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1. Introduction

Finding Nash equilibria of strategic form or extensive form games can be difficult and
tedious. A computer program for this task would allow greater detail of game-theoretic
models, and enhance their applicability. Algorithms for solving games have been stud-
ied since the beginnings of game theory, and have proved useful for other problems in
mathematical optimization, like linear complementarity problems.

This paper is a survey and exposition oflinear methods for finding Nash equilibria.
Above all, these apply to games with two players. In an equilibrium of a two-person
game, the mixed strategy probabilities of one player equalize the expected payoffs for
the pure strategies used by the other player. This defines an optimization problem with
linear constraints. We do not consider nonlinear methods like simplicial subdivision for
approximating fixed points, or systems of inequalities for higher-degree polynomials as
they arise for noncooperative games with more than two players. These are surveyed in
McKelvey and McLennan (1996).

First, we consider two-person games in strategic form (see also Parthasarathy and
Raghavan, 1971; Raghavan, 1994, 2002). The classical algorithm by Lemke and Howson
(1964) finds one equilibrium of a bimatrix game. It provides an elementary, constructive
proof that such a game has an equilibrium, and shows that the number of equilibria is
odd, except for degenerate cases. We follow Shapley’s (1974) very intuitive geometric
exposition of this algorithm. The maximization over linear payoff functions defines two
polyhedrawhich provide further geometric insight. A complementary pivoting scheme
describes the computation algebraically. Then we clarify the notion ofdegeneracy, which
appears in the literature in various forms, most of which are equivalent. The lexico-
graphic method extends pivoting algorithms to degenerate games. The problem of finding
all equilibria of a bimatrix game can be phrased as a vertex enumeration problem for
polytopes.

Second, we look at two methods for finding equilibria of strategic form games
with additional refinement properties (see van Damme, 1987, 2002; Hillas and Kohlberg,
2002). Wilson (1992) modifies the Lemke–Howson algorithm for computingsimply sta-
ble equilibria. These equilibria survive certain perturbations of the game that are easily
represented by lexicographic methods for degeneracy resolution. Van den Elzen and Tal-
man (1991) present a complementary pivoting method for finding aperfectequilibrium
of a bimatrix game.

Third, we review methods for games in extensive form (see Hart, 1992). In princi-
ple, such game trees can be solved by converting them to the reduced strategic form and
then applying the appropriate algorithms. However, this typically increases the size of
the game description and the computation time exponentially, and is therefore infeasible.
Approaches to avoiding this problem compute with a small fraction of the pure strategies,
which are generated from the game tree as needed (Wilson, 1972; Koller and Megiddo,
1996). A strategic description of an extensive game that does not increase in size is the
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sequence form. The central idea, set forth independently by Romanovskii (1962), Selten
(1988), Koller and Megiddo (1992), and von Stengel (1996a), is to consider only se-
quences of moves instead of pure strategies, which are arbitrary combinations of moves.
We will develop the problem of equilibrium computation for the strategic form in a way
that can also be applied to the sequence form. In particular, the algorithm by van den
Elzen and Talman (1991) for finding a perfect equilibrium carries over to the sequence
form (von Stengel, van den Elzen and Talman, 2002).

The concluding section addresses issues of computational complexity, and mentions
ongoing implementations of the algorithms.

2. Bimatrix games

We first introduce our notation, and recall notions from polytope theory and linear pro-
gramming. Equilibria of a bimatrix game are the solutions to a linear complementarity
problem. This problem is solved by the Lemke–Howson algorithm, which we explain
in graph-theoretic, geometric, and algebraic terms. Then we consider degenerate games,
and review enumeration methods.

2.1. Preliminaries

We use the following notation throughout. Let(A,B) be a bimatrix game, whereA and
B are m×n matrices of payoffs to the row player 1 and column player 2, respectively.
All vectors are column vectors, so anm-vectorx is treated as anm×1 matrix. A mixed
strategyx for player 1 is a probability distribution on rows, written as anm-vector of
probabilities. Similarly, a mixed strategyy for player 2 is ann-vector of probabilities
for playing columns. Thesupportof a mixed strategy is the set of pure strategies that
have positive probability. A vector or matrix with all components zero is denoted0.
Inequalities likex≥ 0 between two vectors hold for all components.B> is the matrixB
transposed.

Let M be the set of them pure strategies of player 1 and letN be the set of then
pure strategies of player 2. It is sometimes useful to assume that these sets are disjoint, as
in

M = {1, . . . ,m}, N = {m+1, . . . ,m+n}. (2.1)

Thenx∈ IRM andy∈ IRN , which means, in particular, that the components ofy arey j for
j ∈ N. Similarly, the payoff matricesA andB belong to IRM×N .

Denote the rows ofA by ai for i ∈M, and the rows ofB> by b j for j ∈ N (so each
b>j is a column ofB). Thenaiy is the expected payoff to player 1 for the pure strategyi
when player 2 plays the mixed strategyy, andb jx is the expected payoff to player 2 forj
when player 1 playsx.

A best responseto the mixed strategyy of player 2 is a mixed strategyx of player 1
that maximizes his expected payoffx>Ay. Similarly, a best responsey of player 2 to
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x maximizes her expected payoffx>By. A Nash equilibriumis a pair (x,y) of mixed
strategies that are best responses to each other. Clearly, a mixed strategy is a best response
to an opponent strategy if and only if it only plays pure strategies that are best responses
with positive probability:

Theorem 2.1. (Nash, 1951.) The mixed strategy pair(x,y) is a Nash equilibrium of
(A,B) if and only if for all pure strategiesi in M and j in N

xi > 0 =⇒ aiy = max
k∈M

aky, (2.2)

y j > 0 =⇒ b jx = max
k∈N

bkx. (2.3)

We recall some notions from the theory of (convex) polytopes (see Ziegler, 1995).
An affine combinationof pointsz1, . . . ,zk in some Euclidean space is of the form∑k

i=1ziλi

whereλ1, . . . ,λk are reals with∑k
i=1λi = 1. It is called aconvex combinationif λi ≥ 0

for all i . A set of points isconvexif it is closed under forming convex combinations.
Given points areaffinely independentif none of these points is an affine combination of
the others. A convex set hasdimensiond if and only if it hasd+1, but no more, affinely
independent points.

A polyhedronP in IRd is a set{z∈ IRd |Cz≤ q} for some matrixC and vectorq.
It is calledfull-dimensionalif it has dimensiond. It is called apolytopeif it is bounded.
A faceof P is a set{z∈ P | c>z= q0} for somec∈ IRd, q0 ∈ IR so that the inequality
c>z≤ q0 holds for all z in P. A vertexof P is the unique element of a 0-dimensional
face of P. An edgeof P is a one-dimensional face ofP. A facet of a d-dimensional
polyhedronP is a face of dimensiond− 1. It can be shown that any nonempty face
F of P can be obtained by turning some of the inequalities definingP into equalities,
which are then calledbinding inequalities. That is,F = {z∈ P | ciz= qi , i ∈ I}, where
ciz≤ qi for i ∈ I are some of the rows inCz≤ q. A facet is characterized by a single
binding inequality which isirredundant, that is, the inequality cannot be omitted without
changing the polyhedron (Ziegler, 1995, p. 72). Ad-dimensional polyhedronP is called
simpleif no point belongs to more thand facets ofP, which is true if there are no special
dependencies between the facet-defining inequalities.

A linear program(LP) is the problem of maximizing a linear function over some
polyhedron. The following notation is independent of the considered bimatrix game. Let
M and N be finite sets,I ⊆ M, J ⊆ N, A ∈ IRM×N , b ∈ IRM , c ∈ IRN . Consider the
polyhedron

P = {x∈ IRN | ∑
j∈N

ai j x j = bi , i ∈M− I ,

∑
j∈N

ai j x j ≤ bi , i ∈ I ,

x j ≥ 0, j ∈ J}.
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Any x belonging toP is calledprimal feasible. Theprimal LP is the problem

maximize c>x subject to x∈ P. (2.4)

The correspondingdual LPhas the feasible set

D = {y∈ IRM | ∑
i∈M

yiai j = c j , j ∈ N−J,

∑
i∈M

yiai j ≥ c j , j ∈ J,

yi ≥ 0, i ∈ I }
and is the problem

minimize y>b subject to y∈ D . (2.5)

Here the indices inI denote primal inequalities and corresponding nonnegative dual vari-
ables, whereas those inM− I denote primal equality constraints and corresponding un-
constrained dual variables. The setsJ andN− J play the same role with “primal” and
“dual” interchanged. By reversing signs, the dual of the dual LP is again the primal. We
recall theduality theoremof linear programming, which states (a) that for any primal and
dual feasible solutions, the corresponding objective functions are mutual bounds, and (b)
if the primal and the dual LP both have feasible solutions, then they have optimal solutions
with the same value of their objective functions.

Theorem 2.2. Consider the primal-dual pair of LPs (2.4), (2.5). Then

(a) (Weak duality.)c>x≤ y>b for all x∈ P andy∈ D.

(b) (Strong duality.) IfP 6= Ø andD 6= Ø thenc>x = y>b for somex∈ P andy∈ D.

For a proof see Schrijver (1986). As an introduction to linear programming we
recommend Chv́atal (1983).

2.2. Linear constraints and complementarity

Mixed strategiesx andy of the two players are nonnegative vectors whose components
sum up to one. These are linear constraints, which we define using

E = [1, . . . ,1] ∈ IR1×M, e= 1, F = [1, . . . ,1] ∈ IR1×N, f = 1. (2.6)

Then the setsX andY of mixed strategies are

X = {x∈ IRM | Ex= e, x≥ 0}, Y = {y∈ IRN | Fy = f , y≥ 0} . (2.7)

With the extra notation in (2.6), the following considerations apply also ifX andY are
more general polyhedra, whereEx= e andFy= f may consist of more than a single row
of equations. Such polyhedrally constrained games, first studied by Charnes (1953) for
the zero-sum case, are useful for finding equilibria of extensive games (see Section 4).
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Given a fixedy in Y, a best response of player 1 toy is a vectorx in X that maximizes
the expressionx>(Ay). That is,x is a solution to the LP

maximize x>(Ay) subject to Ex= e, x≥ 0. (2.8)

The dual of this LP with variablesu (by (2.6) only a single variable) states

minimize
u

e>u subject to E>u≥ Ay. (2.9)

Both LPs are feasible. By Theorem 2.2(b), they have the same optimal value.

Consider now azero-sum game, whereB =−A. Player 2, when choosingy, has to
assume that her opponent plays rationally and maximizesx>Ay. This maximum payoff
to player 1 is the optimal value of the LP (2.8), which is equal to the optimal valuee>u
of the dual LP (2.9). Player 2 is interested in minimizinge>u by her choice ofy. The
constraints of (2.9) are linear inu and y even if y is treated as a variable, which must
belong toY. So a minmax strategyy of player 2 (minimizing the maximum amount she
has to pay) is a solution to the LP

minimize
u,y

e>u subject to Fy = f , E>u−Ay≥ 0, y≥ 0. (2.10)

Figure 2.1 shows an example.
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Figure 2.1. Left: Example of the LP (2.10) for a3× 2 zero-sum game. The objective
function is separated by a line, nonnegative variables are marked by “≥ 0”.
Right: The dual LP (2.11), to be read vertically.

The dual of the LP (2.10) has variablesv and x corresponding to the primal con-
straintsFy = f andE>u−Ay≥ 0, respectively. It has the form

maximize f>v subject to Ex= e, F>v−A>x≤ 0, x≥ 0. (2.11)

It is easy to verify that this LP describes the problem of finding a maxmin strategyx (with
maxmin payoff f>v) for player 1. We have shown the following.
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Theorem 2.3. A zero-sum game with payoff matrixA for player 1 has the equilibrium
(x,y) if and only if u,y is an optimal solution to the LP (2.10) andv,x is an optimal
solution to its dual LP (2.11). Thereby,e>u is the maxmin payoff to player 1 andf>v is
the minmax payoff to player 2. Both payoffs are equal and denote the value of the game.

Thus, the “maxmin = minmax” theorem for zero-sum games follows directly from
LP duality (see also Raghavan, 1994). This connection was noted by von Neumann and
Dantzig in the late 1940s when linear programming took its shape. Conversely, linear
programs can be expressed as zero-sum games (see Dantzig, 1963, p. 277). There are
standard algorithms for solving LPs, in particular Dantzig’s Simplex algorithm. Usually,
they compute a primal solution together with a dual solution which proves that the opti-
mum is reached.

A best responsex of player 1 against the mixed strategyy of player 2 is a solution
to the LP (2.8). This is also useful for games that are not zero-sum. By strong duality, a
feasible solutionx is optimal if and only if there is a dual solutionu fulfilling E>u≥ Ay
andx>(Ay) = e>u, that is,x>(Ay) = (x>E>)u or equivalently

x>(E>u−Ay) = 0. (2.12)

Because the vectorsx andE>u−Ay are nonnegative, (2.12) states that they have to be
complementaryin the sense that they cannot both have positive components in the same
position. This characterization of an optimal primal-dual pair of feasible solutions is
known ascomplementary slacknessin linear programming. Sincex has at least one pos-
itive component, the respective component ofE>u−Ay is zero andu is by (2.6) the
maximum of the components ofAy. Any pure strategyi in M of player 1 is a best re-
sponse toy if and only if thei th component of the slack vectorE>u−Ay is zero. That is,
(2.12) is equivalent to (2.2).

For player 2, strategyy is a best response tox if and only if it maximizes(x>B)y
subject toy∈ Y. The dual of this LP is the following LP analogous to (2.9): minimize
f>v subject toF>v≥ B>x. Here, a primal-dual pairy,v of feasible solutions is optimal
if and only if, analogous to (2.12),

y>(F>v−B>x) = 0. (2.13)

Considering these conditions for both players, this shows the following.

Theorem 2.4. The game(A,B) has the Nash equilibrium(x,y) if and only if for suitable
u,v

Ex = e

Fy = f

E>u −Ay≥ 0

F>v−B>x ≥ 0

x, y≥ 0

(2.14)
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and (2.12), (2.13) hold.

The conditions in Theorem 2.4 define a so-called mixedlinear complementarity
problem(LCP). There are various solutions methods for LCPs. For a comprehensive
treatment see Cottle, Pang, and Stone (1992). The most important method for finding one
solution of the LCP in Theorem 2.4 is the Lemke–Howson algorithm.

2.3. The Lemke–Howson algorithm

In their seminal paper, Lemke and Howson (1964) describe an algorithm for finding one
equilibrium of a bimatrix game. We follow Shapley’s (1974) exposition of this algorithm.
It requires disjoint pure strategy setsM andN of the two players as in (2.1). Any mixed
strategyx in X and y in Y is labeledwith certain elements ofM ∪N. These labels
denote the unplayed pure strategies of the player and the pure best responses of his or her
opponent. Fori ∈M and j ∈ N, let

X(i) = {x∈ X | xi = 0},
X( j) = {x∈ X | b jx≥ bkx for all k∈ N},
Y(i) = {y∈Y | aiy≥ aky for all k∈M},
Y( j) = {y∈Y | y j = 0}.

Thenx has labelk if x∈ X(k) andy has labelk if y∈Y(k), for k∈M∪N. Clearly, the
best-response regionsX( j) for j ∈N are polytopes whose union isX. Similarly,Y is the
union of the setsY(i) for i ∈ M. Then a Nash equilibrium is acompletely labeledpair
(x,y) since then by Theorem 2.1, any pure strategyk of a player is either a best response
or played with probability zero, so it appears as a label ofx or y.

Theorem 2.5. A mixed strategy pair(x,y) in X×Y is a Nash equilibrium of(A,B) if
and only if for allk∈M∪N eitherx∈ X(k) or y∈Y(k) (or both).

For the3×2 bimatrix game(A,B) with

A =




0 6
2 5
3 3


 , B =




1 0
0 2
4 3


 , (2.15)

the labels ofX andY are shown in Figure 2.2. The equilibria are(x1,y1)=
(
(0,0,1)>,(1,0)>

)

wherex1 has the labels 1, 2, 4 (andy1 the remaining labels 3 and 5),(x2,y2)=
(
(0, 1

3, 2
3)>,(2

3, 1
3)>

)

with labels 1, 4, 5 forx2, and(x3,y3) =
(
(2

3, 1
3,0)>,(1

3, 2
3)>

)
with labels 3, 4, 5 forx3.

This geometric-qualitative inspection is very suitable for finding equilibria of games
of up to size3×3. It works by inspecting any pointx in X with m labels and checking
if there is a pointy in Y having the remainingn labels. Usually, anyx in X has at
mostm labels, and anyy in Y has at mostn labels. A game with this property is called
nondegenerate, as stated in the following equivalent definition.
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Figure 2.2. Mixed strategy setsX andY of the players for the bimatrix game(A,B) in
(2.15). The labels1,2,3, drawn as circled numbers, are the pure strategies of
player 1 and marked inX where they have probability zero, inY where they
are best responses. The pure strategies of player 2 are similar labels4,5. The
dots mark pointsx andy with a maximum number of labels.

Definition 2.6. A bimatrix game is callednondegenerateif the number of pure best re-
sponses to a mixed strategy never exceeds the size of its support.

A game is usually nondegenerate since every additional label introduces an equation
that reduces the dimension of the set of points having these labels by one. Then only single
pointsx in X havem given labels and single pointsy in Y haven given labels, and no
point has more labels. Nondegeneracy is discussed in greater detail in Section 2.6 below.
Until further notice, we assume that the game is nondegenerate.

Theorem 2.7. In a nondegeneratem×n bimatrix game(A,B), only finitely many points
in X havem labels and only finitely many points inY haven labels.

Proof. Let K andL be subsets ofM∪N with |K|= m and|L|= n. There are only finitely
many such sets. Consider the set of points inX having the labels inK , and the set of
points inY having the labels inL. By Theorem 2.10(c) below, these sets are empty or
singletons.

The finitely many points in the preceding theorem are used to define two graphsG1

andG2. Let G1 be the graph whose vertices are those pointsx in X that havem labels,
with an additional vertex0 in IRM that has all labelsi in M. Any two such verticesx and
x′ are joined by an edge if they differ in one label, that is, if they havem−1 labels in
common. Similarly, letG2 be the graph with verticesy in Y that haven labels, with the
extra vertex0 in IRN having all labelsj in N, and edges joining those vertices that have
n− 1 labels in common. Theproduct graphG1×G2 of G1 and G2 has vertices(x,y)
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wherex is a vertex ofG1, andy is a vertex ofG2. Its edges are given by{x}×{y,y′} for
verticesx of G1 and edges{y,y′} of G2, or by {x,x′}×{y} for edges{x,x′} of G1 and
verticesy of G2.

The Lemke–Howson algorithm can be defined combinatorially in terms of these
graphs. Letk ∈ M ∪N, and call a vertex pair(x,y) of G1×G2 k-almost completely
labeledif any l in M∪N−{k} is either a label ofx or of y. Since two adjacent vertices
x,x′ in G1, say, havem−1 labels in common, the edge{x,x′}×{y} of G1×G2 is also
calledk-almost completely labeled ify has the remainingn labels exceptk. The same
applies to edges{x}×{y,y′} of G1×G2.

Then any equilibrium(x,y) is in G1×G2 adjacent to exactly one vertex pair(x′,y′)
that isk-almost completely labeled: Namely, ifk is the label ofx, thenx is joined to the
vertexx′ in G1 sharing the remainingm−1 labels, andy = y′. If k is the label ofy, then
y is similarly joined toy′ in G2 andx = x′. In the same manner, ak-almost completely
labeled pair(x,y) that is completely labeled has exactly two neighbors inG1×G2. These
are obtained by dropping the unique duplicate label thatx andy have in common, joining
to an adjacent vertex either inG1 and keepingy fixed, or inG2 and keepingx fixed. This
defines a uniquek-almost completely labeled path inG1×G2 connecting one equilibrium
to another. The algorithm is started from theartificial equilibrium(0,0) that has all labels,
follows the path where labelk is missing, and terminates at a Nash equilibrium of the
game.
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Figure 2.3. The graphsG1 andG2 for the game in (2.15). The set of 2-almost completely
labeled pairs is formed by the paths with edges (inG1×G2) I–II–III–IV,
connecting the artificial equilibrium(0,0) and(x3,y3), and V–VI, connecting
the equilibria(x1,y1) and(x2,y2).

Figure 2.3 demonstrates this method for the above example. Let2 be the missing
label k. The algorithm starts withx = (0,0,0)> and y = (0,0)>. Step I:y stays fixed
andx is changed inG1 to (0,1,0)>, picking up label 5, which is now duplicate. Step II:
dropping label 5 inG2 changesy to (0,1)> , picking up label 1. Step III: dropping label 1
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in G1 changesx to x3, picking up label 4. Step IV: dropping label 4 inG2 changesy
to y3 which has the missing label 2, terminating at the equilibrium(x3,y3). In a similar
way, steps V and VI indicated in Figure 2.3 join the equilibria(x1,y1) and(x2,y2) on a
2-almost completely labeled path. In general, one can show the following.

Theorem 2.8. (Lemke and Howson, 1964; Shapley, 1974.) Let(A,B) be a nondegenerate
bimatrix game andk be a label inM ∪N. Then the set ofk-almost completely labeled
vertices and edges inG1×G2 consists of disjoint paths and cycles. The endpoints of the
paths are the equilibria of the game and the artificial equilibrium(0,0). The number of
Nash equilibria of the game is odd.

This theorem provides a constructive, elementary proof that every nondegenerate
game has an equilibrium, independently of the result of Nash (1951). By different labelsk
that are dropped initially, it may be possible to find different equilibria. However, this does
not necessarily generate all equilibria, that is, the union of thek-almost completely labeled
paths in Theorem 2.8 for allk ∈ M ∪N may be disconnected (Shapley, 1974, p. 183,
reports an example due to R. Wilson). For similar observations see Aggarwal (1973),
Bastian (1976), Todd (1976, 1978). Shapley (1981) discusses more general methods as a
potential way to overcome this problem.

2.4. Representation by polyhedra

The vertices and edges of the graphsG1 and G2 used in the definition of the Lemke–
Howson algorithm can be represented as vertices and edges of certain polyhedra. Let

H1 = {(x,v) ∈ IRM× IR | x∈ X, B>x≤ F>v},
H2 = {(y,u) ∈ IRN× IR | y∈Y, Ay≤ E>u} .

(2.16)

The elements ofH1×H2 represent the solutions to (2.14). Figure 2.4 showsH2 for
the example (2.15). The horizontal plane containsY as a subset. The scalaru, drawn
vertically, is at least the maximum of the functionsaiy for the rowsai of A and for y
in Y. The maximum itself shows which strategy of player 1 is a best response toy.
Consequently, projectingH2 to Y by mapping(y,u) to y, in Figure 2.4 shown as(y,0),
reveals the subdivision ofY into best-response regionsY(i) for i ∈ M as in Figure 2.2.
Figure 2.4 shows also that the unbounded facets ofH2 project to the subsetsY( j) of Y
for j ∈ N. Furthermore, the maximally labeled points inY marked by dots appear as
projections of the vertices ofH2. Similarly, the facets ofH1 project to the subsetsX(k)
of X for k∈M∪N.

The graph structure ofH1 andH2 with its vertices and edges is therefore identical
to that of G1 and G2, except for them unbounded edges ofH1 and then unbounded
edges ofH2 that connect to “infinity” rather than to the additional vertex0 of G1 andG2,
respectively.
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(y,u) ∈ H2}. The vertical scale is displayed shorter. The circled numbers
label the facets ofH2 analogous to Figure 2.2.

The constraints (2.14) definingH1 andH2 can be simplified by eliminating the pay-
off variablesu andv, which works if these are always positive. For that purpose, assume
that

A andB> are nonnegative and have no zero column. (2.17)

This assumption can be made without loss of generality since a constant can be added to
all payoffs without changing the game in a material way, so that, for example,A > 0 and
B > 0. For examples like (2.15), zero matrix entries are also admitted in (2.17). By (2.6),
u andv are scalars andE> andF> are single columns with all components equal to one,
which we denote by the vectors1M in IRM and1N in IRN , respectively. Let

P1 = {x′ ∈ IRM | x′ ≥ 0, B>x′ ≤ 1N},
P2 = {y′ ∈ IRN | Ay′ ≤ 1M, y′ ≥ 0} .

(2.18)

It is easy to see that (2.17) implies thatP1 andP2 are full-dimensional polytopes, unlike
H1 andH2.

The setH1 is in one-to-one correspondence withP1−{0} with the map(x,v) 7→
x · (1/v). Similarly, (y,u) 7→ y · (1/u) defines a bijectionH2 → P2−{0}. These maps
have the respective inverse functionsx′ 7→ (x,v) andy′ 7→ (y,u) with

x = x′ ·v, v = 1/1>Mx′, y = y′ ·u, u = 1/1>Ny′. (2.19)
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These bijections are not linear. However, they preserve the face incidences since a binding
inequality inH1 corresponds to a binding inequality inP1 and vice versa. In particular,
vertices have the samelabelsdefined by the binding inequalities, which are some of the
m+n inequalities definingP1 andP2 in (2.18).
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Figure 2.5. The mapH2→ P2, (y,u) 7→ y′ = y· (1/u) as a projective transformation with
projection point(0,0). The left-hand side shows this for a single component
y j of y, the right-hand side shows howP2 arises in this way fromH2 in the
example (2.15).

Figure 2.5 shows a geometric interpretation of the bijection(y,u) 7→ y · (1/u) as
a projective transformation(see Ziegler, 1995, Sect. 2.6). On the left-hand side, the pair
(y j ,u) is shown as part of(y,u) in H2 for any componenty j of y. The line connecting this
pair to(0,0) contains the point(y′j ,1) with y′j = y j/u. Thus,P2×{1} is the intersection of
the lines connecting any(y,u) in H2 with (0,0) in IRN× IR with the set{(y′,1) | y′ ∈ IRN}.
The vertices0 of P1 andP2 do not arise as such projections, but correspond toH1 andH2

“at infinity”.

2.5. Complementary pivoting

Traversing a polyhedron along its edges has a simple algebraic implementation known
as pivoting. The constraints defining the polyhedron are thereby represented as linear
equations with nonnegative variables. ForP1×P2, these have the form

Ay′+ r = 1M

B>x′ +s= 1N
(2.20)
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with x′,y′, r,s≥ 0 wherer ∈ IRM ands∈ IRN are vectors ofslackvariables. The system
(2.20) is of the form

Cz= q (2.21)

for a matrixC, right-hand sideq, and a vectorz of nonnegative variables. The matrixC
has full rank, so thatq belongs always to the space spanned by the columnsCj of C. A
basisβ is given by a basis{Cj | j ∈ β} of this column space, so that the square matrix
Cβ formed by these columns is invertible. The correspondingbasic solutionis the unique
vector zβ = (zj) j∈β with Cβ zβ = q, where the variableszj for j in β are calledbasic
variables, andzj = 0 for all nonbasicvariableszj , j 6∈ β , so that (2.21) holds. If this
solution fulfills alsoz≥ 0, then the basisβ is calledfeasible. If β is a basis for (2.21),
then the corresponding basic solution can be read directly from the equivalent system
C−1

β Cz= C−1
β q, called atableau, since the columns ofC−1

β C for the basic variables form
the identity matrix. The tableau and thus (2.21) is equivalent to the system

zβ = C−1
β q− ∑

j 6∈β
C−1

β Cjzj (2.22)

which shows how the basic variables depend on the nonbasic variables.

Pivoting is a change of the basis where a nonbasic variablezj for some j not in β
entersand a basic variablezi for somei in β leavesthe set of basic variables. The pivot
step is possible if and only if the coefficient ofzj in the i th row of the current tableau is
nonzero, and is performed by solving thei th equation forzj and then replacingzj by the
resulting expression in each of the remaining equations.

For a given entering variablezj , the leaving variable is chosen to preserve feasibility
of the basis. Let the components ofC−1

β q beqi and ofC−1
β Cj beci j , for i ∈ β . Then the

largest value ofzj such that in (2.22),zβ = C−1
β q−C−1

β Cjzj is nonnegative is obviously
given by

min{qi/ci j | i ∈ β , ci j > 0}. (2.23)

This is called aminimum ratio test. Except in degenerate cases (see below), the minimum
in (2.23) is unique and determines the leaving variablezi uniquely. After pivoting, the
new basis isβ ∪{ j}−{i}.

The choice of the entering variable depends on the solution that one wants to find.
The Simplex method for linear programming is defined by pivoting with an entering vari-
able that improves the value of the objective function. In the system (2.20), one looks for
acomplementarysolution where

x′>r = 0, y′>s= 0 (2.24)

because it implies with (2.19) the complementarity conditions (2.12) and (2.13) so that
(x,y) is a Nash equilibrium by Theorem 2.4. In a basic solution to (2.20), every nonbasic
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variable has value zero and represents a binding inequality, that is, a facet of the poly-
tope. Hence, each basis defines a vertex which is labeled with the indices of the nonbasic
variables. The variables of the system come incomplementary pairs(xi , r i) for the in-
dicesi ∈ M and (y j ,sj) for j ∈ N. Recall that the Lemke–Howson algorithm follows a
path of solutions that have all labels inM ∪N except for a missing labelk. Thus ak-
almost completely labeled vertex is a basis that has exactly one basic variable from each
complementary pair, except for a pair of variables(xk, rk), say (if k ∈ M) that are both
basic. Correspondingly, there is another pair of complementary variables that are both
nonbasic, representing the duplicate label. One of them is chosen as the entering variable,
depending on the direction of the computed path. The two possibilities represent the two
k-almost completely labeled edges incident to that vertex. The algorithm is started with
all components ofr ands as basic variables and nonbasic variables(x′,y′) = (0,0). This
initial solution fulfills (2.24) and represents the artificial equilibrium.

Algorithm 2.9. (Complementary pivoting.) For a bimatrix game(A,B) fulfilling (2.17),
compute a sequence of basic feasible solutions to the system (2.20) as follows.

(a) Initialize with basic variablesr = 1M , s= 1N . Choosek ∈ M∪N, and let the first
entering variable bex′k if k∈M andy′k if k∈ N.

(b) Pivot such as to maintain feasibility using the minimum ratio test.

(c) If the variablezi that has just left the basis has indexk, stop. Then (2.24) holds and
(x,y) defined by (2.19) is a Nash equilibrium. Otherwise, choose the complement
of zi as the next entering variable and go to(b).

We demonstrate Algorithm 2.9 for the example (2.15). The initial basic solution in
the form (2.22) is given by

r1 = 1 −6y′5
r2 = 1−2y′4−5y′5
r3 = 1−3y′4−3y′5

(2.25)

and
s4 = 1−x′1 −4x′3
s5 = 1 −2x′2−3x′3 .

(2.26)

Pivoting can be performed separately for these two systems since they have no variables
in common. With the missing label 2 as in Figure 2.3, the first entering variable isx′2.
Then the second equation of (2.26) is rewritten asx′2 = 1

2− 3
2x′3− 1

2s5 ands5 leaves the
basis. Next, the complementy′5 of s5 enters the basis. The minimum ratio (2.23) in (2.25)
is 1/6, so thatr1 leaves the basis and (2.25) is replaced by the system

y′5 = 1
6 − 1

6r1

r2 = 1
6−2y′4 + 5

6r1

r3 = 1
2−3y′4 + 1

2r1 .

(2.27)
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Then the complementx′1 of r1 enters the basis ands4 leaves, so that the system replacing
(2.26) is now

x′1 = 1− 4x′3−s4

x′2 = 1
2− 3

2x′3 − 1
2s5 .

(2.28)

With y′4 entering, the minimum ratio (2.23) in (2.27) is1/12, wherer2 leaves the basis
and (2.27) is replaced by

y′5 = 1
6− 1

6r1

y′4 = 1
12 + 5

12r1− 1
2r2

r3 = 1
4− 3

4r1 + 3
2r2 .

(2.29)

Then the algorithm terminates since the variabler2, with the missing label 2 as index, has
become nonbasic. The solution defined by the final systems (2.28) and (2.29), with the
nonbasic variables on the right-hand side equal to zero, fulfills (2.24). Renormalizingx′

andy′ by (2.19) as probability vectors gives the equilibrium(x,y) = (x3,y3) mentioned
after (2.15) with payoffs 4 to player 1 and 2/3 to player 2.

Assumption (2.17) with the simple initial basis for the system (2.20) is used by
Wilson (1992). Lemke and Howson (1964) assumeA < 0 andB < 0, so thatP1 andP2

are unbounded polyhedra and the almost completely labeled path starts at the vertex at
the end of an unbounded edge. To avoid the renormalization (2.19), the Lemke–Howson
algorithm can also be applied to the system (2.14) represented in equality form. Then the
unconstrained variablesu andv have no slack variables as counterparts and are always
basic, so they never leave the basis and are disregarded in the minimum ratio test. Then
the computation has the followingeconomic interpretation(Wilson, 1992; van den Elzen,
1993): Let the missing labelk belong toM. Then the basic slack variablerk which is
basic together withxk can be interpreted as a “subsidy” payoff for the pure strategyk
so that player 1 is in equilibrium. The algorithm terminates when that subsidy or the
probabilityxk vanishes. Player 2 is in equilibrium throughout the computation.

2.6. Degenerate games

The path computed by the Lemke–Howson algorithm is unique only if the game is nonde-
generate. Like other pivoting methods, the algorithm can be extended to degenerate games
by “lexicographic perturbation”, as suggested by Lemke and Howson (1964). Before we
explain this, we show that various definitions of nondegeneracy used in the literature are
equivalent. In the following theorem,IM denotes the identity matrix in IRM×M . Further-
more, a pure strategyi of player 1 is calledpayoff equivalentto a mixed strategyx of
player 1 if it produces the same payoffs, that is,ai = x>A. The strategyi is calledweakly
dominatedby x if ai ≤ x>A, andstrictly dominatedby x if ai < x>A holds. The same
applies to the strategies of player 2.

Theorem 2.10. Let (A,B) be anm× n bimatrix game so that (2.17) holds. Then the
following are equivalent.
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(a) The game is nondegenerate according to Definition 2.6.

(b) For anyx in X andy in Y, the rows of
[

IM
B>

]
for the labels ofx are linearly inde-

pendent, and the rows of
[

A
IN

]
for the labels ofy are linearly independent.

(c) For anyx in X with set of labelsK andy in Y with set of labelsL, the set
⋂

k∈K X(k)
has dimensionm−|K|, and the set

⋂
l∈LY(l) has dimensionn−|L|.

(d) P1 and P2 in (2.18) are simple polytopes, and any pure strategy of a player that
is weakly dominated by or payoff equivalent to another mixed strategy is strictly
dominated by some mixed strategy.

(e) In any basic feasible solution to (2.20), all basic variables have positive values.

Lemke and Howson (1964) define nondegenerate games by condition (b). Krohn et
al. (1991), and, in slightly weaker form, Shapley (1974), define nondegeneracy as in (c).
Van Damme (1987, p. 52) has observed the implication (b)⇒(a). Some of the implications
between the conditions (a)–(e) in Theorem 2.10 are easy to prove, whereas others require
more work. For details of the proof see von Stengel (1996b).

Them+n rows of the matrices in (b) define the inequalities for the polytopesP1 and
P2 in (2.18), where the labels denote binding inequalities. This condition explains why
a genericbimatrix game is nondegenerate with probability one: We call a game generic
if each payoff is drawn randomly and independently from a continuous distribution, for
example the normal distribution with small variance around an approximate value for
the respective payoff. Then the rows of the matrices described in 2.10(b) are linearly
independent with probability one, since a linear dependence imposes an equation on at
least one payoff, which is fulfilled with probability zero. However, the strategic form of
an extensive game (like Figure 4.1 below) is often degenerate since its payoff entries are
not independent. A systematic treatment of degeneracy is therefore of interest.

The dimensionality condition in Theorem 2.10(c) has been explained informally
before Theorem 2.7 above. The geometric interpretation of nondegeneracy in 2.10(d)
consists of two parts. The polytopeP1 (and similarlyP2) is simple since a point that
belongs to more thanm facets ofP1 has too many labels. In the game

A =




0 6
2 5
3 3


 , B =




1 0
0 2
4 4


 , (2.30)

the polytopeP1 is not simple because its vertex(0,0, 1
4)> belongs to four facets. This

game is degenerate since the pure strategy 3 of player 1 has two best responses. Apart
from this, degeneracy may result due to a redundancy of thedescriptionof the polytope
by inequalities (for example, ifA has two identical rows of payoffs to player 1). It is not
hard to show that such redundant inequalities correspond to weakly dominated strategies.
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A binding inequality of this sort defines a face of the respective polytope. The strict
dominance in (d) asserts that this face is empty if the game is nondegenerate.

Theorem 2.10(e) states that every feasiblebasisof the system isnondegenerate, that
is, all basic variables have positive values. This condition implies that the leaving variable
in step (b) of Algorithm 2.9 is unique, since otherwise, another variable that could also
leave the basis but stays basic will have value zero after the pivoting step. This concludes
our remarks on Theorem 2.10.

The lexicographic methodextends the minimum ratio test in such a way that the
leaving variable is always unique, even in degenerate cases. The method simulates an
infinitesimal perturbation of the right-hand side of the given linear system (2.21),z≥ 0,
and works as follows. LetQ be a matrix of full row rank withk columns. For anyε ≥ 0,
consider the system

Cz= q+Q· (ε1, . . . ,εk)> (2.31)

which is equal to (2.21) forε = 0 and which is aperturbedsystem forε > 0. Let β be a
basis for this system with basic solution

zβ = C−1
β q+C−1

β Q· (ε1, . . . ,εk)> = q+Q· (ε1, . . . ,εk)> (2.32)

andzj = 0 for j 6∈ β . It is easy to see thatzβ is positive for all sufficiently smallε if and
only if all rows of the matrix[q,Q] arelexico-positive, that is, the first nonzero component
of each row is positive. Thenβ is called alexico-feasiblebasis. This holds in particular
for q > 0 whenβ is a nondegenerate basis for the unperturbed system. BecauseQ has
full row rank, Q has no zero row, which implies that any feasible basis for the perturbed
system is nondegenerate.

In consequence, the leaving variable for the perturbed system is always unique. It is
determined by the followinglexico-minimum ratio test. Like for the minimum ratio test
(2.23), let, fori ∈ β , the entries of the entering columnC−1

β Cj beci j , those ofq in (2.32)

beqi0, and those ofQ beqil for 1≤ l ≤ k. Then the leaving variable is determined by the
maximum choice of the entering variablezj such that all basic variableszi in (2.31) stay
nonnegative, that is,

zi = qi0 +qi1ε1 + · · ·+qikεk−ci j zj ≥ 0

for all i ∈ β . For sufficiently smallε , the sharpest bound forzj is obtained for thati in
β with the lexicographically smallestrow vector1/ci j · (qi0,qi1, . . . ,qik) whereci j > 0
(a vector is called lexicographically smaller than another if it is smaller in the first com-
ponent where the vectors differ). No two of these row vectors are equal sinceQ has
full row rank. Therefore, this lexico-minimum ratio test, which extends (2.23), deter-
mines the leaving variablezi uniquely. By construction, it preserves the invariant that all
computed bases are lexico-feasible, provided this holds for the initial basis like that in Al-
gorithm 2.9(a) which is nondegenerate. Since the computed sequence of bases is unique,
the computation cannot cycle and terminates like in the nondegenerate case.
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The lexico-minimum ratio test can be performed without actually perturbing the
system, since it only depends on the current basisβ andQ in (2.32). The actual values
of the basic variables are given byq, which may have zero entries, so the perturbation
applies as ifε is vanishing. The lexicographic method requires little extra work (and none
for a nondegenerate game) sinceQ can be equal toC or to that part ofC containing the
identity matrix, so thatQ in (2.32) is just the respective part of the current tableau. Wilson
(1992) uses this to compute equilibria with additional stability properties, as discussed
in Section 3.1 below. Eaves (1971) describes a general setup of lexicographic systems
for LCPs and shows various ways (pp. 625, 629, 632) of solving bimatrix games with
Lemke’s algorithm (Lemke, 1965), a generalization of the Lemke–Howson method.

2.7. Equilibrium enumeration and other methods

For a given bimatrix game, the Lemke–Howson algorithm finds at least one equilibrium.
Sometimes, one wishes to find all equilibria, for example in order to know if an equilib-
rium is unique. A simple approach (as used by Dickhaut and Kaplan, 1991) is to enumer-
ate all possible equilibrium supports, solve the corresponding linear equations for mixed
strategy probabilities, and check if the unplayed pure strategies have smaller payoffs. In a
nondegenerate game, both players use the same number of pure strategies in equilibrium,
so only supports of equal cardinality need to be examined. They can be represented as
M ∩S and N−S for any n-element subsetS of M ∪N exceptN. There are

(m+n
n

)−1
many possibilities forS, which is exponential in the smaller dimensionm or n of the
bimatrix game. Stirling’s asymptotic formula

√
2πn(n/e)n for the factorialn! shows that

in a square bimatrix game wherem= n, the binomial coefficient
(2n

n

)
is asymptotically

4n/
√

πn. The number of equal-sized supports is here not substantially smaller than the
number4n of all possible supports.

An alternative is to inspect the vertices ofH1×H2 defined in (2.16) if they rep-
resent equilibria. Mangasarian (1964) does this by checking if the bilinear function
x>(A+ B)y− u− v has a maximum, that is, has value zero, so this is equivalent to the
complementarity conditions (2.12) and (2.13). It is easier to enumerate the vertices ofP1

andP2 in (2.18) since these are polytopes if (2.17) holds. Analogous to Theorem 2.5, a
pair (x′,y′) in P1×P2, except(0,0), defines a Nash equilibrium(x,y) by (2.19) if it is
completely labeled. The labels can be assigned directly to(x′,y′) as the binding inequal-
ities. That is,(x′,y′) in P1×P2 has labeli in M if x′i = 0 or aiy = 1, and labelj in N if
b jx′ = 1 or y′j = 0 holds.

Theorem 2.11. Let (A,B) be a bimatrix game so that (2.17) holds, and letV1 andV2 be
the sets of vertices ofP1 andP2 in (2.18), respectively. Then if(A,B) is nondegenerate,
(x,y) given by (2.19) is a Nash equilibrium of(A,B) if and only if (x′,y′) is a completely
labeled vertex pair inV1×V2−{(0,0)}.

Thus, computing the vertex setsV1 of P1 andV2 of P2 and checking their labels finds
all Nash equilibria of a nondegenerate game. This method was first suggested by Vorob’ev
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(1958), and later simplified by Kuhn (1961). An elegant method for vertex enumeration
is due to Avis and Fukuda (1992).

The number of vertices of a polytope is in general exponential in the dimension.
The maximal number is described in the following theorem, wherebtc for a real number
t denotes the largest integer not exceedingt .

Theorem 2.12. (Upper bound theorem for polytopes, McMullen, 1970.) The maximum
number of vertices of ad-dimensional polytope withk facets is

Φ(d,k) =
(

k−bd−1
2 c−1

bd
2c

)
+

(
k−bd

2c−1

bd−1
2 c

)
.

For a self-contained proof of this theorem see Mulmuley (1994). This result shows
that P1 has at mostΦ(m,n+ m) and P2 has at mostΦ(n,m+ n) vertices, including0
which is not part of an equilibrium. In a nondegenerate game, any vertex is part of at
most one equilibrium, so the smaller number of vertices of the polytopeP1 or P2 is a
bound for the number of equilibria.

Corollary 2.13. (Keiding, 1997.) A nondegeneratem× n bimatrix game has at most
min{Φ(m,n+m),Φ(n,m+n)}−1 equilibria.

It is not hard to show thatm < n implies Φ(m,n+ m) < Φ(n,m+ n). For m =
n, Stirling’s formula shows thatΦ(n,2n) is asymptoticallyc · (27/4)n/2/

√
n or about

c · 2.598n/
√

n, where the constantc is equal to2
√

2/3π or about .921 ifn is even,
and

√
2/π or about .798 ifn is odd. Since2.598n grows less rapidly than4n, vertex

enumeration is more efficient than support enumeration.

Although the upper bound in Corollary 2.13 is probably not tight, it is possible to
construct bimatrix games that have a large number of Nash equilibria. Then×n bimatrix
game whereA andB are equal to the identity matrix has2n−1 Nash equilibria. Then
both P1 and P2 are equal to then-dimensional unit cube, where each vertex is part of
a completely labeled pair. Quint and Shubik (1997) conjectured that no nondegenerate
n×n bimatrix game has more equilibria. This follows from Corollary 2.13 forn≤ 3 and
is shown forn= 4 by Keiding (1997) and McLennan and Park (1999). However, there are
counterexamples forn≥ 6, with asymptoticallyc· (1+

√
2)n/

√
n or aboutc·2.414n/

√
n

many equilibria, wherec is 23/4/
√

π or about .949 ifn is even, and(29/4−27/4)/
√

π
or about .786 ifn is odd (von Stengel, 1999). These games are constructed with the help
of polytopes which have the maximum numberΦ(n,2n) of vertices. This result suggests
that vertex enumeration is indeed the appropriate method for finding all Nash equilibria.

For degenerate bimatrix games, Theorem 2.10(d) shows thatP1 or P2 may be not
simple. Then there may be equilibria(x,y) corresponding to completely labeled points
(x′,y′) in P1×P2 where, for example,x′ has more thanm labels andy′ has fewer thann
labels and is therefore not a vertex ofP2. However, any such equilibrium is the convex
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combination of equilibria that are represented by vertex pairs, as shown by Mangasar-
ian (1964). The set of Nash equilibria of an arbitrary bimatrix game is characterized as
follows.

Theorem 2.14. (Winkels, 1979; Jansen, 1981.) Let(A,B) be a bimatrix game so that
(2.17) holds, letV1 andV2 be the sets of vertices ofP1 andP2 in (2.18), respectively, and
let R be the set of completely labeled vertex pairs inV1×V2−{(0,0)}. Then(x,y) given
by (2.19) is a Nash equilibrium of(A,B) if and only if (x′,y′) belongs to the convex hull
of some subset ofR of the formU1×U2 whereU1⊆V1 andU2⊆V2.

Proof. Labels are preserved under convex combinations. Hence, if the setU1×U2 is
contained inR, then any convex combination of its elements is also a completely labeled
pair (x′,y′) that defines a Nash equilibrium by (2.19).

Conversely, assume(x′,y′) in P1×P2 corresponds to a Nash equilibrium of the game
via (2.19). LetI = { i ∈ M | aiy′ < 1} andJ = { j ∈ N | y′j > 0}, that is,x′ has at least
the labels inI ∪ J. Then the elementsz in P1 fulfilling zi = 0 for i ∈ I and b jz = 1
for j ∈ J form a face ofP1 (defined by the sum of these equations, for example) which
containsx′. This face is a polytope and therefore equal to the convex hull of its vertices,
which are all vertices ofP1. Hence,x′ is the positive convex combination∑k∈K xkλk of
certain verticesxk of P1, whereλk > 0 for k ∈ K . Similarly, y′ is the positive convex
combination∑l∈L yl µl of certain verticesyl of P2, whereµl > 0 for l ∈ L. This implies
the convex representation

(x′,y′) = ∑
k∈K, l∈L

λkµl (xk,yl ) .

With U1 = {xk | k∈K} andU2 = {yl | l ∈ L}, it remains to show(xk,yl )∈G for all k∈K
and l ∈ L. Suppose otherwise that some(xk,yl ) was not completely labeled, with some
missing label, sayj ∈ N, so thatb jxk < 1 andyl

j > 0. But thenb jx′ < 1 sinceλk > 0

andy′j > 0 sinceµ l > 0, so label j would also be missing from(x′,y′) contrary to the
assumption. So indeedU1×U2⊆G.

The setR in Theorem 2.14 can be viewed as a bipartite graph with the completely
labeled vertex pairs as edges. The subsetsU1×U2 arecliquesof this graph. The convex
hulls of the maximal cliques ofR are calledmaximal Nash subsets(Millham, 1974; Heuer
and Millham, 1976). Their union is the set of all equilibria, but they are not necessarily
disjoint. The topological equilibrium components of the set of Nash equilibria are the
unions of non-disjoint maximal Nash subsets.

An example is shown in Figure 2.6, where the maximal Nash subsets are, as sets of
mixed strategies,{(1,0)>}×Y andX×{(0,1)>}. This degenerate game illustrates the
second part of condition 2.10(d): The polytopesP1 andP2 are simple but have vertices
with more labels than the dimension due to weakly but not strongly dominated strate-
gies. Dominated strategies could be iteratively eliminated, but this may not be desired
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Figure 2.6. A game(A,B), and its setR of completely labeled vertex pairs in Theo-
rem 2.14 as a bipartite graph. The labels denoting the binding inequalities in
P1 andP2 are also shown for illustration.

here since the order of elimination matters. Knuth, Papadimitriou, and Tsitsiklis (1988)
study computational aspects of strategy elimination where they overlook this fact; see also
Gilboa, Kalai, and Zemel (1990, 1993). The interesting problem of iterated elimination of
pure strategies that arepayoff equivalentto other mixed strategies is studied in Vermeulen
and Jansen (1998).

Quadratic optimization is used for computing equilibria by Mills (1960), Mangasar-
ian and Stone (1964), and Mukhamediev (1978). Audet et al. (2001) enumerate equilibria
with a search over polyhedra defined by parameterized linear programs. Bomze (1992)
describes an enumeration of theevolutionarily stableequilibria of a symmetric bimatrix
game. Yanovskaya (1968), Howson (1972), Eaves (1973), and Howson and Rosenthal
(1974) apply complementary pivoting topolymatrix games, which are multi-player games
obtained as sums of pairwise interactions of the players.

3. Equilibrium refinements

Nash equilibria of a noncooperative game are not necessarily unique. A large number of
refinementconcepts have been invented for selecting some equilibria as more “reason-
able” than others. We give an exposition (with further details in von Stengel, 1996b) of
two methods that find equilibria with additional refinement properties. Wilson (1992) ex-
tends the Lemke–Howson algorithm so that it computes asimply stableequilibrium. A
complementary pivoting method that finds aperfectequilibrium is due to van den Elzen
and Talman (1991).

3.1. Simply stable equilibria

Kohlberg and Mertens (1986) define strategicstability of equilibria. Basically, a set of
equilibria is called stable if every game nearby has equilibria nearby (Wilson, 1992). In
degenerate games, certain equilibrium sets may not be stable. In the bimatrix game(A,B)
in (2.30), for example, all convex combinations of(x1,y1) and (x2,y2) are equilibria,
wherex1 = x2 = (0,0,1)> andy1 = (0,1)> andy2 = (1

3, 2
3)>. Another, isolated equilib-

rium is (x3,y3). As shown in the right picture of Figure 3.1, the first of these equilibrium
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sets is not stable since it disappears when the payoffs to player 2 for her second strategy
5 are slightly increased.
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Figure 3.1. Left and center: Mixed strategy setsX andY for the game(A,B) in (2.30)
with labels similar to Figure 2.2. The game has an infinite set of equilibria
indicated by the pair of rectangular boxes. Right: Mixed strategy setX where
strategy 5 gets slightly higher payoffs, and only the equilibrium(x3,y3) re-
mains.

Wilson (1992) describes an algorithm that computes a set ofsimply stableequilibria.
There the game is not perturbed arbitrarily but only in certain systematic ways that are
easily captured computationally. Simple stability is therefore weaker than the stability
concepts of Kohlberg and Mertens (1986) and Mertens (1989, 1991). Simply stable sets
may not be stable, but no such game has yet been found (Wilson, 1992, p. 1065). However,
the algorithm is more efficient and seems practically useful compared to the exhaustive
method by Mertens (1989).

The perturbations considered for simple stability do not apply to single payoffs but
to pure strategies, in two ways. Aprimal perturbation introduces a smallminimum prob-
ability for playing that strategy, even if it is not optimal. Adualperturbation introduces a
smallbonusfor that strategy, that is, its payoff can be slightly smaller than the best payoff
and yet the strategy is still considered optimal. In system (2.20), the variablesx′,y′, r,s
are perturbed by corresponding vectorsξ ,η ,ρ,σ that have small positive components,
ξ ,ρ ∈ IRM andη ,σ ∈ IRN . That is, (2.20) is replaced by

A(y′+η)+ IM(r +ρ) = 1M

B>(x′+ξ ) + IN(s+σ) = 1N.
(3.1)

If (3.1) and the complementarity condition (2.24) hold, then a variablexi or y j that is zero
is replaced byξi or η j , respectively. After the transformation (2.19), these terms denote
a small positive probability for playing the pure strategyi or j , respectively. Soξ andη
represent primal perturbations.

Similarly, ρ andσ stand for dual perturbations. To see thatρi or σ j indeed repre-
sents a bonus fori or j , respectively, consider the second set of equations in (3.1) with
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ξ = 0 for the example (2.30):

[
1 0 4
0 2 4

]


x′1
x′2
x′3


+

(
s4 +σ4

s5 +σ5

)
=

(
1
1

)
.

If, say, σ5 > σ4, then one solution isx′1 = x′2 = 0 andx′3 = (1−σ5)/4 with s5 = 0 and
s4 = σ5−σ4 > 0, which means that only the second strategy of player 2 is optimal, so the
higher perturbationσ5 represents a higher bonus for that strategy (as shown in the right
picture in Figure 3.1). Dual perturbations are a generalization of primal perturbations,
letting ρ = Aη andσ = B>ξ in (3.1). Here, only special cases of these perturbations will
be used, so it is useful to consider them both.

Denote the vector of perturbations in (3.1) by

(ξ ,η ,ρ ,σ)> = δ = (δ1, . . . ,δk)>, k = 2(m+n). (3.2)

For simple stability, Wilson (1992, p. 1059) considers only special cases ofδ . For each
i ∈ {1, . . . ,k}, the componentδi+1 (or δ1 if i = k) represents the largest perturbation
by someε > 0. The subsequent componentsδi+2, . . . ,δk,δ1, . . . ,δi are equal to smaller
perturbationsε2, . . . ,εk. That is,

di+ j = ε j if i + j ≤ k,

di+ j−k = ε j if i + j > k,
1≤ j ≤ k. (3.3)

Definition 3.1. (Wilson, 1992.) Let(A,B) be anm×n bimatrix game. Then a connected
set of equilibria of(A,B) is calledsimply stableif for all i = 1, . . . ,k, all sufficiently small
ε > 0, and(ξ ,η ,ρ,σ) as in (3.2), (3.3), there is a solutionr = (x′,y′, r,s)> ≥ 0 to (3.1)
and (2.24) so that the corresponding strategy pair(x,y) defined by (2.19) is near that set.

Due to the perturbation,(x,y) in Definition 3.1 is only an “approximate” equilib-
rium. Whenε vanishes, then(x,y) becomes a member of the simply stable set. A per-
turbation with vanishingε is mimicked by a lexico-minimum ratio test as described in
Section 2.6 that extends step (b) of Algorithm 2.9. The perturbation (3.3) is therefore
easily captured computationally. With (3.2), (3.3), the perturbed system (3.1) is of the
form (2.31) with

z= (x′,y′, r,s)>, C =
[

0 A IM 0
B> 0 0 IN

]
, q =

[
1M

1N

]
(3.4)

andQ = [−Ci+1, . . . ,−Ck,−C1, . . . ,−Ci ] if C1, . . . ,Ck are the columns ofC. That is,Q is
just−C except for a cyclical shift of the columns, so that the lexico-minimum ratio test
is easily performed using the current tableau.

The algorithm by Wilson (1992) computes apathof equilibria where all perturba-
tions of the form (3.3) occur somewhere. Starting from the artificial equilibrium(0,0),
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the Lemke–Howson algorithm is used to compute an equilibrium with a lexicographic
order shifted by somei . Having reached that equilibrium,i is increased as long as the
computed basic solution is lexico-feasible with that shifted order. If this is not possible
for all i (as required for simple stability), a new Lemke–Howson path is started with the
missing label determined by the maximally possible lexicographic shift. This requires
several variants of pivoting steps. The final piece of the computed path represents the
connected set in Definition 3.1.

3.2. Perfect equilibria and the tracing procedure

An equilibrium isperfect(Selten, 1975) if it is robust against certain small mistakes of
the players. Mistakes are represented by small positive minimum probabilities for all
pure strategies. We use the following characterization (Selten, 1975, p. 50, Theorem 7) as
definition.

Definition 3.2. (Selten, 1975.) An equilibrium(x,y) of a bimatrix game is calledperfect
if there is a continuous functionε 7→ (x(ε),y(ε)) where(x(ε),y(ε)) is a pair of com-
pletely mixed strategies for allε > 0, (x,y) = (x(0),y(0)), andx is a best response to
y(ε) andy is a best response tox(ε) for all ε .

Positive minimum probabilities for all pure strategies define a special primal per-
turbation as considered for simply stable equilibria. Thus, as noted by Wilson (1992,
p. 1042), his modification of the Lemke–Howson algorithm can also be used for comput-
ing a perfect equilibrium. Then it is not necessary to shift the lexicographic order, so the
lexico-minimum ratio test described in Section 2.6 can be used withQ =−C.

Theorem 3.3. Consider a bimatrix game(A,B) and, with (3.4), the LCPCz= q, z≥ 0,
(2.24). Then Algorithm 2.9, computing with basesβ so thatC−1

β [q,−C] is lexico-positive,
terminates at a perfect equilibrium.

Proof. Consider the computed solution to the LCP, which represents an equilibrium(x,y)
by (2.19). The final basisβ is lexico-positive, that is, forQ=−C in the perturbed system
(2.32), the basic variableszβ are all positive ifε > 0. In (2.32), replace(ε, . . . ,εk)> by

δ = (ξ ,η ,ρ ,σ)> = (ε, . . . ,εm+n,0, . . . ,0)>, (3.5)

so thatzβ is still nonnegative. Thenzβ contains the basic variables of the solution
(x′,y′, r,s) to (3.1), withρ = 0, σ = 0 by (3.5). This solution depends onε , so r = r(ε),
s= s(ε), and it determines the pairx′(ε) = x′+ξ , y(ε) = y′+η which represents a com-
pletely mixed strategy pair ifε > 0. The computed equilibrium is equal to this pair for
ε = 0, and it is a best response to this pair since it is complementary to the slack variables
r(ε),s(ε). Hence the equilibrium is perfect by Definition 3.2.

A different approach to computing perfect equilibria of a bimatrix game is due to
van den Elzen and Talman (1991, 1999); see also van den Elzen (1993). The method uses
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an arbitrarystarting point(p,q) in the productX×Y of the two strategy spaces defined
in (2.7). It computes a piecewise linear path inX×Y that starts at(p,q) and terminates at
an equilibrium. The pair(p,q) is used throughout the computation as a reference point.
The computation uses an auxiliary variablez0, which can be regarded as a parameter for
a homotopymethod (see Garcia and Zangwill, 1981, p. 368). Initially,z0 = 1. Then,z0

is decreased and, after possible intermittent increases, eventually becomes zero, which
terminates the algorithm.

The algorithm computes a sequence of basic solutions to the system

Ex + ez0 = e

Fy+ f z0 = f

r = E>u −Ay− (Aq)z0≥ 0

s= F>v−B>x − (B>p)z0≥ 0,

x, y, z0≥ 0.

(3.6)

These basic solutions contain at most one basic variable from each complementary pair
(xi , r i) and(y j ,sj) and therefore fulfill

x>r = 0, y>s= 0. (3.7)

The constraints (3.6), (3.7) define anaugmentedLCP which differs from (2.14) only by
the additional column for the variablez0. That column is determined by(p,q). An initial
solution isz0 = 1 andx = 0, y = 0. As in Algorithm 2.9, the computation proceeds by
complementary pivoting. It terminates whenz0 is zero and leaves the basis. Then the
solution is an equilibrium by Theorem 2.4.

As observed in von Stengel, van den Elzen, and Talman (2002), the algorithm in this
description is a special case of the algorithm by Lemke (1965) for solving an LCP (see
also Murty, 1988; Cottle et al., 1992). Any solution to (3.6) fulfills0≤ z0 ≤ 1, and the
pair

(x,y) = (x+ pz0,y+qz0) (3.8)

belongs toX×Y sinceE p= e andFq = f . Hence,(x,y) is a pair of mixed strategies,
initially equal to the starting point(p,q). For z0 = 0, it is the computed equilibrium. The
set of these pairs(x,y) is the computed piecewise linear path inX×Y. In particular, the
computed solution is always bounded. The algorithm can therefore never encounter an
unbounded ray of solutions, which in general may cause Lemke’s algorithm to fail. The
computed pivoting steps are unique by using lexicographic degeneracy resolution. This
proves that the algorithm terminates.

In (3.8), the positive componentsxi andy j of x andy describe which pure strategies
i and j , respectively, are played with higher probability than the minimum probabilities
piz0 and q jz0 as given by(p,q) and the current value ofz0. By the complementarity
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condition (3.7), these arebest responsesto the current strategy pair(x,y). Therefore,
any point on the computed path is anequilibriumof therestrictedgame where each pure
strategy has at least the probability it has under(p,q) · z0. Considering the final line
segment of the computed path, one can therefore show the following.

Theorem 3.4. (Van den Elzen and Talman, 1991.) Lemke’s complementary pivoting
algorithm applied to the augmented LCP (3.6), (3.7) terminates at a perfect equilibrium if
the starting point(p,q) is completely mixed.

As shown by van den Elzen and Talman (1999), their algorithm also emulates the
linear tracing procedureof Harsanyi and Selten (1988). The tracing procedure is an ad-
justment process to arrive at an equilibrium of the game when starting from a prior(p,q).
It traces a pair of strategy pairs(x,y). Each such pair is an equilibrium in a parameterized
game where the prior is played with probabilityz0 and the currently used strategies with
probability 1− z0. Initially, z0 = 1 and the players react against the prior. Then they
simultaneously and gradually adjust their expectations and react optimally against these
revised expectations, until they reach an equilibrium of the original game.

Characterizations of the sets of stable and perfect equilibria of a bimatrix game
analogous to Theorem 2.14 are given in Borm et al. (1993), Jansen, Jurg, and Borm
(1994), Vermeulen and Jansen (1994), and Jansen and Vermeulen (2001).

4. Extensive form games

In a game in extensive form, successive moves of the players are represented by edges
of a tree. The standard way to find an equilibrium of such a game has been to convert it
to strategic form, where each combination of moves of a player is a strategy. However,
this typically increases the description of the game exponentially. In order to reduce this
complexity, Wilson (1972) and Koller and Megiddo (1996) describe computations that use
mixed strategies withsmall support. A different approach uses thesequence formof the
game where pure strategies are replaced by move sequences, which are small in number.
We describe it following von Stengel (1996a), and mention similar work by Romanovskii
(1962), Selten (1988), Koller and Megiddo (1992), and further developments.

4.1. Extensive form and reduced strategic form

The basic structure of an extensive game is a finite tree. The nodes of the tree represent
game states. The game starts at the root (initial node) of the tree and ends at a leaf (termi-
nal node), where each player receives a payoff. The nonterminal nodes are calleddecision
nodes. The player’smovesare assigned to the outgoing edges of the decision node. The
decision nodes are partitioned intoinformation sets, introduced by Kuhn (1953). All
nodes in an information set belong to the same player, and have the same moves. The
interpretation is that when a player makes a move, he only knows the information set but
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not the particular node he is at. Some decision nodes may belong tochancewhere the
next move is made according to a known probability distribution.
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Figure 4.1. Left: A game in extensive form. Its reduced strategic form is (2.30). Right:
Thesequence formpayoff matricesA andB. Rows and columns correspond
to the sequences of the players which are marked at the side. Any sequence
pair not leading to a leaf has matrix entry zero, which is left blank.

We denote the set of information sets of playeri by Hi , information sets byh, and
the set of moves ath by Ch. In the extensive game in Figure 4.1, moves are marked by
upper case letters for player 1 and by lower case letters for player 2. Information sets
are indicated by ovals. The two information sets of player 1 have move sets{L,R} and
{S,T}, and the information set of player 2 has move set{l , r}.

Equilibria of an extensive game can be found recursively by consideringsubgames
first. A subgame is a subtree of the game tree that includes all information sets containing
a node of the subtree. In a game withperfect information, where every information set
is a singleton, every node is the root of a subgame, so that an equilibrium can be found
by backward induction. In games with imperfect information, equilibria of subgames are
sometimes easy to find. Figure 4.1, for example, has a subgame starting at the decision
node of player 2. It is equivalent to a2×2 game and has a unique mixed equilibrium with
probability2/3 for the movesSandr , respectively, and expected payoff4 to player 1 and
2/3 to player 2. Preceded by moveL of player 1, this defines the uniquesubgame perfect
equilibrium of the game.

In general, Nash equilibria of an extensive game (in particular one without sub-
games) are defined as equilibria of itsstrategic form. There, apure strategyof player i
prescribes a deterministic move at each information set, so it is an element of∏h∈Hi

Ch.
In Figure 4.1, the pure strategies of player 1 are the move combinations〈L,S〉, 〈L,T〉,
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〈R,S〉, and〈R,T〉. In the reduced strategic form, moves at information sets that cannot
be reached due to an earlier own move are identified. In Figure 4.1, this reduction yields
the pure strategy (more precisely, equivalence class of pure strategies)〈R,∗〉, where∗
denotes an arbitrary move. The two pure strategies of player 2 are her movesl andr . The
reduced strategic form(A,B) of this game is then as in (2.30). This game isdegenerate
even if the payoffs in the extensive game are generic, because player 2 receives payoff 4
when player 1 choosesR (the bottom row of the bimatrix game) irrespective of her own
move. Furthermore, the game has an equilibrium which is not subgame perfect, where
player 1 choosesR and player 2 choosesl with probability at least2/3.

A player may haveparallel information sets that are not distinguished by own earlier
moves. In particular, these arise when a player receives information about an earlier move
by another player. Combinations of moves at parallel information sets cannot be reduced
(see von Stengel, 1996b, for further details). This causes a multiplicative growth of the
number of strategies even in the reduced strategic form. In general, the reduced strategic
form is thereforeexponentialin the size of the game tree. Strategic form algorithms are
then exceedingly slow except for very small game trees. Although extensive games are
convenient modeling tools, their use has partly been limited for this reason (Lucas, 1972).

Wilson (1972) applies the Lemke–Howson algorithm to the strategic form of an
extensive game while storing only those pure strategies that are actually played. That is,
only the positive mixed strategy probabilities are computed explicitly. These correspond
to basic variablesx′i or y′j in Algorithm 2.9. The slack variablesr i and sj are merely
known to be nonnegative. For the pivoting step, the leaving variable is determined by a
minimum ratio test which is performedindirectly for the tableau rows corresponding to
basic slack variables. If, for example,y′k enters the basis in step 2.9(b), then the conditions
y′j ≥ 0 and r i ≥ 0 for the basic variablesy j and r i determine the value of the entering
variable by the minimum ratio test. In Wilson (1972), this test is first performed by
ignoring the constraintsr i ≥ 0, yielding a new mixed strategyy0 of player 2. Against
this strategy, a pure best responsei of player 1 is computed from the game tree by a
subroutine, essentially backward induction. Ifi has the same payoff as the currently used
strategies of player 1, thenr ≥ 0 and some component ofy leaves the basis. Otherwise,
the payoff fori is higher andr i < 0. Then at least the inequalityr i ≥ 0 is violated, which
is now added for a new minimum ratio test. This determines a new, smaller value for
the entering variable and a corresponding mixed strategyy1. Against this strategy, a best
response is computed again. This process is repeated, computing a sequence of mixed
strategiesy0,y1, . . . ,yt , until r ≥ 0 holds and the correct leaving variabler i is found.

Each pure strategy used in this method is stored explicitly as a tuple of moves.
Their number should stay small during the computation. In the description by Wilson
(1972) this is not guaranteed. However, the desired small support of the computed mixed
strategies can be achieved by maintaining an additional system of linear equations for
realization weightsof the leaves of the game tree and with abasis crashingsubroutine, as
shown by Koller and Megiddo (1996).
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The best response subroutine in Wilson’s (1972) algorithm requires that the players
haveperfect recall, that is, all nodes in an information set of a player are preceded by
the same earlier moves of that player (Kuhn, 1953). For findingall equilibria, Koller and
Megiddo (1996) show how to enumerate small supports in a way that can also be applied
to extensive games without perfect recall.

4.2. Sequence form

The use of pure strategies can be avoided altogether by usingsequencesof moves instead.
The unique path from the root to any node of the tree defines a sequence of moves for
player i . We assume playeri has perfect recall. That is, any two nodes in an information
seth in Hi define the same sequence for that player, which we denote byσh. Let Si be the
set of sequences of moves for playeri . Then anyσ in Si is either the empty sequence/0 or
uniquely given by its last movec at the information seth in Hi , that is,σ = σhc. Hence,
Si = { /0} ∪ {σhc | h∈ Hi , c∈Ch}. So playeri does not have more sequences than the
tree has nodes.

Thesequence formof the extensive game, described in detail in von Stengel (1996a),
is similar to the strategic form but uses sequences instead of pure strategies, so it is a very
compact description. Randomization over sequences is thereby described as follows.

A behavior strategyβ of player i is given by probabilitiesβ (c) for his movesc
which fulfill β (c) ≥ 0 and ∑c∈Ch

β (c) = 1 for all h in Hi . This definition ofβ can be
extended to the sequencesσ in Si by writing

β [σ ] = ∏
c in σ

β (c). (4.1)

A pure strategyπ of player i can be regarded as a behavior strategy withπ(c) ∈ {0,1}
for all movesc. Thus,π[σ ] ∈ {0,1} for all σ in Si . The pure strategiesπ with π[σ ] = 1
are those “agreeing” withσ by prescribing all the moves inσ , and arbitrary moves at the
information sets not touched byσ .

A mixed strategyµ of player i assigns a probabilityµ(π) to every pure strategyπ .
In the sequence form, a randomized strategy of playeri is described by therealization
probabilities of playing the sequencesσ in Si . For a behavior strategyβ , these are
obviously β [σ ] as in (4.1). For a mixed strategyµ of player i , they are obtained by
summing over all pure strategiesπ of player i , that is,

µ [σ ] = ∑
π

µ(π)π[σ ] . (4.2)

For player 1, this defines a mapx from S1 to IR by x(σ) = µ [σ ] for σ in S1 which we call
therealization planof µ or a realization plan for player 1. A realization plan for player 2,
similarly defined onS2, is denotedy.
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Theorem 4.1. (Koller and Megiddo, 1992; von Stengel, 1996a.) For player 1,x is the
realization plan of a mixed strategy if and only ifx(σ)≥ 0 for all σ ∈ S1 and

x( /0) = 1,

∑
c∈Ch

x(σhc) = x(σh), h∈ H1. (4.3)

A realization plany of player 2 is characterized analogously.

Proof. Equations (4.3) hold for the realization probabilitiesx(σ) = β [σ ] for a behavior
strategyβ and thus for every pure strategyπ , and therefore for their convex combinations
in (4.2) with the probabilitiesµ(π).

To simplify notation, we write realization plans as vectorsx = (xσ )σ∈S1 and y =
(yσ )σ∈S2 with sequences as subscripts. According to Theorem 4.1, these vectors are
characterized by

x≥ 0, Ex= e, y≥ 0, Fy = f (4.4)

for suitable matricesE andF , and vectorse and f that are equal to(1,0. . . ,0)>, where
E ande have1+ |H1| rows andF and f have1+ |H2| rows. In Figure 4.1, the sets of
sequences areS1 = { /0,L,R,LS,LT} andS2 = { /0, l , r}, and in (4.4),

E =




1
−1 1 1

−1 1 1


 , e=




1
0
0


 , F =

[
1

−1 1 1

]
, f =

[
1
0

]
.

The number of information sets and therefore the number of rows ofE andF is at most
linear in the size of the game tree.

Mixed strategies of a player are calledrealization equivalent(Kuhn, 1953) if they
define the same realization probabilities for all nodes of the tree, given any strategy of the
other player. For reaching a node, only the players’ sequences matter, which shows that
the realization plan contains the strategically relevant information for playing a mixed
strategy:

Theorem 4.2. (Koller and Megiddo, 1992; von Stengel, 1996a.) Two mixed strategiesµ
andµ ′ of player i are realization equivalent if and only if they have the same realization
plan, that is,µ[σ ] = µ ′[σ ] for all σ ∈ Si .

Any realization planx of player 1 (and similarlyy for player 2) naturally defines
a behavior strategyβ where the probability for movec is β (c) = x(σhc)/x(σh), and
arbitrary, for example,β (c) = 1/|Ch|, if x(σh) = 0 since thenh cannot be reached.

Corollary 4.3. (Kuhn, 1953.) For a player with perfect recall, any mixed strategy is
realization equivalent to a behavior strategy.

In Theorem 4.2, a mixed strategyµ is mapped to its realization plan by regarding
(4.2) as a linear map with given coefficientsπ[σ ] for the pure strategiesπ . This maps
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the simplex of mixed strategies of a player to the polytope of realization plans. These
polytopes are characterized by (4.4) as asserted in Theorem 4.1. They define the player’s
strategy spacesin the sequence form, which we denote byX and Y as in (2.7). The
vertices ofX andY are the players’ pure strategies up to realization equivalence, which
is the identification of pure strategies used in the reduced strategic form. However, the
dimension and the number of facets ofX andY is reduced from exponential to linear size.

Sequence formpayoffsare defined for pairs of sequences whenever these lead to
a leaf, multiplied by the probabilities of chance moves on the path to the leaf. This
defines two sparse matricesA andB of dimension|S1|× |S2| for player 1 and player 2,
respectively. For the game in Figure 2.1,A andB are shown in Figure 4.1 on the right.
When the players use the realization plansx and y, the expected payoffs arex>Ay for
player 1 andx>By for player 2. These terms represent the sum over all leaves of the
payoffs at leaves multiplied by their realization probabilities.

The formalism in Section 2.2 can be applied to the sequence form without change.
For zero-sum games, one obtains the analogous result to Theorem 2.3. It was first proved
by Romanovskii (1962). He constructs a constrained matrix game (see Charnes, 1953)
which is equivalent to the sequence form. The perfect recall assumption is weakened by
Yanovskaya (1970). Until recently, these publications were overlooked in the English-
speaking community.

Theorem 4.4. (Romanovskii, 1962; von Stengel, 1996a.) The equilibria of a two-person
zero-sum game in extensive form with perfect recall are the solutions of the LP (2.10) with
sparse sequence form payoff matrixA and constraint matricesE andF in (4.4) defined
by Theorem 4.1. The size of this LP is linear in the size of the game tree.

Selten (1988, pp. 226, 237ff) defines sequence form strategy spaces and payoffs to
exploit their linearity, but not for computational purposes. Koller and Megiddo (1992)
describe the first polynomial-time algorithm for solving two-person zero-sum games in
extensive form, apart from Romanovskii’s result. They define the constraints (4.3) for
playing sequencesσ of a player with perfect recall. For the other player, they still con-
sider pure strategies. This leads to an LP with a linear number of variablesxσ but possibly
exponentially many inequalities. However, these can be evaluated as needed, similar to
Wilson (1972). This solves efficiently the “separation problem” when using the ellipsoid
method for linear programming.

For non-zero-sum games, the sequence form defines an LCP analogous to Theo-
rem 2.4. Again, the point is that this LCP has the same size as the game tree. The Lemke–
Howson algorithm cannot be applied to this LCP, since the missing label defines a single
pure strategy, which would involve more than one sequence in the sequence form. Koller,
Megiddo, and von Stengel (1996) describe how to use the more general complementary
pivoting algorithm by Lemke (1965) for finding a solution to the LCP derived from the
sequence form. This algorithm uses an additional variablez0 and a corresponding column
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to augment the LCP. However, that column is just some positive vector, which requires a
very technical proof that Lemke’s algorithm terminates.

In von Stengel, van den Elzen, and Talman (2002), the augmented LCP (3.6), (3.7)
is applied to the sequence form. The column forz0 is derived from a starting pair(p,q) of
realization plans. The computation has the interpretation described in Section 3.2. Similar
to Theorem 3.4, the computed equilibrium can be shown to be strategic-form perfect if
the starting point is completely mixed.

5. Computational issues

How long does it take to find an equilibrium of a bimatrix game? The Lemke–Howson
algorithm has exponential running time for some specifically constructed, even zero-sum,
games. However, this does not seem to be the typical case. In practice, numerical stability
is more important (Tomlin, 1978; Cottle et al., 1992). Interior point methods that are
provably polynomial as for linear programming are not known for LCPs arising from
games; for other LCPs see Kojima et al. (1991). The computational complexity of finding
one equilibrium is unclear. By Nash’s theorem, an equilibrium exists, but the problem is
to construct one. Megiddo (1988), Megiddo and Papadimitriou (1989), and Papadimitriou
(1994) study the computational complexity of problems of this kind.

Gilboa and Zemel (1989) show that finding an equilibrium of a bimatrix game with
maximum payoff sum is NP-hard, so for this problem no efficient algorithm is likely
to exist. The same holds for other problems that amount essentially to examining all
equilibria, like finding an equilibrium with maximum support. For other game-theoretic
aspects of computing see Linial (1994) and Koller, Megiddo, and von Stengel (1994).

The usefulness of algorithms for solving games should be tested further in practice.
Many of the described methods are being implemented in the project GAMBIT, acces-
sible by internet, and reviewed in McKelvey and McLennan (1996). The GALA system
by Koller and Pfeffer (1997) allows one to generate large game trees automatically, and
solves them according to Theorem 4.4. These program systems are under development
and should become efficient and easily usable tools for the applied game theorist.
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