sequence for
the next generated move.

Definition 3.8. Consider a two-player extensive game without chance moves and with perfect recall. A cor-
relation plan is a partial function z$ S1×S2 →� so that there is a probability distribution 
 on the set of reduced
strategy profiles �∗ so that for each relevant sequence pair 
�� ��, the term z
�� �� is defined and fulfills (6).

Theorem 3.9. In a two-player, perfect-recall extensive game without chance moves, z is a correlation plan
if and only if it fulfills (8) and (7) whenever 
�hc� �� and 
�� �kd� are relevant, for any c ∈ Ch and d ∈ Ck.
A corresponding probability distribution 
 on �∗ in Definition 3.8 is obtained from z by generating the moves
in a reduced pure strategy pair inductively by an iteration over all information sets.

Proof. As already mentioned, (7) and (8) are necessary conditions for a correlation plan, because they hold
for reduced pure strategy profiles and therefore for any convex combination of them, as given by a distribution

 on �∗.
Consider now a function z defined on S1 × S2 that fulfills (8) and (7) for relevant sequence pairs. Using z,

a pair 
p1� p2� of reduced pure strategies is generated as a random variable. We will show that the resulting
distribution 
 on �∗ has the correlation plan z.
The moves in 
p1� p2� are generated one move at a time, taking the already generated moves into account. For

that purpose, we generalize reduced strategies as follows. Define a partial strategy of player i as an element of
∏
h∈Hi


Ch ∪ �∗��	

Let the components of a partial strategy pi of player i be denoted by pi
h� for h ∈Hi. When pi
h�= ∗, then
pi
h� is undefined for the information set h; otherwise pi
h� defines a move at h, that is, pi
h� ∈Ch.
If � is a sequence of player i and pi is a partial strategy of player i, then pi agrees with � if pi prescribes

all the moves in � , that is, pi
h�= c for any move c in � , where c ∈ Ch. The information set h is reachable
when playing pi if pi agrees with �h. It is easy to see that a reduced strategy of player i is a partial strategy pi

so that for all h in Hi, the move pi
h� is defined if and only if pi agrees with �h.
Initially, p1 and p2 are partial strategies that are everywhere undefined, and eventually both are reduced

strategies. In an iteration step, an information set h of player i is considered where all information sets (of
either player) that precede h have already been treated in a previous step. For h, a move c in Ch is generated
randomly, according to z as described below, provided h is reachable when playing pi. If this is not the case,
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that is, if pi does not agree with �h, then pi
h� remains undefined. In that sense, the partial strategies pi will
always be reduced partial strategies.
The iteration proceeds “top down” (in the direction of play), starting from the root. To define the iteration

step, consider the pair 
p1� p2� of reduced partial strategies generated so far, which is not yet a pair of reduced
strategies. Let h be an information set so that for all information sets k that precede h, where k may belong to
either player i, the move pi
k� is defined, or undefined because k is unreachable when playing pi.
We claim that such an information set h always exists. Initially, when p1 and p2 are everywhere undefined,

h is the information set containing the root of the game tree. In general, let H ′
1 be the set of information sets

of player 1 where p1 is not yet defined, and which are not unreachable due to an earlier move in p1, and let H
′
2

be the analogous set for player 2. The sets H ′
1 and H ′

2 are partially ordered by “precedes” (see Lemma 3.2(b)).
Consider a maximal information set in H ′

1. It may be preceded by a information set in H ′
2 (otherwise we are

done) that by Lemma 3.2(a) is maximal in H ′
2, which in turn may be preceded by another maximal information

set in H ′
1, and so on, but we claim that there cannot be a cycle of such sets. Otherwise, let the cycle begin

with h preceding k and k preceding h′, with h�h′ ∈ H ′
1 and k ∈ H ′

2; the cycle must have length at least four
by Lemma 3.3, because h′ cannot precede h because otherwise it would precede k by Lemma 3.2(a). Let u ∈ h
and v� v′ ∈ k so that u is earlier than v, and v′ is earlier than some node in h′, as in the example in Figure 6.
Let w be the last common ancestor of u and v′. Then (see Figure 6) w must belong to an information set
of player 1 because otherwise player 2 would not have perfect recall. That information set is not h, because
otherwise h would precede h′, but h′ is maximal in H ′

1, so w belongs to an information set where the move
under p1 is already specified, or not specified because the information set is unreachable under p1, but then
h is unreachable as well. According to that move at w, at least one of h or h′ is unreachable, contradicting
the definition of H ′

1. So, as claimed, there is an information set h in H ′
1 ∪H ′

2 not preceded by any other such
set. Assume that h belongs to player 1; the case for player 2 is analogous. Because h is not unreachable when
playing p1 (where the move p1
h� stays undefined), p1 agrees with �h.
The move c= p1
h� will be generated based on a reference sequence for �hc. This sequence consists of the

moves that player 2 makes at the information sets that precede h when player 2 plays as in p2. These moves
form a sequence because of Lemma 3.4: Let

K = �k ∈H2 � k precedes h and �k agrees with p2�	 (9)

We claim that for any two information sets k and k′ in K, one precedes the other. Otherwise, if there are k and
k′ in K that are not connected, we obtain a contradiction as follows: Lemma 3.4 (with the players exchanged)
shows that k and k′ are preceded by distinct moves d and d′ at an information set k′′ of player 2 that precedes h.
Because k and k′ were reachable when playing p2, so is k′′, so that p2
k

′′� is defined. However, of the two
moves d and d′, at most one can be chosen by p2, so p2 cannot agree with both �k and �k′ ; that is, k and k′

cannot both belong to K. This proves our claim.
If K in (9) is empty, let � = 
. Otherwise, let k be the unique last (minimal) information set in K not

preceding any other, and let � = �kd, where d= p2
k�. Then � is a reference sequence for �hc for any move c
at h by construction of K.
The pair of partial strategies 
p1� p2� generated so far agrees with 
�h� ��. Consequently, all moves in 
�h� ��

have been generated, and this event has positive probability. We will show shortly by induction that this prob-
ability is z
�h� ��. For the base case of the induction where 
�h� ��= 

�
�, this is true because z

�
�= 1
by (8).
Given the described reference sequence � , the move c at h is generated randomly according to the probability

+
c� ��= z
�hc� ��

z
�h� ��

c ∈Ch�� (10)

where by inductive assumption z
�h� �� > 0. The probability +
c� �� is well defined when considering h in the
induction, because it only depends on having generated the moves in �h (as part of p1) and in � (as part of p2);
any other moves in p2 do not matter because they are not at information sets that precede h, by the definition
of K in (9). By construction of � , the sequence pairs 
�h� �� and 
�hc� �� in (10) are relevant. Moreover, (10)
defines a probability distribution on Ch by (7) and (8).
When all information sets have been considered, 
p1� p2� is a pair of reduced strategies. The described process

of generating moves defines a distribution 
 on �∗.
For any relevant pair of sequences 
�� ��, let



����= ∑

p1� p2�∈�∗


p1� p2� agrees with 
�� ��



p1� p2�	
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In the process described above, a move is generated once for each reachable information set, so 

���� is the
probability that all moves in 
�� �� are generated. We want to show that (6) holds, that is,



����= z
�� ��� (11)

for all relevant sequence pairs 
�� ��. If � or � is the empty sequence, this imposes no constraint on the moves
of the respective player. Thus, if 
�� ��= 

�
�, then (11) holds because z

�
�= 1 by (8). If at least one of
the sequences � or � is not empty, then according to Definition 3.5 one of the following cases applies:
(a) 
�� ��= 
�hc�
�, or 
�� ��= 
�hc� �kd� and k precedes h; or, symmetrically,
(b) 
�� ��= 

� �kd�, or 
�� ��= 
�hc� �kd� and h precedes k.

Using Definition 3.7 and Lemma 3.6, it is easy to see that (a) and (b) are, respectively, equivalent to the
statements
(a′) � is the prefix of a reference sequence for � = �hc,
(b′) � is the prefix of a reference sequence for � = �kd.

We prove (11) for case (a′) with a two-part induction; the same reasoning applies to (b′) by symmetry. The
“outer” inductive assumption is that (11) holds for 
�� ��= 

�
�, and for case (a′) with h′ instead of h for
any information set h′ that precedes h, and for case (b′) for any k that precedes h.
We prove (11) with a second “inner” induction over the prefixes � of reference sequences for �h as in (a′),

where we consider the longest prefixes first. We say that the prefix � of a reference sequence for �hc has
distance n if n is the largest number of moves d1�d2� � � � � dn of player 2 so that �d1d2 · · ·dn is a reference
sequence for �hc. We will prove by induction on n: If � is the prefix of a reference sequence for �hc of
distance n, then 

�hc� ��= z
�hc� ��. Then this shows (11) for case (a

′).
If n = 0, the sequence � is itself a reference sequence for �hc. That is, move c is generated according

to (10) with probability +
c� ��, so that 

�hc� �� = +
c� �� · 

�h� ��. The moves in �h and � are all made
at information sets that precede h, so by the “outer” inductive hypothesis, 

�h� ��= z
�h� ��. Consequently,


�hc� ��= +
c� �� · z
�h� ��= z
�hc� ��. This proves the base case n= 0 for the “inner” induction.
Suppose that n > 0 and that � is the prefix of a reference sequence for �hc of distance n. As the “inner”

inductive hypothesis, (11) holds for such sequences for all smaller values of n. Because n > 0, there is an
information set k in H2 with �k = � so that k precedes h; similar to the construction of K in (9), this information
set k is seen to be unique with the help of Lemma 3.4. Then for all d ∈ Ck, the sequences �kd are all prefixes
of reference sequences for �hc of distance less than n, so by the “inner” inductive hypothesis, 

�hc� �kd�=
z
�hc� �kd�. If all the moves in �hc and �k are generated, then exactly one of the moves in Ck is generated.
This implies



�hc� �k�=
∑
d∈Ck



�hc� �kd�=
∑
d∈Ck

z
�hc� �kd�= z
�hc� �k�	 (12)

This completes the “inner” and thereby also the “outer” induction.
This shows (6) for all relevant sequence pairs 
�� ��, so that z is indeed the correlation plan corresponding

to 
. �

The example in Figure 8 demonstrates the two-part induction in the preceding proof. Recall that the
sequences b and c of player 1 have possible reference sequences dd′, de′, or e, whereas the sequences cb′

and cc′, which are longer than c, have possibly shorter reference sequences d or e. That is, reference sequences
can be “nonmonotonic,” in the sense that later information sets (here h′, preceded by h) can have shorter refer-
ence sequences. For this reason, one needs the second, “inner” induction step (12) in the preceding proof, which
amounts here to proving that 

c�d�=

c�dd′�+

c�de′�. In this example, all other cases of (11) involve a
reference sequence directly, so that only the base case of the inner induction is required.

3.6. Incentive constraints. In an EFCE, a player gets a move recommendation when reaching an infor-
mation set. This recommendation induces a posterior distribution on the recommendations given to the other
player. For past moves, this induces a certain distribution on where the player is in the information set. For
future moves, it expresses the subsequently expected play. Both are represented by the eventual distribution on
the leaves of the game tree. The players want to optimize the expected payoffs which they receive at the leaves,
assuming the other player follows his or her recommendations.
The incentive constraints in an EFCE express that it is optimal to follow any move recommendation, under

two assumptions about the player’s own behavior: When following the recommended move, the player considers
his expected payoff when he follows recommendations in the future. When deviating from the recommended
move, the player optimizes his payoff, given the current knowledge about the other player’s behavior. Any
recommendations given after a deviation are ignored, and are in fact not given, because an EFCE only generates
a pair of reduced strategies: When a player deviates, he subsequently only reaches own information sets that
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would be unreachable when following the original move in the strategy, so these later moves are left unspecified
in a reduced strategy.
Assume that a pair of reduced strategies is generated according to a correlation plan z as in Theorem 3.9.

Suppose that player 1, say, gets a recommendation for a move c at h which is the last move of the sequence
� = �hc. For the sequences � of player 2, the row entries z
�� �� of the correlation plan z define, up to
normalization, a realization plan that describes player 2’s behavior. This is only given where 
�� �� is relevant,
which suffices for the decision of player 1 whether to accept the recommendation to play move c.
In order to state the incentive constraints, we first introduce auxiliary variables u
�� for any � ∈ S1 (and,

throughout, analogously for player 2). These denote the expected payoff contribution of � (that is, of all reduced
strategies agreeing with �) when player 1 follows his recommendations. They are given by

u
��=∑
�

z
�� ��a
�� ��+ ∑
k∈H1$ �k=�

∑
d∈Ck

u
�kd�	 (13)

(All incentive constraints will refer to information sets h� k� l and moves c� d of a single player.) In (13), a
�� ��
is the payoff to player 1 at the leaf that defines the sequence pair 
�� ��, which is then obviously a relevant pair;
if there is no such leaf, a
�� ��= 0. The first sum in (13) captures the expected payoff contribution where � and
suitable sequences � of player 2 are defined by leaves. The second, double sum in (13) concerns the information
sets k of player 1 reached by � . The sum of the payoff contributions u
�kd� for d ∈Ck is the expected payoff
when player 1 follows the recommendation to choose d at k, given the new posterior information that he obtains
there.
Applying (13) inductively, starting with the longest sequences, eventually gives u

�=∑

��� z
�� ��a
�� ��
for the empty sequence. This denotes the overall payoff to player 1 under the correlation plan z (and similarly
for player 2), which generalizes (5).
When � is not the empty sequence, the payoff u
�� when player 1 chooses the recommended last move c of

� = �hc must be compared with the possible payoff when player 1 deviates from his recommendation. This is
described by an optimization against the behavior of player 2 in row � of z, by considering the other moves at h,
as well as moves at information sets k that player 1 can reach later on. By optimizing in this way, the payoff
contribution at an information set k of player 1 is denoted by v
k���. The parameter � indicates the given
row of the correlation plan z against which player 1 optimizes. The optimal payoff v
k��� at an information
set k of player 1 is the maximum of the payoffs for the possible moves at k, which may either give a payoff
directly when they lead to a leaf, or are obtained from subsequent optimal payoffs at later information sets. This
is expressed by the following inequalities, for any k ∈H1 with k= h or h preceding k (where � = �hc), and all
moves d at k:

v
k���≥∑
�

z
�� ��a
�kd� ��+
∑

l∈H1$ �l=�kd

v
l��� 
d ∈Ck�	 (14)

The first sum in (14) is well defined, because when 
�kd� �� leads to a leaf, then 
�� �� is relevant because
� = �hc and �h is a prefix of �kd. These incentive constraints are completed by

v
h��hc�= u
�hc� (15)

which says that the recommended move c at h is optimal.
As an illustration of the incentive constraints, consider an information set h that precedes no further informa-

tion sets of player 1. Then (13), (15), and (14) show that

u
�hc�=
∑
�

z
�hc� ��a
�hc� ��≥
∑
�

z
�hc� ��a
�hd� �� 
d ∈Ch� (16)

which says that player 1 cannot gain by changing his move c at h to d. This is analogous to the incentive
constraint in a CE that states that player 1, say, cannot gain by changing from the recommended strategy to
some other strategy. In both cases, the posterior on player 2’s behavior is given by the recommended “row” of
the joint distribution, in (16) given by row �hc of z.
The number of variables v
k��� is quadratic in the number of sequences of player 1 because they are param-

eterized by the information sets k and the sequences � . The latter reflect player 1’s current information about
the behavior of the other player, which varies because correlation is allowed. By comparison, this behavior is
fixed in a Nash equilibrium, where z
�� �� is replaced by y
�� with a constant realization plan y of player 2.
Furthermore, the variables v
k��� are replaced by variables v
k�, one for each information set k of player 1.
Then the inequalities (14) are exactly those expressing the Nash equilibrium condition, with certain dual vari-
ables v
k�, normally derived from linear programming duality. These dual variables also express, as here, the
computation of the player’s optimal payoff by dynamic programming, as described by von Stengel [40, p. 239].
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In summary, in a two-player, perfect-recall extensive game without chance moves, a correlation plan z as in
Theorem 3.9 that fulfills for both players the incentive constraints (13), (14), and (15) defines an EFCE. This
proves Theorem 1.1.
We conclude with an interesting case of (14), namely k= h and c= d. This is the optimality condition applied

to the recommended move c, where the player chooses to follow the move recommendation now, but henceforth
ignores all future recommendations and the associated Bayesian update about the other player’s behavior. The
constraint (14) with k = h and c = d states that such an optimization following move c, given the current
knowledge about the other player as represented by the parameter �hc of the variables v
l��hc�, will not give
higher payoff to the player than when following the recommendation as expressed by u
�hc� in (13). In fact,
this constraint can be omitted because it is implied by the other conditions. Intuitively, this holds because the
player cannot gain anything by ignoring private information. The simple proof of this fact is analogous to the
observation that any CE is a coarse correlated equilibrium as defined by Moulin and Vial [27].

3.7. Hardness results. Theorem 1.1 shows that the set of EFCE for two-player games without chance
moves has a compact description, with a polynomial number of linear equations and inequalities. In this section,
we first prove Theorem 1.3. This theorem implies that a compact description of the set of CE, AFCE, or EFCE
cannot be expected when chance moves are admitted (which is already known for Nash equilibria). Otherwise,
one could maximize in polynomial time the sum (or any linear function) of the expected payoffs to the players
over the respective set, which would imply P=NP. Chu and Halpern [5, Theorem 3.1] have given a very similar
NP-hardness proof for finding optimal play in a “possible worlds” model. They also give a reduction from SAT
where player 1 chooses a truth assignment and player 2 a literal to be made true in a clause, but the chance
move picks a literal rather than a clause, and player 2 has to match the chosen “possible world.”

Proof of Theorem 1.3. We give a reduction from SAT that applies to all four problems. An instance of
SAT is a boolean formula - in conjunctive normal form. If - has n clauses, the reduction gives an extensive
two-player game .
-� with perfect recall that has size proportional to the size of -, with identical payoffs to
the players. The game has a pure strategy profile (which is a Nash equilibrium) with payoff 1 for each player if
- is satisfiable, and payoff at most 1−1/n if - is not satisfiable; the payoff sum is that payoff times the number
of players (which is higher in the agent form). This also applies to mixed-strategy Nash equilibria, CE, AFCE,
and EFCE, because they are convex combinations of pure strategy profiles. Finding any such equilibrium with
maximum payoff sum is therefore NP-hard.
We construct .
-� as follows; Figure 9 shows an example. When referring to the two players, we mean

the original players in the case of the agent form. Player 2 has n decision nodes in singleton information sets,
which correspond to the clauses of -. Player 1 has as many decision nodes as there are literals (negated or
nonnegated variables) in -, and the game has twice as many terminal nodes as decision nodes of player 1.
If - has m variables, then player 1 has m information sets, where each information set contains the “literal”
nodes that have the same variable. An initial chance move at the root chooses with probability 1/n one of the

1/3 1/3 1/3

2 2 2

1 1

11111 0 0 0 0 0

x

x

x x y

y

y¬x ¬x

¬x ¬x

¬y ¬y

¬y

¬x

Chance

Figure 9. Extensive game .
-� for the SAT instance -= 
x�∧ 
¬x∨ y�∧ 
¬x∨¬y�, which is not satisfiable. Chance chooses a clause
(this part, above the dotted line, is replaced in Figure 10). Player 2 picks a literal within the clause, and player 1 chooses for each variable
the literal to be made true. The payoffs 0 and 1 are the same for both players.
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n nodes of player 2. Player 2 is informed about the chance move and, for each clause chosen, selects one of
the literals in the clause, which are nodes of player 1. Player 1 has two moves at each information set, with a
move setting the respective variable to true or false. Both players then receive the same payoff, which is 0 if
the literal (chosen by player 2 from the clause) is false and 1 if it is true.
The game .
-� has a pair of pure strategies for the two players (or a strategy profile for the m+n players in

the agent form) with payoff 1 for each player if and only if - is satisfiable. The 2m pure strategies of player 1
are the possible truth assignments to the variables in -. A satisfying assignment defines a pure strategy for
player 1, and player 2 can pick for each clause a literal that makes the clause true, so that both players get their
maximum possible payoff 1. Conversely, if - is not satisfiable, then any truth assignment to the m variables has
at least one clause that is false, so that the respective move of player 2, which is chosen with probability 1/n by
the chance move, leads to a payoff zero. The overall expected payoff to each player is then at most 1− 1/n. �

Theorem 1.3 holds also when, instead of chance moves, a third player is allowed in the game. In that case, the
chance move is replaced by a move of player 3, who receives the negative of the identical payoffs to players 1
and 2. Player 3 then has an incentive to randomize, and the maximum payoff sum (which is equal to player 1’s
payoff) in equilibrium is equal to 1 if and only if the SAT formula is satisfiable.
In the game .
-� constructed in the proof of Theorem 1.3, both players have an exponential number of pure

strategies. If the chance move is replaced by a move of player 2, then the number of reduced strategies of
player 2 equals the number of literals of -. However, the strategic form is still exponential.
Our second result, stated as Theorem 1.2 in the introduction, uses such a construction to show that even for

two-player games without chance moves, it is NP-hard to find a CE with maximum payoff sum. The constructed
game has a first stage given by a high-stakes zero-sum game with a unique mixed equilibrium that induces
player 2 to randomize, which replaces the initial chance move. Goldberg and Papadimitriou [18] have introduced
this game of generalized matching pennies for a similar purpose. One can also use the “generalized rock-scissors-
paper game” by von Stengel [41], with payoffs 
j − i� mod n (suitably scaled) for aij in (17) below, but the
explicit construction of a Nash equilibrium in Proposition 3.11 below is more complicated for that game.

Proof of Theorem 1.2. The proof is again by reduction from SAT, by constructing a game . ′
-� from an
SAT formula -; let - have n clauses. The game is derived from the extensive game .
-� constructed in the
proof of Theorem 1.3, but with the initial chance move replaced by a decision node of player 2 with n moves
called c1� � � � � cn (see Figure 10). These moves lead to n decision nodes of player 1 that all belong to a single
information set. At that information set, player 1 has n+ 1 moves called o1� � � � � on� and in.
Any move combination cj� oi for 1 ≤ i, j ≤ n leads to a separate terminal node with payoff aij to player 1

and −aij to player 2, where

aij =



2− 2n if i= j�

2 if i �= j	
(17)

The n edges for move in of player 1 lead to the n “clause” nodes of player 2, with the rest of the game defined
as before. Player 1 has perfect recall because all his later information sets (for the m variables of -) are preceded
by the same move in. Player 2 has perfect information and therefore perfect recall.
If player 1 uses only his outside options o1� � � � � on� then the game is a zero-sum game with payoffs aij as

in (17). Players 2 and 1 are here pursuer and evader in a game of generalized matching pennies (Goldberg and
Papadimitriou [18, Definition 1]), scaled so that it has value zero, with the uniform mixed strategy as the optimal

2

1

(–4, 4)

(–4, 4)

(–4, 4)(2, –2)

(2, –2)

(2, –2)(2, –2)

(2, –2)

(2, –2)

o1 o1 o1
o2o2o2

o3 o3 o3

c3

ininin

c2c1

Figure 10. Preplay of a zero-sum pursuit-evasion game between players 2 and player 1 that induces player 2 to completely mix between
her choices c1� � � � � cn. After the dotted line following move in of player 1, the game . ′
-� continues as in Figure 9.
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strategy for each player. If player 2 chooses move cj with probability q < 1/2n, then player 1 can respond with
move oj and get payoff 2− 2nq > 1, which is larger than any payoff following move in. Consequently, in any
CE of . ′
-� where a pure strategy involving in is recommended to player 1, the conditional probability for each
move c1� � � � � cn of player 2 is at least 1/2n because otherwise player 1 would deviate to one of his outside
options.
Consider a CE of . ′
-�, and suppose that - is not satisfiable. Any recommendation to the players where

player 1 is recommended an outside option contributes payoff sum zero. When player 1 is told a pure strategy
where he plays in, the payoff sum is at most 2− 1/n because each clause has probability at least 1/2n and
at least one of the clauses is false. So the expected payoff sum is at most 2 − 1/n. If - is satisfiable, then
player 2 can play c1� � � � � cn uniformly, player 1 chooses in, and . ′
-� has a CE with payoff 1 to each player
and payoff sum 2, as before. So solving MAXPAY-CE for . ′
-� would answer whether - is satisfiable. �

The preceding proof does not apply to the EFCE concept, where player 1 is not told his full strategy. Instead,
the following defines an EFCE of . ′
-� with payoff 1 to each player for any formula -: With probability 1/n,
choose any of the n pure strategy pairs where player 2 chooses ci for 1≤ i≤ n, and any literal in the ith clause
of -, and player 1 chooses in and a truth assignment that makes this literal true (with arbitary assignments to the
other variables). This is an EFCE because at his first information set, player 1 only receives the recommendation
to play in, which is an optimal move for player 1 because each of player 2’s moves c1� � � � � cn has conditional
probability 1/n.

3.8. Finding one correlated equilibrium. The hardness results in Theorems 1.3 and 1.2 apply only to find-
ing a correlated equilibrium with maximum payoff sum. Finding one correlated equilibrium is computationally
easier than payoff maximization. To demonstrate this, we first give explicit constructions of Nash equilibria
(which are also CE, AFCE, and EFCE) for the games .
-� and . ′
-� in the proofs of the above NP-hardness
theorems. Then, we apply the central result of Papadimitriou [31] to finding one AFCE.

Proposition 3.10. Given an SAT formula -, a Nash equilibrium of the game .
-� in the proof of Theo-
rem 1.3 can be found in polynomial time.

Proof. The following straightforward algorithm produces a pure-strategy Nash equilibrium of .
-�. For
initialization, declare all clauses of - as active. Consider the variables of - in some arbitrary order. Each
variable x occurs among the active clauses (possibly none) as a positive literal x or negative literal ¬x. At the
information set of .
-� for x, let player 1 choose the truth value for x that satisfies the majority of active
clauses (ties broken arbitrarily), for example false (so that ¬x is true) in Figure 9. Then let player 2 choose that
literal ¬x for each clause in that majority of clauses, and let these clauses become inactive.
After all variables of - have been assigned truth values in this way, all remaining active clauses are unsatisfied.

Let player 2 choose an arbitrary literal from each of those clauses.
This defines a Nash equilibrium of .
-�: Player 2 cannot improve her payoff by changing any move, and

neither can player 1 because at each of his information sets (variables of -), at least as many moves of player 2
(from the clauses) lead to the high payoff 1 as to the low payoff 0. �

Proposition 3.11. Given an SAT formula -, a Nash equilibrium of the game . ′
-� in the proof of Theo-
rem 1.2 can be found in polynomial time.

Proof. We extend the Nash equilibrium of .
-� given in the proof of Proposition 3.10 with suitable mixed
strategies of the initial zero-sum game of . ′
-�. Namely, let S be the subset of �1� � � � � n� indicating the satisfied
clauses, and s = �S�. Let player 2 choose cj with probability 2/
n+ s� if j ∈ S and with probability 1/
n+ s�
otherwise. Because the satisfied clauses are thereby given higher weight than the unsatisfied clauses, the moves
of player 1 that choose the truth values as in .
-�, now following his move in, are still optimal (for this we
need that player 1 is the evader and player 2 the pursuer in the initial generalized matching pennies game).
With these probabilities for c1� � � � � cn, the expected payoff to player 1, according to (17), is 2− 4n/
n+ s�

when he chooses oi and i ∈ S, and higher, namely 2− 2n/
n+ s�, when he chooses oi and i �∈ S, and the same,
that is, 2s/
n+ s�, when he chooses in. So player 1 can mix between oi for the unsatisfied clauses i and in.
He chooses oi with probability 1/
3n− s� if i �∈ S (and zero if i ∈ S), and in with probability 2n/
3n− s�. The
expected payoff to player 2 following any initial move cj is then 
−2
n− s�+2n�/
3n− s�, that is, 2s/
3n− s�.
(This works for any 0≤ s ≤ n.) �

The following result of Papadimitriou [31] is of interest for compactly represented games, where the descrip-
tion of the game is much smaller than its strategic form.

Theorem 3.12 (Papadimitriou [31]). Consider a game G in some description so that the number of players
and the number of strategies per player is polynomial in the size of the description, and so that the expected
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payoff for any product distribution (mixed strategy profile) can be computed in polynomial time. Then one can
compute in polynomial time a CE of G that is a convex combination of polynomially many product distributions.

An extensive game can be viewed as a compact representation of its strategic form or agent form.

Proposition 3.13. For any extensive game, an AFCE can be found in polynomial time.

Proof. In the agent form of the game, every information set h is represented by a separate player with the
moves at h as his strategies, which are polynomial in number in the size of the game. The expected payoffs
for a product distribution are found in polynomial time by summing over all leaves of the game tree. Thus,
by Theorem 3.12, a CE of the agent form can be found in polynomial time. �

Theorem 3.12 cannot be applied directly to the problem of finding one CE or EFCE of an extensive game
because a player may have exponentially many strategies.
In contrast to finding one CE, the problem MAXPAY-CE is NP-hard for most types of compactly repre-

sented games (see Papadimitriou [31], Papadimitriou and Roughgarden [33]). These results are similar to our
Theorem 1.3.

4. Discussion and open problems. For an extensive game, a CE generalizes a Nash equilibrium in mixed
strategies, by allowing for correlations of strategies. An EFCE recommends moves rather than strategies to the
players, so an EFCE can be seen as the correlated counterpart to a Nash equilibrium in behavior strategies. The
EFCE is therefore closer in spirit to the dynamic description of the game by a tree than the CE. At the same
time, the correlation device does not have additional power in the sense of observing the game state, because it
generates its recommendations at the beginning of the game. In addition, the EFCE concept is computationally
tractable for two-player games without chance moves.
Does the EFCE concept reflect “common knowledge of rationality for extensive games with Bayesian players,”

in analogy to Aumann’s [2] interpretation for strategic-form games? This should be confined to a static descrip-
tion of the game. In a dynamic description, rationality would also mean sequential rationality. Such a concept
would lead to refinements such as subgame perfect or sequential equilibrium. This is not the case for EFCE
which include all Nash equilibria, in particular those that are not sequential. The reason is that when, say,
player 1 considers deviating from a recommended move, he assumes that player 2 follows her recommendations
(which have already been generated), even if player 2 can conclude that player 1 has deviated. On the other
hand, the EFCE seems easily extendable to subgames and subgame perfection. In further research, one could
investigate refinements of the EFCE in the same way as, for example, Dhillon and Mertens [8] and Gerardi [15,
p. 117] did for the CE.
For implementing an EFCE, the recommended moves have to be put into “sealed envelopes” which a player

can only open when reaching the respective information set. We assume that the players cannot obtain the
information earlier, in the same way as the information sets themselves describe the rules of the game. “Sealed
envelopes” should be implementable by cryptographic techniques. Dodis et al. [9], Urbano and Vila [39], and
Lepinski et al. [26] have shown how to use cryptography to replace the mediator in a CE.
By Proposition 3.13, the AFCE seems more suitable than the EFCE if one is only interested in finding one

equilibrium. However, the underlying Theorem 3.12 is based on the ellipsoid algorithm (see Grötschel et al. [19]),
and is not very practical. The agent form has exponentially many strategy profiles. For a direct comparison
of EFCE and AFCE, is there a compact description of the set of AFCE for two-player games without chance
moves? How difficult is the problem MAXPAY-AFCE for these games?
A related open problem is the complexity of finding one EFCE or CE for a general extensive game with

perfect recall. One possible approach, following Papadimitriou’s proof of Theorem 3.12, would be to extend the
existence proof for CE by Hart and Schmeidler [21] or Nau and McCardle [29] to extensive games, where one
would need to find a suitable compact encoding of strategies.
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