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Abstract. We prove that an equilibrium of a nondegenerate bimatrix game has
index +1 if and only if it can be made the unique equilibrium of an extended
game with additional strategies of one player. The main tool is the “dual con-
struction”. A simplicial polytope, dual to the common best-response polytope of
one player, has its facets subdivided into best-response regions, so that equilibria
are completely labeled points on the surface of that polytope. That surface has
dimension m − 1 for an m × n game, which is much lower than the dimension
m+n of the polytopes that are classically used.

1 Introduction

The index of a Nash equilibrium is an integer that is related to notions of “stability”
of the equilibrium. In this paper, we only consider nondegenerate bimatrix games;
“generic” (that is, almost all) bimatrix games are nondegenerate. A bimatrix game is
nondegenerate if any mixed strategy with support of size k has at most k pure best re-
sponses [15]; the support of a mixed strategy is the set of pure strategies that are played
positive probability. Nondegeneracy implies that the two strategies of a mixed equilib-
rium have supports of equal size. The index has the following elementary definition due
to Shapley [13].

Definition 1. Let (x,y) be a Nash equilibrium of a nondegenerate bimatrix game (A,B)
with positive payoff matrices A and B, and let L and J be the respective supports of x
and y, with corresponding submatrices ALJ and BLJ of the payoff matrices A and B.
Then the index of (x,y) is defined as

(−1)|L|+1sign (det(ALJ) det(BLJ)). (1)

The index has the following properties, which require that its sign alternates with the
parity of the support size as in (1).

Proposition 2. In a nondegenerate bimatrix game,
(a) the index of an equilibrium is +1 or −1;
(b) any pure-strategy equilibrium has index +1;
(c) the index only depends on the payoffs in the support of the equilibrium strategies;
(d) the index does not depend on the order of a player’s pure strategies;
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(e) the endpoints of any Lemke–Howson path have opposite index;
(f) the sum of the indices over all equilibria is +1;
(g) in a 2 × 2 game with two pure equilibria, the mixed equilibrium has index −1.

Condition (a) holds because payoff-submatrices ALJ or BLJ that do not have full rank
|L| can only occur for degenerate games. The simple property (g) applies to, say, a co-
ordination game and easily follows from (1) or (f). It is one indication that, as suggested
by Hofbauer [7], equilibria of index +1 are in many respects “sustainable” according to
Myerson [10], who discusses ways to refine or select equilibria in “culturally familiar
games”. Hofbauer [7] also shows that only equilibria of index +1 can be stable under
any “Nash dynamics”, that is, a vector field on the set of mixed strategy profiles whose
rest points are the Nash equilibria [6][4]. Such dynamics may represent evolutionary or
learning processes.

The most interesting computational property is (e), proved by Shapley [13]. The
Lemke–Howson (LH) algorithm [9] (for an exposition see [15]) defines a path which
can either start at a trivial “artificial equilibrium” with empty support, or else at any
Nash equilibrium, and which ends at another equilibrium. The equilibria of the game,
plus the artificial equilibrium, are therefore the endpoints of the LH paths. By (1), the
artificial equilibrium has index −1. Consequently, the game has one more equilibrium
of index +1 than of index −1, and (f) holds.

Equilibria as endpoints of LH paths provide a “parity argument” that puts the prob-
lem of finding one Nash equilibrium of a bimatrix game into the complexity class PPAD
[11]. This stands for “polynomial parity argument with direction”, where the direction
of the path is provided by the index (which can also be determined locally at any point
on the path).

The index of an equilibrium can also be defined for general games (which may be
degenerate and have more than two players) as the degree of a topological map that has
the Nash equilibria as fixed points, like the mentioned “Nash dynamics” [6][4].

The index is a relatively complicated topological notion, essentially a geometric ori-
entation of the equilibrium. In this paper, we prove the following theorem, first conjec-
tured in [7], which characterizes the index in much simpler strategic terms.

Theorem 3. A Nash equilibrium of a nondegenerate m × n bimatrix game G has index
+1 if and only if it is the unique equilibrium of a game G′ obtained from G by adding
suitable strategies. It suffices to add 3m strategies for the column player.

The equilibrium of G in Theorem 3 is re-interpreted as an equilibrium of G′, so none
of the added strategies is used in the equilibrium; their purpose is to eliminate all
other equilibria. Unplayed strategies do not matter for the index of an equilibrium by
Prop. 2(c). By (f), a unique equilibrium has index +1, so only equilibria with positive
index can be made unique as stated in Theorem 3; the nontrivial part is therefore to
show that this is always possible.

We prove Theorem 3 using a novel geometric-combinatorial method that we call the
dual construction. It allows to visualize all equilibria of an m × n game in a diagram
of dimension m − 1. For example, all equilibria of a 3 × n game are visualized with
a diagram (essentially, of suitably connected n + 3 points) in the plane. This should
provide new insights into the geometry of Nash equilibria.
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A better understanding of the geometry of Nash equilibria may also be relevant algo-
rithmically, and we think the index is relevant apart from providing the “D” in “PPAD”.
Recent results on the complexity of finding one Nash equilibrium of a bimatrix game
have illustrated the difficulty of the problem: it is PPAD-complete [2], and LH paths
may be exponentially long [12]. Even a sub-exponential algorithm for finding one Nash
equilibrium is not in sight. In designing any such algorithm, for example incremental
or by divide-and-conquer, it is important that the information carried to the next phase
of the algorithm does not describe the entire set of equilibria, because questions about
that set, for example uniqueness of the Nash equilibrium, tend to be NP-hard [5][3].
On the other hand, Nash equilibria with additional properties (for example, a minimum
payoff) may not exist, or give rise to NP-complete decision problems. However, it is
always possible to restrict the search to an equilibrium with index +1; whether this is
of computational use remains speculative.

The dual construction has first been described in the first author’s PhD dissertation,
published in [14]. Some steps of the construction are greatly simplified here, and the
constructive proof outlined in Section 5 is new.

2 Dualizing the First Player’s Best Response Polytope

We use the following notation. All vectors are column vectors. If d ∈ R
k and s ∈ R,

then ds is the vector d scaled with s, as the product of a k × 1 with a 1 × 1 matrix. If
s = 1/t, we write d/t for ds. The vectors 0 and 1 have all components equal to 0 and 1,
respectively. Inequalities like d ≥ 0 between vectors hold for all components. A matrix
C with all entries scaled by s is written as sC. We write C = [c1 · · ·ck] if C is a matrix
with columns c1, . . . ,ck. The transpose of C is C�.

The index of an equilibrium is defined in (1) via the sign of determinants. We recall
some properties of determinants. Exchanging any two rows or any two columns of a
square matrix C = [c1 · · ·ck] changes the sign of det(C), which implies Prop. 2(d). The
determinant is multilinear, so that, for any d ∈ R

k, s ∈ R and 1 ≤ i ≤ k,

det[c1 · · ·ci−1 cis ci+1 · · ·ck] = s det(C),
det[c1 · · ·ci−1 (ci + d) ci+1 · · ·ck] = det(C)+ det[c1 · · ·ci−1 d ci+1 · · ·ck].

(2)

Let s1, . . . ,sk be scalars, which we add to the columns of C. Repeated application of (2)
gives

det(C +[1s1 · · ·1sk]) = det(C)+
k

∑
i=1

si det[c1 · · ·ci−1 1 ci+1 · · ·ck]. (3)

The right-hand side of (3) is linear in (s1, . . . ,sk). In particular, if s1 = · · ·sk = s, then
the expression det(C + s [1 · · ·1]) is linear in s and changes its sign at most once.

We first explain why the matrices A and B are assumed to be positive in Def. 1.
Consider an equilibrium (x,y), and discard for simplicity all pure strategies that are not
in the support of x or y, so that A and B are the matrices called ALJ and BLJ in (1), which
have full rank. Then the equilibrium payoffs to the two players are u and v, respectively,
with Ay = 1u and B�x = 1v. We want that always u > 0 and v > 0; this clearly holds
if A and B have positive entries, although this not a necessary condition. Adding any



Strategic Characterization of the Index of an Equilibrium 245

constant t to all payoffs of A does not change the equilibria of the game, but does change
the equilibrium payoff from u to u + t. Consequently, we could achieve Ay = 0 (with
t = −u), or Ay < 0. However, Ay = 0 implies det(A) = 0, and consequently a change of
the sign of u implies a change of the sign of det(A). Because the sign of det(A) changes
only once, that sign is unique whenever A is positive. Similarly, the sign of det(B) is
unique, so (1) defines the index uniquely.

For the rest of the paper, we consider a nondegenerate m × n bimatrix game (A,B)
so that the best-response payoff to any mixed strategy of a player is always positive, for
example by assuming that A and B are positive. The following polytopes can be used to
characterize the equilibria of (A,B) [15]:

P = {x ∈ R
m | x ≥ 0, B�x ≤ 1},

Q = {y ∈ R
n | Ay ≤ 1, y ≥ 0} .

(4)

Any (x,y) ∈ P×Q with x �= 0, y �= 0 represents a mixed strategy pair with best-response
payoffs scaled to one; normalizing x and y as probability vectors re-scales these pay-
offs. The inequalities in P and Q are labeled with the numbers 1, . . . ,m+ n to indicate
the pure strategies of player 1 (labels 1, . . . ,m) and player 2 (labels m + 1, . . . ,m + n).
Given x ∈ P and y ∈ Q, each binding inequality (which holds as an equation) defines
a facet of P or Q (by nondegeneracy, it cannot be a lower-dimensional face [15]). The
corresponding label defines an unplayed own pure strategy or best response of the other
player. An equilibrium of (A,B) corresponds a pair (x,y) of P × Q where each pure
strategy 1, . . . ,m+ n appears as a label of x or y. The artificial equilibrium is given by
(x,y) = (0,0).

The first step of our construction is to dualize the polytope P by considering its polar
polytope [16]. Suppose R is a polytope defined by inequalities that has 0 it its interior,
so that it can be written as R = {z ∈ R

m | c�
i z ≤ 1, 1 ≤ i ≤ k}. Then the polar polytope

is defined as R� = conv{ci | 1 ≤ i ≤ k}, that is, as the convex hull of the normal vectors
ci of the inequalities that define R. The face lattice of R� is that of R upside down, so
R� and R contain the same combinatorial information about the face incidences. More
precisely, assuming that R has full dimension m, any face of R of dimension h given by
{z ∈ R | c�

i z = 1 for i ∈ K} (with maximal set K) corresponds to the face conv{ci | i ∈ K}
of dimension m−1−h. So facets (irredundant inequalities) of R correspond to vertices
of R�, and vertices of R correspond to facets of R�. If R is simple, that is, has no point
that lies on more that m facets, then R� is simplicial, that is, all its facets are simplices.

Because the game is nondegenerate, the polytope P is simple, and any binding in-
equality of P defines either a facet or the empty face, the latter corresponding to a dom-
inated strategy of player 2 that can be omitted from the game. In particular, player 2 has
no weakly dominated strategy, which would define a lower-dimensional face of P.

Because P does not have 0 in its interior, we consider instead the polytope

Pε = {x ∈ R
m | x ≥ −1ε, B�x ≤ 1},

= {x ∈ R
m | −1/ε · Ix ≤ 1, B�x ≤ 1},

(5)

where ε > 0 and I is the m×m identity matrix. For sufficiently small ε , the polytopes P
and Pε are combinatorially equivalent, because the simple polytope P allows small per-
turbations of its facets. Moreover, nondegeneracy crucially forbids weakly dominated
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strategies, which would be “better” than the dominating strategy under the “negative
probabilities” xi allowed in Pε , and hence define facets of Pε but not of P. Then

P�
ε = conv({−ei/ε | 1 ≤ i ≤ m}∪{b j | 1 ≤ j ≤ n}), (6)

where ei is the ith unit vector in R
m and B = [b1 · · ·bn]. That is, P�

ε is the convex hull
of sufficiently largely scaled negative unit vectors and of the columns b j of the payoff
matrix B of player 2. We will later add points, which are just additional payoff columns;
this is the reason why we perturb, rather than translate, P.

Any facet F of P�
ε is a simplex, given as the convex hull of m vertices −ei/ε for

i ∈ K and b j for j ∈ J, where |K|+ |J| = m. We write

F = F(K,J) = conv({−ei/ε | i ∈ K}∪{b j | j ∈ J}). (7)

Then the vertices of the facet F(K,J) define labels i and m+ j which represent unplayed
strategies i ∈ K of player 1 and best responses j ∈ J of player 2. These labels are the
labels of the facets of Pε , and hence of P, that correspond to the vertices of F(K,J).

The facet F(K,J) itself corresponds to a vertex xε of Pε . Namely, because P��
ε = Pε

[16], we have F(K,J) = Pε ∩{z ∈ R
m | x�

ε z = 1}, where x�
ε z ≤ 1 holds for all z ∈ Pε .

The vertex xε of Pε corresponds to a vertex x of P, which is determined from K and J
by the linear equations xi = 0 for i ∈ K and ∑i�∈K bi jxi = 1 for j ∈ J. The corresponding
equations for xε are (xε )i = −ε for i ∈ K and ∑m

i=1 bi j(xε)i = 1 for j ∈ J, so xε → x as
ε → 0.

In summary, the normal vectors of facets F(K,J) of P�
ε correspond to mixed strate-

gies x of player 1. The vertices of such facets represent player 1’s unplayed strategies
i ∈ K and best responses j ∈ J of player 2. A similar representation of mixed strategies
and best responses is considered by Bárány, Vempala and Vetta [1], namely the polyhe-
dron defined as the intersection of the halfspaces with nonnegative normal vectors that
contain the points b1, . . . ,bn. Our polytope P�

ε approximates that polyhedron when it is
intersected with the halfspace with supporting hyperplane through the m points −ei/ε
for 1 ≤ i ≤ m.

The facet F0 = F({1, . . . ,m}, /0) of P�
ε whose vertices are the m points −ei/ε for

1 ≤ i ≤ m corresponds to the vertex 0 of P. The surface of P�
ε can be projected to

F0, giving a so-called Schlegel diagram [16]. A suitable projection point is −1/ε . The
Schlegel diagram is a subdivision of the simplex F0 into simplices that correspond to
the other facets of P�

ε . All these simplices have dimension m − 1, so for m = 3 one
obtains a subdivided triangle. An example is the left picture in Fig. 1 for the matrix B
of the 3 × 4 game

A =

⎡
⎣

0 10 0 10
10 0 0 0
8 0 10 8

⎤
⎦ , B =

⎡
⎣

0 10 0 −10
0 0 10 8
10 0 0 8

⎤
⎦ . (8)

In that picture, the labels i = 1,2,3 correspond to the scaled negative unit vectors −ei/ε ,
the labels m+ j = 4,5,6,7 to the columns b j of B. The nonpositive entries of A and B
are allowed because a player’s best-response payoff is always positive.
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Fig. 1. Left: Schlegel diagram of P�
ε for the example (8). Right: Subdivision into best-response

regions of player 1, which completes the dual construction.

3 Subdividing Simplices into Best-Response Regions

The second step of our construction is the incorporation of player 1’s best responses into
the surface of P�

ε . Let F(K,J) be a facet of P�
ε as in (7). Consider the m× m matrix

[IK AJ] = [ei1 · · ·eik a j1 · · ·a jm−k ] if K = {i1, . . . , ik}, J = { j1, . . . , jm−k}, (9)

that is, the columns of [IK AJ] are the columns ei of the identity matrix I for i ∈ K and
the columns a j of player 1’s payoff matrix A for j ∈ J, where A = [a1 · · ·an]. We write
the unit simplex conv{e1, . . . ,em} in R

m as

Δ(K,J) = {z ∈ R
K ×R

J | z ≥ 0, 1�z = 1}. (10)

Proposition 4. Let (x,y) ∈ P×Q−{(0,0)}. Then (x,y) is a Nash equilibrium of (A,B)
if and only if the vertex x of P corresponds to a facet F(K,J) of P�

ε so that [IK AJ]z = 1u
for some z = (zK ,zJ) ∈ Δ(K,J) and some u > 0, and yJ = zJ/u, where yJ is y restricted
to its support J.

Proof. Because the game is nondegenerate, only vertices x of P can represent equi-
librium strategies. Let F(K,J) be the facet of P�

ε that corresponds to x, where K =
{i | xi = 0} and J is the set of best responses to x. Then y is a best response to x
if and only if the support of y is J; suppose this holds, so that Ay = AJyJ . In turn,
x is a best response to y if and only if (Ay)i = 1 whenever i �∈ K, because Ay ≤ 1.
This is equivalent to IKsK + AJyJ = 1 for a suitable slack vector sK ∈ R

K , sK ≥ 0.
With u = 1/(∑i∈K si + ∑ j∈J y j) and z = (sKu,yJu) this is equivalent to z ∈ Δ(K,J) and
[IK AJ]z = 1u as claimed. �

Given a facet F(K,J) of P�
ε that corresponds to a vertex x of P, Prop. 4 states that x is

part of a Nash equilibrium (x,y) if and only if there is a mixed strategy z = (zK ,zJ) ∈
Δ(K,J) so that all pure strategies of player 1 are best responses against z when the
payoff matrix to player 1 is [IK AJ]. Suitably scaled, zK is a vector of slack variables,
and zJ represents the nonzero part yJ of player 2’s mixed strategy y. Nondegeneracy
implies that z is completely mixed and hence in the interior of Δ(K,J).
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The simplex Δ(K,J) has dimension m− 1, like the face F(K,J). The two simplices
are in one-to-one correspondence via the canonical linear map

α : Δ(K,J) → F(K,J), z �→ [MK BJ]z, (11)

where MK = (−1/ε · I)K . This just says that α maps the vertices of Δ(K,J) (which
are the unit vectors in R

m) to the respective vertices of F(K,J), and preserves convex
combinations.

We subdivide Δ(K,J) into polyhedral best response regions Δ(K,J)(i) for the strate-
gies i = 1, . . . ,m of player 1, using the payoff matrix [IK AJ]. That is (see [13] or [15]),
Δ(K,J)(i) is the set of mixed strategies z so that i is a best response to z, so for 1 ≤ i ≤ m,

Δ(K,J)(i) = {z ∈ Δ(K,J) | ([IK AJ]z)i ≥ ([IK AJ]z)k for all k = 1, . . . ,m}. (12)

We say z in Δ(K,J) has label i if z ∈ Δ(K,J)(i), and correspondingly α(z) in F(K,J)
has label i if z has label i.

This dual construction [14] labels every point on the surface of P�
ε . The labeling is

unique because the payoffs to player 1, and the map α , only depend on the vertices of
the respective facets, so the labels agree for points that belong to more than one facet.
For the game in (8), this labeling is shown in the right picture of Fig. 1.

As a consequence of Prop. 4, we obtain that the equilibria of the game correspond
to the points on the surface of P�

ε that have all labels 1, . . . ,m. We call such points
completely labeled. The three equilibria of the game (8) are marked by a small square,
triangle and circle in Fig. 1. Not all facets of P�

ε contain such a completely labeled
point, if the corresponding vertex x of P is not part of a Nash equilibrium.

“Completely labeled” now means “all strategies of player 1 appear as labels”. What
happened to the strategies of player 2? They correspond to the vertices of P�

ε . They are
automatically best responses when considering the facets of P�

ε , and they are the only
strategies that player 2 is allowed to use, apart from the slacks i ∈ K, when subdividing
a facet F(K,J) into the labeled regions α(Δ(K,J)(i)) for the labels i = 1, . . . ,m.

4 Visualizing the Index and the LH Algorithm

The described dual construction, the labeled subdivision of the surface of P�
ε , visualizes

all equilibria of an m × n game in a geometric object of dimension m − 1. Figure 2
also shows the index of an equilibrium as the orientation in which the labels 1, . . . ,m
appear around the point representing the equilibrium, here counterclockwise for index
+1, and clockwise for index −1. The artificial equilibrium is the completely labeled
point M(1/m) (see (11) with J = /0) of the facet F0 of P�

ε , which has negative index.
This facet should be seen as the underside of the “flattened” view of P�

ε given by the
Schlegel diagram, so the dashed border of F0 in Fig. 2 is to be identified with the border
of the large triangle.

Our goal is to formalize the orientation of a completely labeled point in the dual
construction, and to show that it agrees with the index in Def. 1. A nonsingular m× m
matrix C has positive orientation if det(C) > 0, otherwise negative orientation.
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Fig. 2. Indices of equilibria as positive or negative orientations of the labels, and LH paths for
missing label 1. The facet on the left with dashed border indicates the flapped-out “underside” of
the Schlegel diagram, the facet F0 of P�

ε .
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Fig. 3. Points w1,w2,w3 in Δ (K,J), here for K = /0, so that (13) holds

Let α(z) be a completely labeled point of a facet F(K,J) of P�
ε . We first consider

points w1, . . . ,wm so that wi belongs only to the best-response region Δ(K,J)(i) for
1 ≤ i ≤ m. More specifically, we want that for suitable si ≥ 0, ti > 0,

[IK AJ]wi = 1si + eiti, (13)

that is, player 1’s payoff against wi is si + ti for his pure strategy i, and a smaller con-
stant si for all other pure strategies k �= i. Such points wi exist, by extending the line
through the completely labeled point z defined by the m− 1 labels k �= i into the region
Δ(K,J)(i), as shown in Fig. 3. For i ∈ K, we can simply choose wi = ei to obtain (13),
a case that is not shown in Fig. 3.

Let W = [w1 · · ·wm]. We want to show that W has the same orientation as [IK AJ].
Because of (13), [IK AJ ]W = C + [1s1 · · ·1sm] for the diagonal matrix C with entries
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cii = ti > 0 and ci j = 0 for i �= j. By (3), C + [1s1 · · ·1sm] has positive determinant, so
that det[IK AJ] and det(W ) have the same sign, as claimed.

We take the orientation of the matrix D = [α(w1) · · ·α(wm)] as the orientation of the
equilibrium represented by α(z). By (11), that matrix is D = [MK BJ]W . Its orientation
sign(det(D)) is the sign of det[MK BJ]det(W ), so that

sign(det(D)) = sign(det[MK BJ])sign(det[IK AJ]). (14)

Let L = {1, . . . ,m} − K, which is the support of the vertex x of P that corresponds to
the facet F(K,J). We can assume that K = {1, . . . ,k}, because any transposition of
player 1’s strategies alters the signs of both determinants on the right-hand side of (14).
Then

sign(det(D)) = sign((−1/ε)kdet(BLJ)) sign(det(ALJ))

= (−1)m−|L|sign(det(BLJ)) sign(det(ALJ))

= (−1)m−1(−1)|L|+1sign(det(BLJ)) sign(det(ALJ)).

Consequently, sign(det(D)) agrees with the index of the equilibrium when m is odd,
and is the negative of the index when m is even. The artificial equilibrium corresponds
to the center point of F0, which has orientation (−1)m. The orientation of the artificial
equilibrium should always be −1, so it has to be multiplied with −1 when m is even.
Hence, relative to the orientation of the artificial equilibrium, sign(det(D)) is exactly
the index of the equilibrium under consideration, as claimed.

We mention very briefly an interpretation of the LH algorithm with the dual con-
struction, as illustrated in Fig. 2; for details see [14]. This can only be done for missing
labels of player 1, because player 2 is always in equilibrium. For missing labels of
player 2 one has to exchange the roles of the two players (the dual construction works
either way). The original LH path starts from (0,0) in P × Q by dropping a label, say
label 1, in P. This corresponds to dropping label 1 from the artificial equilibrium given
by the center of F0. It also reaches a new vertex of P, which in P�

ε means a change
of facet. This means a change of the normal vector of that facet, which is an invisible
step in the dual construction because the path is at that point on the joint face of the
two facets. Traversal of an edge of Q is represented by traversing the line segment in a
face P�

ε that has all m− 1 labels except for the missing label. That line segment either
ends at an equilibrium, or else reaches a new facet of P�

ε . The path then (invisibly)
changes to that facet, followed by another line segment, and so on. Algorithmically, the
LH pivoting steps are just like for the path on P × Q, so nothing changes.

Figure 2 also illustrates why the endpoints of LH paths have opposite index: Along
the path, the m − 1 labels that are present preserve their orientation around the path,
whereas the missing label is in a different direction at the beginning and at the end of
the path. In Fig. 2, an LH path from a −1 to a +1 equilibrium with missing label 1 has
label 2 on the left and label 3 on the right. This intuition of Shapley’s result Prop. 2(e)
[13] can be given without the dual construction (see [12, Fig. 1]), but here it is provided
with a figure in low dimension.
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5 Proof Sketch of Theorem 3

In this section, we give an outline of the proof of Theorem 3 with the help of the dual
construction. We confine ourselves to an equilibrium (x,y) of index +1 that uses all m
strategies of player 1, which captures the core of the argument. Hence, the facet F(K,J)
of P�

ε that corresponds to the fully mixed strategy x of player 1 has K = /0. The m best
responses of player 2 are j ∈ J, which define the payoff vectors b j as points in R

m, and
an m× m submatrix BJ of B.

For player 1 and player 2, we will construct three m × m matrices A′,A′′,A′′′ and
B′,B′′,B′′′, respectively, so that the extended game G′ in Theorem 3 is defined by the
two m× (n + 3m) payoff matrices [A A′ A′′ A′′′] and [B B′ B′′ B′′′].

+

+

− −

−

3

3
2

2 ++

1

1
+

3

2

3
1

2 1

Fig. 4. Left: Dual construction for a 3×3 coordination game, which has four equilibria with index
+1 and three with index −1. Right: Adding three strategies for the column player (small white
squares) so that only the completely mixed equilibrium remains, see (15).

An example is the 3 × 3 coordination game where both players’ payoffs are given
by the identity matrix. The game has seven equilibria: three pure-strategy equilibria
and the completely mixed equilibrium, all of index +1, and three equilibria where each
player mixes two strategies, with index −1. The left picture in Fig. 4 shows the dual
construction for this game. The index of each equilibrium point is indicated by its sign,
given by the orientation of the labels 1,2,3 around the point. The completely mixed
equilibrium is on the central triangle with facet F whose vertices are the three columns
of B. We want to make this equilibrium unique by adding strategies. In this case, we
need only the matrices A′′ and B′′, for example as follows:

[AA′′] =

⎡
⎣

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

⎤
⎦ , [BB′′] =

⎡
⎣

11 10 10 12 8.9 10
10 11 10 10 12 8.9
10 10 11 8.9 10 12

⎤
⎦ . (15)

The dual construction for the game in (15) is shown on the right in Fig. 4. As desired,
only the original facet F has an equilibrium point, which is now unique. It is also clear
that its index must be +1, because otherwise it would not be possible to “twist” the best
response regions 1,2,3 outwards to meet the labels at the outer vertices.
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In this example, the columns of B′′ span a simplex (with vertices indicated by small
white squares in Fig. 4), whose projection to F0 in the Schlegel diagram contains the
original facet F as a subset. In fact, the columns of B′′ are first constructed as points in
the hyperplane defined by F so that they define a larger simplex than F . Subsequently,
these new points are moved slightly to the origin, so that F re-appears in the convex
hull: Note that in (15), the normal vector for the hyperplane through the columns of B′′

is 1, but its scalar product with these columns is 30.9 and not 31 like for the columns
of B (the matrix B is the identity matrix with 10 added to every entry).

In the general construction, several complications have to be taken care of. First,
the original game may have additional columns that are not played in the considered
equilibrium. The example makes it clear that this is a minor complication: Namely, the
simplex spanned by the columns of B′′ can be magnified, while staying in the hyper-
plane just below F , so that the convex hull of these columns and of the negative unit
vectors contains all unused columns of B in its interior.

A second complication is that the labels 1, . . . ,m of the best-reponse regions given
by A may not correspond to the vertices of F as they do in Fig. 4. For example, two of
the vertices of the triangle in Fig. 3 have label 1, one vertex has label 3, and no vertex
has label 2. The first matrix B′ in the general construction is designed so that each
label 1, . . . ,m appears at exactly one vertex. Namely, consider the simplex spanned
by the points w1, . . . ,wm that are used to represent the best-response regions 1, . . . ,m
around the equilibrium point z (after these points have been mapped into F via α). If
this simplex is “blown up” around z while staying in the same hyperplane, it eventu-
ally contains the original unit simplex. Let v1, . . . ,vm be the vertices of this blown-up
simplex, as shown in Fig. 5. After the mapping α , the corresponding points will be

3w

1v
2v

3v

2w

3

1
w1

z 2

Fig. 5. Points v1, . . . ,vm as expanded points w1, . . . ,wm along the dashed lines around z in the
same hyperplane, so that conv{v1, . . . ,vm} contains the original simplex Δ (K,J)
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in the hyperplane defined by F and define a simplex that contains F as a subset. We
merely move these points α(v1), . . . ,α(vm) slightly towards to the origin, which defines
the matrix B′. The corresponding payoffs A′ to player 1 are given by the diagonal ma-
trix [e1t1 · · ·emtm] with the payoffs t1, . . . ,tm given as in (13). We could add an arbitrary
constant 1si to the ith column of A′ (for each i) without changing the subdivision into
best-response regions of the simplex defined by B′. Hence, if B′ was still in the same
hyperplane as F , that subdivision would coincide with the subdivision of F , which it
still does after moving B′ slightly inwards. From then on, we consider the simplex by
spanned B′ instead of F , which then looks essentially like in the special case of Fig. 15
because the corresponding matrix A′ is a diagonal matrix.

We also use two increasingly larger simplices defined by B′′ and B′′′, with iden-
tity matrices A′′ and A′′′. In the resulting construction, each pair of matrices (M,B′′′),
(B′′′,B′′), (B′′,B′) and (B′,BJ) (where the columns of M and BJ are the vertices of F0

and F , respectively) defines a pair of simplices whose convex hull is a “distorted prism”.
These distorted prisms are stacked on top of each other, with the points of intermediate
layers spread outwards in parallel hyperplanes to maintain a convex set. In the projected
Schlegel diagram, each simplex is contained in the next.

The missing matrices B′′ and B′′′ are constructed using the following theorem of [8]:
Every matrix with positive determinant is the product of three P-matrices. A P-matrix
is a matrix P such that every principal minor PSS of P (where S is an arbitray set of rows
and the same set of columns) has positive determinant. The P-matrices are useful for
“stacking distorted prisms” because of the following property:

Proposition 5. Let P = [p1 · · · pm] be a P-matrix where each column pi is scaled such
that 1�pi = 2. Let X be the convex hull of the vectors pi and the unit vectors ei for
1 ≤ i ≤ m. Assume X is a simplicial polytope, if necessary by slightly perturbing P. Let
a facet of X have label i if it has pi or ei has a vertex. Then the only facets of X that
have all labels 1, . . . ,m are those spanned by p1, . . . , pm and by e1, . . . ,em.

Proposition 5 may be a novel observation about P-matrices. It can be proved using a
parity argument: Additional completely labeled facets would have to come in pairs of
opposite orientation, and a negatively oriented facet contradicts the P-matrix property.

Consequently, a distorted prism X defined by the columns of the identity matrix I and
a P-matrix P (scaled as in Prop. 5) has no completely labeled facet other than its two
“end” facets defined by I and P. If Q is another such P-matrix, the same observation
holds for I and Q, and consequently for P and PQ because it does not change under
affine transformations. Finally, for another P-matrix R, we see that PQ and PQR define
prisms that have no completely labeled “side” facets, either. According to said theorem
of [8], PQR can represent an arbitrary matrix with positive determinant.

The stack of prisms that we want to generate should start at the convex hull M of
the negative unit vectors used in (11). We move these vectors in the direction 1 until it
crosses the origin, so that the resulting matrix, which we call N, has opposite orientation
to M. As shown in Section 4, N has therefore the same orientation as the matrix D in
(14) and hence as B′. Therefore, N−1B′ has positive determinant and can be represented
as a product PQR of three P-matrices, so that NPQR = B′. Then the additional matrices
are given by B′′ = NPQ and B′′′ = NP.
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We have to omit details for reasons of space. We conclude with the following intu-
ition why we use two matrices B′′ and B′′′ rather than just a single one. In Fig. 4, the
columns of B′′, which is the only matrix used, are indicated by the white squares, but
these show only the projection in the Schlegel diagram. Their (invisible) distances from
the origin are very important because they determine the facets spanned by the columns
of B′′ and of B. Essentially, B′′ represents a single intermediate step when “twisting” F
by 180 degrees towards the outer triangle, and A′′ is a matrix of suitably ordered unit
vectors. It is not clear if this can be done in higher dimensions. With two intermediate
sets of points B′′ and B′′′, their exact relative position is not very relevant when using
P-matrices, due to Prop. 5, and one can use identity matrices A′′ and A′′′.
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