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Abstract We study strong Nash equilibria in mixed strategies in finite games. ANash
equilibrium is strong if no coalition of players can jointly deviate so that all players
in the coalition get strictly better payoffs. Our main result concerns games with two
players and states that if a game admits a strong Nash equilibrium, then the payoff pairs
in the support of the equilibrium lie on a straight line in the players’ utility space. As
a consequence, the set of games that have a strong Nash equilibrium in which at least
one player plays a mixed strategy has measure zero. We show that the same property
holds for games with more than two players, already when no coalition of two players
can profitably deviate. Furthermore, we show that, in contrast to games with two
players, in a strong Nash equilibrium an outcome that is strictly Pareto dominated
may occur with positive probability.
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1 Introduction

It is well known that in a non-cooperative game, selfish behavior can cause players
to be worse off than they could be by collaborating. The most famous example is the
Prisoners’ Dilemma (Luce and Raiffa, 1957), where strictly dominating strategies for
the players lead to a bad outcome for both. The strong Nash equilibrium by Aumann
(1959) gets around this paradox, as a solution concept that is resilient against coali-
tional deviations. A strategy profile is a strong Nash equilibrium if no coalition of
players can jointly deviate so that all players in the coalition get strictly better payoffs
(because this applies to single-player coalitions, it is a Nash equilibrium). Strong Nash
equilibrium outcomes are also called weakly Pareto efficient for each coalition (Miet-
tinen, 1999, Definition 2.5.1). A further refinement is super strong Nash equilibrium
(Rozenfeld, 2007), which requires Pareto efficiency for every coalition (that is, no
coalition can improve a player’s payoff without hurting at least one other member of
the coalition). There are classes of games that have a strong Nash equilibrium but
no super strong Nash equilibrium (Gourvès and Monnot, 2009), so the distinction
between the two solution concepts is meaningful.

The strong Nash equilibrium concept is commonly criticized as too demanding
because it allows for unlimited private communication among the players. Moreover,
in many games, a strong Nash equilibrium does not exist. For these reasons, among
others, relaxations have been proposed. In this paper, in addition to the strong Nash
equilibrium, we study a relaxation called k-strong Nash equilibrium. In an n-player
game, a k-strong Nash equilibrium is a Nash equilibrium where no coalition of k
or fewer players can deviate so that all its members strictly benefit (Andelman et al,
2009). The rationale is that in many practical situations only small coalitions can be
formed, for example in a network that connects the players. Another relaxation is
coalition-proof Nash equilibrium, which is a Nash equilibrium that is resilient against
those coalitional deviations that are self-enforcing; coalition-proof Nash equilibria
can be Pareto inefficient (Bernheim et al, 1987, Table 4). Another generalization of
strong Nash equilibrium is strong correlated equilibrium, in which the presence of a
correlating device allows players to use correlated strategies (Einy and Peleg, 1995).
Similarly, in Milgrom and Roberts (1996), coalitions that can jointly deviate are also
allowed to correlate their mixed strategies in the first place. However, none of these
relaxations guarantee existence in general finite games.

Since strong Nash equilibrium is an appealing solution concept and it may not
exist, a crucial question is whether or not a given game admits such an equilibrium
(Aumann, 1959; Conitzer and Sandholm, 2008); Nessah and Tian (2014) give ex-
istence conditions for continuous convex games. In this paper, we show that, in the
space of games with a given finite number of players and strategies for each player,
the set of games with a strong Nash equilibrium where at least one player randomizes
over at least two pure strategies has measure zero. Dubey (1986) considers generic
games with smooth payoff functions, and shows that interior Nash equilibria are gener-
ically not Pareto efficient and therefore not “super strong” in our terminology, called
“strong” by Dubey. He notes that, as a consequence, super strong Nash equilibria
of finite games exist generically only in pure strategies. Our results are similar, but
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apply to strong Nash equilibria, and are proved with direct geometric arguments about
mixed strategies.

Most of our study concerns two-player games. We give a precise description
of games that admit strong and super strong Nash equilibria. For two players, the
payoff vectors are points in two-dimensional space. We show that in a strong Nash
equilibrium in mixed strategies, the payoff vectors in the support of the equilibrium
lie on a straight line which has negative slope or is vertical or horizontal. If that
line has negative slope, then the game restricted to the support of the equilibrium is
strictly competitive (and therefore, via a positive-affine change of payoffs, equivalent
to a zero-sum game, see Adler et al, 2009). If the line is vertical or horizontal, then in
the equilibrium support one player is indifferent among all actions.

For games with three or more players, we strengthen the result by Dubey (1986) by
showing that the set of games that have a 2-strong Nash equilibrium such that at least
one player randomizes over at least two pure strategies has measure zero. Moreover,
we show that these games can have strong and super strong Nash equilibria in which
the game restricted to the support of the equilibrium may contain outcomes that are
strictly Pareto dominated; this is significantly different to the two-player case.

2 Games with two players

We always consider finite games with a fixed number of players and strategies per
player. In this section, we consider two-player games, where player 1 has m pure
strategies, always denoted by i = 1, . . . ,m, and player 2 has n pure strategies j =
1, . . . , n. This defines an m × n bimatrix game (A, B) with payoff pairs (ai j, bi j) for
each row i and column j. Mixed strategies of player 1 and 2 are denoted by letters x
and y with mixed strategy probabilities xi and yj , respectively.

All vectors are column vectors. The all-zero vector is denoted by 0m in Rm and by
0n in Rn. Similarly, the all-one vector is denoted by 1m or 1n . The ith unit vector (of
any dimension) that has component 1 in row i and zeros otherwise is denoted by ei .
Inequalities between vectors like x ≥ 0m or x > 0m hold between all components.
The transpose of a column vector x is the row vector x>. Scalars are treated like 1× 1
matrices in matrix multiplication, and are therefore multiplied to the right to column
vectors and to the left to row vectors. We sometimes write pairs in R2 as row vectors
(a, b).

For definiteness, we recall the notions of strong, super strong, and k-strong Nash
equilibrium.

Definition 1 ANash equilibrium is called strong if no coalition of players can deviate
from their mixed strategies so that all members of the coalition strictly benefit. It is
called super strong if no coalition of players can deviate so that all members weakly
benefit, and at least one member strictly benefits. If either property holds for all
coalitions with up to k members, then the equilibrium is called k-strong or k-super-
strong, respectively.

Thus, 1-strong equilibria are just Nash equilibria. Strong equilibria were intro-
duced by Aumann (1959). The terminology “super strong” is due to Rozenfeld (2007),



4 Eleonora Braggion et al.

called “strong” by Dubey (1986). The property of super strong equilibriummeans that
for any coalition of players, the payoffs to the coalition members are Pareto optimal.

We first consider fully mixed equilibria. These are equilibria with full support,
that is, every pure strategy is played with positive probability.

Lemma 1 Consider a fully mixed Nash equilibrium (x, y) of (A, B) where the payoffs
in A and B are shifted (by adding a constant to all payoffs in A, and another constant
to all payoffs in B) so that both equilibrium payoffs are zero. Then

Ay = 0m, x>B = 0>n. (1)

Suppose (x, y) is super strong (that is, the equilibrium payoffs are Pareto-optimal).
Then

By = 0m, x>A = 0>n. (2)
If (x, y) is strong then at least one of the conditions (2) holds.

Proof We repeatedly use the simple observation that x > 0m and x>v = 0 for some
non-zero vector v inRm imply that v has at least one positive (and at least one negative)
component.

Condition (1) holds by the best response condition for Nash equilibria because
the equilibrium has full support. In particular, Ay = 0m implies that any strategy of
player 1 is a best response to y.

We now consider the players’ own expected payoffs. Suppose By , 0m . Then
(By)i > 0 for some i because x>(By) = 0. Therefore, player 1 can help player 2 by
playing the pure strategy i, given by the ith unit vector ei in Rm. Then e>i Ay = 0
and e>i By = (By)i > 0, so player 1 benefits weakly and player 2 benefits strictly by
the change from (x, y) to (ei, y). Hence (x, y) is not super strong. The same applies
if x>A , 0>m and therefore (x>A)j > 0 for some j where player 2 helps player 1 by
playing j. This shows that (2) holds if (x, y) is super strong.

Suppose (x, y) is strong and neither condition in (2) holds. We show that the
players can change to a mixed strategy pair (x̂, ŷ) so that both players strictly benefit,
a contradiction. As before, consider pure strategies (unit vectors) ei in Rm and ej in
Rn so that (By)i > 0 and (x>A)j > 0. For δ and ε in R let

x̂ = x(1 − δ) + ei δ , ŷ = y(1 − ε) + ej ε (3)

which for sufficiently small |δ | and |ε | are mixed strategies because, for example if
δ < 0, we have xi > 0 and xk < 1 for k , i. Then

x̂>Aŷ = x̂>Ay(1 − ε) + x̂>A ej ε

= 0 + ((1 − δ)x>A ej + δ e>i A ej)ε

= ((1 − δ)(x>A)j + δ ai j)ε

= ((x>A)j + δ(ai j − (x>A)j))ε

(4)

which for sufficiently small |δ | is positive for any ε > 0. Similarly,

x̂>B ŷ = (1 − δ)x>B ŷ + δ ei B ŷ

= δ eiB(y(1 − ε) + ejε)

= δ((By)i + (bi j − (By)i)ε)

(5)
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which for sufficiently small |ε | is positive for any δ > 0. So both players strictly benefit
for sufficiently small positive δ and ε, as claimed.

As will be used later, note that if (By)i < 0, then in the same manner player 1 can
improve player 2’s payoff by reducing the mixed strategy probability xi by choosing
δ < 0 in (3) and (5). �

Lemma 1 raises the question if (x, y) can be a strong equilibrium if only one
of the conditions (2) hold. According to the following lemma, this is only possible
when one player has a constant payoff matrix. Then any Nash equilibrium is trivially
strong because the coalition of both players cannot deviate so that both players strictly
benefit.
Lemma 2 Consider a fully mixed Nash equilibrium (x, y) of (A, B) with equilibrium
payoffs (0, 0) so that (1) holds, let

x>A = 0>n , By , 0m , (6)

and let (x, y) be a strong equilibrium. Then A is the all-zero matrix.

Proof Let i be any pure strategy of player 1 and (By)i , 0. We claim the ith row e>i A
of A is the zero row 0n . Suppose otherwise that ai j , 0 for some j. Consider x̂ and ŷ

as in (3). Then (4) and x>A = 0>n imply

x̂>Aŷ = δ ai j ε . (7)

We choose |δ | and |ε | small enough with δ of the same sign as (By)i so that x̂>B ŷ > 0
in (5), and ε of the same sign as δ ai j so that x̂>Aŷ > 0 in (7). Then both players
strictly benefit by playing (x̂, ŷ), that is, (x, y) is not strong, which proves the claim.

Hence, if (By)i , 0 for all i, then A is the all-zero matrix. It remains to consider
the case where By , 0m and By has some zero component. Let, say, (By)1 > 0
and (By)i = 0 for some i, say i = 2. Suppose that e>2 A , 0n , with a2j > 0 for
some column j, which exists because (e>2 A)y = e>2 (Ay) = 0. We again show that then
(x, y) is not strong, by letting player 1 help player 2 by playing the first two rows, and
player 2 increasing yj . Let

x̂ = e1
1
2 + e2

1
2 , ŷ = y(1 − ε) + ej ε . (8)

Then, using Ay = 0m and e>1 A = 0n (because (By)1 > 0),

x̂>Aŷ = x̂>Ay(1 − ε) + x̂>A ej ε

= ( 12 e>1 A ej + 1
2 e>2 A ej) ε

= 1
2 a2j ε

(9)

and, using e>1 By = (By)1 > 0 and e>2 By = (By)2 = 0 ,

x̂>B ŷ = ( 12 e>1 B + 1
2 e>2 B)(y(1 − ε) + ej ε)

= 1
2
(
e>1 By(1 − ε) + e>1 Bej ε + e>2 Bej ε

)
= 1

2
(
(By)1 + [b1j + b2j − (By)1] ε

) (10)

which for small enough positive ε is positive, as well as x̂>Aŷ in (9), so that both
players benefit strictly. This shows the desired contradiction when A has any non-zero
row. So A is the all-zero matrix as claimed. �
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Hence, for a fully mixed strong equilibrium (x, y) of a bimatrix game (A, B) with
non-constant payoff matrices, (2) holds.

In preparation for Theorem 1 below we need the following lemma, which is about
points in the plane that have the origin in the interior of their convex hull.

Lemma 3 Consider points u1, . . . , us in R2, not all on a line through the origin (0, 0),
and positive α1, . . . , αs ∈ R with α1 + · · ·+ αs = 1 so that α1 u1 + · · ·+ αs us = (0, 0).
Then there is some ε > 0 so that (ε, ε) is the convex combination of only one or two
of these points.

Proof Let C be the convex hull of the points u1, . . . , us . Because αj > 0 for all j, the
origin (0, 0) belongs to the relative interior of C, which is the interior of C because
by assumption C is not a line segment. Let ε = max{ t | (t, t) ∈ C}, where ε > 0.
Clearly (ε, ε) belongs to the boundary of C, which is a polygon, and is therefore either
a vertex or on an edge of C, which proves the claim. �

Theorem 1 Let (x, y) be a fully mixed strong Nash equilibrium of (A, B) with equi-
librium payoffs (0, 0), where neither A nor B is a constant matrix. Then for all i, j, the
pairs (ai j, bi j) in R2 lie on a line with negative slope −λ through the origin, for some
λ > 0. That is, bi j = −λai j for all i, j, and the game (λA, B) is zero-sum.

Proof By Lemmas 1 and 2, conditions (1) and (2) hold. Consider the pairs ui j =
(ai j, bi j) in R2, arranged in an m×n matrix in the same way as A and B. We first show
that any two points ui j and uil in the same row i are on a line through the origin, that
is, are linearly dependent. If not, then e>i Ay = 0 and e>i By = 0 by (1) and (2) with
y > 0n , so that Lemma 3 applied to the points ui1, . . . , uin shows that (ε, ε) for some
ε > 0 is a convex combination of ui j and uil , say, which defines a mixed strategy ŷ

that mixes columns j and l. Together with the pure strategy i of player 1, it gives the
positive payoffs (e>i Aŷ, e>i B ŷ) = (ε, ε) for both players which shows that (x, y) is not
a strong Nash equilibrium. Similarly, any two points ui j and uk j in the same column
j are linearly dependent.

Next, suppose that not all the points ui j are on a single line through the origin.
Because (x>Ay, x>By) = (0, 0) and x > 0m and y > 0n , the origin is a convex
combination of these points ui j with the positive coefficients xiyj , and we again apply
Lemma 3. Then

(ε, ε) = (1 − β) ui j + βukl (11)

with ε > 0 for some i, j, k, l and β ∈ [0, 1]. If ui j > (0, 0) or ukl > (0, 0), then both
players obtain positive payoffs by playing (i, j) or (k, l), so this is not the case, and
0 < β < 1. Hence, the two points ui j and ukl are in different quadrants ofR2 and not in
the strictly positive quadrant, and the line through them does not contain (0, 0) because
it contains (ε, ε). (Observe that ai jbi j ≤ 0 and aklbkl ≤ 0, and that this sign pattern
would be preserved if (ai j, bi j) and (akl, bkl) were scalar multiples of each other and
would therefore apply to (1− β)(ai j, bi j)+ β(akl, bkl)which contradicts (11).) That is,
ui j and ukl are linearly independent, where necessarily i , k and j , l. This implies
that uil = uk j = (0, 0) because otherwise both ui j and ukl would be scalar multiples
of uil or uk j . Then the mixed strategies x̂ = ei(1 − β) + ek β and ŷ = ej 1

2 + el 1
2 give
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expected payoffs (x̂>Aŷ, x̂>B ŷ) = ( ε2 ,
ε
2 ), which again shows that (x, y) is not a strong

Nash equilibrium.
So all pairs ui j = (ai j, bi j) inR2 lie on a line through the origin. This line is neither

vertical nor horizontal since neither A nor B is a constant matrix, and it cannot have
positive slope because otherwise there would be at least one point ui j > (0, 0) and
therefore (x, y) would not be a strong Nash equilibrium. So the slope of the line is
negative, as claimed. �

We explicitly observe that as a consequence of Theorem 1, in a two-player game
where no player is indifferent over all outcomes, a strong Nash equilibrium in fully
mixed strategies is automatically a super strong Nash equilibrium.

By restricting Theorem 1 to the support of a mixed equilibrium, we obtain the
following theorem as a corollary. It deals with the case of strong Nash equilibria where
at least one player plays a mixed, not pure, strategy.

Theorem 2 Let (A, B) be a bimatrix game. Consider a strong Nash equilibrium such
that at least one player plays a mixed, non-pure, strategy. Then either the equilibrium
is super strong and all payoff pairs of (A, B) restricted to the equilibrium support lie
on a line with negative slope, or one player is indifferent among all outcomes in the
equilibrium support.

3 Games with more than two players

In this section we consider gameswithmore than two players. Consider an equilibrium
where at least one of the players, say player 1, plays a mixed strategy that is not pure.
If there is a further player who also mixes, let this be player 2; if apart from player 1
all players play a pure strategy, let any of them be player 2. Fix the strategies of the
remaining players (at z, say) as in the considered equilibrium. Then this defines a
two-player game between players 1 and 2. If the equilibrium is 2-strong, then the two
players cannot both strictly benefit with a joint deviation. By Theorem 1 (or Lemma 2),
the payoffs to the two players induced by z have to be zero-sum after suitable scaling
(or all-zero for one player). The following theorem asserts that this is not a generic
property in the following sense: for a sufficiently small full-dimensional neighborhood
(ball) around the game, considered as a point in the payoff space, and a continuous
probability distribution on that ball for choosing a nearby game, the probability that
the nearby Nash equilibrium of the perturbed game is 2-strong is zero.

Theorem 3 In the payoff space of games with a fixed finite number of players with
given finite numbers of pure strategies, the property that a Nash equilibrium where at
least one player plays a mixed strategy is 2-strong is not generic.

Proof Consider a 2-strong Nash equilibrium of the game where at least one player
plays a mixed, non-pure strategy. If only one such player exists, then his payoffs in his
support (for the pure strategies of the other players) have to be equal, which is not a
generic property. (This covers also games with only one player.)

Hence, consider two players, say player 1 and 2, who use non-pure mixed strate-
gies. Discard all pure strategies of player 1 and 2 not in the support of these mixed
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strategies, which we call x and y, now with full support, and let z be the profile of (in
general mixed) strategies of the remaining players in this equilibrium (x, y, z). This
defines payoff matrices A(z) and B(z) to player 1 and player 2, which are multilinear
expressions in the mixed strategy probabilities in z and the payoffs to player 1 and 2
for the pure strategy profiles in the support of (x, y, z).

Consider independent small Gaussian perturbations around each payoff of the
game, truncated and re-scaled to an ε-ball around the given game (as a point in the
payoff space); Gaussian noise is useful because the sum of independent Gaussian
distributions is again Gaussian, which we will use shortly. If the game is generic,
then it has only finitely Nash equilibria, and the Nash equilibrium is an isolated
point in the mixed strategy space which does not disappear when the payoffs are
slightly perturbed (see Govindan and Wilson (2001) and references therein). Hence,
for sufficiently small positive ε there is a unique equilibrium (x̂, ŷ, ẑ) nearby (with the
same support as x, y, z) for every game in the ε-ball. Moreover, the payoffs and their
perturbations for pure strategy profiles outside the support of (x, y, z) do not matter.

By Theorem 1 (or Lemma 2), the payoffs in (A(z), B(z)), after suitable scaling,
have to be zero-sum (or all-zero for one player). This seems clearly like a nongeneric
property (and is obviously so if 1 and 2 are the only players), but the Nash equilib-
rium (x̂, ŷ, ẑ) varies with the perturbation (via the equations (1) in the best-response
condition), which may somehow preserve also the property of being 2-strong.

The following argument shows that it does not. Let the supports of x and y be
I = {1, . . . ,m} and J = {1, . . . , n}, respectively. Let K be the set of profiles of pure
strategies of the remaining players in the support of z, with corresponding payoffs ai jk
and bi jk to player 1 and 2 in the original game, for any (i, j, k) ∈ I× J×K . We now add
additional small independent Gaussian noise δj to ai jk and εi to bi jk . The resulting
noise is still Gaussian (assuming we do the truncation to the ε-ball later). This changes
the entries (ai j(z), bi j(z)) of (A(z), B(z)) to (ai j(z)+δj, bi j(z)+εi), defining a perturbed
bimatrix game (A′, B′). Adding any constants δj to the columns of the row player and
εi to the rows of the column player leaves the Nash equilibrium (x̂, ŷ) of (A′, B′)
unchanged. However, it is no longer 2-strong, because the payoff pairs no longer
lie on a line (with probability one). This is most easily seen because the necessary
conditions (2) change to B′ ŷ = (ε1, ε2, . . . , εm)

> and x̂>A′ = (δ1, δ2, . . . , δn), which
(with probability one) for m ≥ 2 and n ≥ 2 are no longer constant vectors.

Hence, being a 2-strong Nash equilibrium is a not a generic property, as claimed.
�

Correspondingly, the stronger conditions for a Nash equilibrium to be k-strong for
k ≥ 3, or k-super-strong for k ≥ 2, are nongeneric as well.

We end this section with two examples of simple three-player games with two pure
strategies per player. In the first game, a strong Nash equilibrium exists in fully mixed
strategies. As a consequence, every outcome of the game is played, at the equilibrium,
with positive probability. Among these outcomes, one is Pareto dominated (by the
strong equilibrium). This shows a very different situation compared to the two-player
case, where for a strong Nash equilibrium in fully mixed strategies, all outcomes are
Pareto efficient.
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Lemma 4 Consider the following game with three players, where players 1 and 2
choose a row and column, respectively, of M1 and M2 , and player 3 chooses between
M1 and M2:

M1 =

(
(2, 0, 0) (0, 2, 0)
(0, 0, 2) (0, 0, 0)

)
, M2 =

(
(0, 0, 0) (0, 0, 2)
(0, 2, 0) (2, 0, 0)

)
.

Then the fully mixed strategy profile where each player plays ( 12,
1
2 ) is a super strong

Nash equilibrium with payoffs ( 12,
1
2,

1
2 ). These payoffs Pareto dominate the outcome

(0, 0, 0) which is in the support of the equilibrium.

Proof Consider an arbitrary mixed strategy profile with probabilities p, q, r for the
second strategy of players 1, 2, 3, respectively. We claim that the (fully) mixed NE
where p = q = r = 1

2 is super strong. To prove this, observe that for the grand
coalition, this means there is no p, q, r so that each player benefits at least weakly:
player 1,

2(1 − p)(1 − q)(1 − r) + 2pqr ≥
1
2
, (12)

player 2,

2(1 − p)q(1 − r) + 2p(1 − q)r ≥
1
2
, (13)

and player 3,

2p(1 − q)(1 − r) + 2(1 − p)qr ≥
1
2
, (14)

and at least one of them benefits strictly, that is, one of these inequalities is strict. The
sum of (12) and (13) states

2(1 − p)(1 − r) + 2pr ≥ 1 ,

that is, 2 − 2p − 2r + 4pr ≥ 1 or equivalently

1 − 2r ≥ 2p(1 − 2r). (15)

Similarly, the sum of (12) and (14) states 2(1 − q)(1 − r) + 2qr ≥ 1 or equivalently

1 − 2r ≥ 2q(1 − 2r) . (16)

The sum of (13) and (14) states 2(1− p)q + 2p(1− q) ≥ 1, that is, 2q + 2p− 4pq ≥ 1
which is equivalent to both

2q(1 − 2p) ≥ 1 − 2p (17)

and
2p(1 − 2q) ≥ 1 − 2q . (18)

Consider first a possible deviation of players 1 and 2 with player 3 staying fixed at
r = 1

2 . For this to be profitable for player 1 or player 2, one of (12) or (13) and therefore
(15) would have to be strict, which is false for r = 1

2 . Similarly, the coalition of players
1 and 3 when q = 1

2 cannot strictly benefit player 1 or 3 because then one of (12) or
(14) and therefore (16) would have to be strict, which is false for q = 1

2 . Finally, the
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coalition of players 2 and 3 when p = 1
2 cannot strictly benefit player 2 or 3 because

then one of (13) or (14) and therefore (17) would have to be strict, which is false for
p = 1

2 .
So no two-player coalition can profitably deviate, even when strictly benefiting

only one player.
For the grand coalition, there is no profitable deviation that strictly benefits at

least one player because, in essence, (15) and (16) imply that 1
2 − r , 1

2 − p, and 1
2 − q

have the same sign, whereas (17) and (18) imply that 1
2 − p and 1

2 − q have opposite
sign. In detail, consider (p, q, r) so that the inequalities (12), (13), (14) hold, and at
least one of them strictly as a benefit to the respective player. If this is player 1, then
(12) and therefore (15) and (16) hold strictly, which requires r , 1

2 . Divide both strict
inequalities by 2(1 − 2r), which gives 1

2 > p and 1
2 > q if 1

2 > r and 1
2 < p and 1

2 < q
if 1

2 < r . In the first case, (17) divided by the positive term 2(1 − 2p) implies q ≥ 1
2 ,

in the second case, q ≤ 1
2 , in both cases a contradiction.

Similarly, if player 2 strictly benefits and (13) holds strictly, then so does (15)
(hence, r , 1

2 ) and (17). Suppose 1
2 > r . As before, (15) holding strictly implies

1
2 > p and (17) holding strictly implies q > 1

2 , but (16) implies 1
2 ≥ q, a contradiction.

The reverse contradictory inequalities hold if 1
2 < r .

In the same manner, if player 3 strictly benefits and (14) holds strictly, then so
does (16) (so r , 1

2 ) and (18). Suppose
1
2 > r . As before, (16) holding strictly implies

1
2 > q and (18) holding strictly implies p > 1

2 , but (15) implies 1
2 ≥ p, a contradiction.

The reverse contradictory inequalities hold if 1
2 < r . �

In the second example instead we show that, even in simple cases, the notion of
k-strong equilibrium can be weaker that the notion of (k + 1)-strong equilibrium.

Lemma 5 Assume players 1 and 2 choose a row and column, respectively, of M1 and
M2 , and player 3 chooses between M1 and M2:

M1 =

(
(1,−1, 0) (−1, 1, 0)
(−1, 1, 0) (1,−1, 0)

)
, M2 =

(
(−2,−2,−2) (−2,−2,−2)
(−2,−2,−2) (1, 1, 1)

)
.

Then the strategy profile
(
( 12,

1
2 ), (

1
2,

1
2 ), (1, 0)

)
is a 2-super-strong Nash equilibrium

that is not a strong Nash equilibrium.

Proof Suppose player 3 plays (1, 0). Then the payoffs to player 1 and 2 in M1 define
a zero-sum “matching pennies” game with unique equilibrium strategies ( 12,

1
2 ) for

players 1 and 2, and payoff 0 to all players. Hence, these three strategies define a Nash
equilibrium because no player can profitably deviate. This strategy profile is also a
2-super-strong Nash equilibrium. If player 3’s strategy is fixed, then players 1 and 2
cannot jointly improve their payoffs because the game between them is zero-sum (and
their payoffs pairs lie on a line with negative slope). If player 1’s strategy is fixed at
( 12,

1
2 ), then irrespective of player 2’s strategy player 3 would receive negative expected

payoff by playing M2 with positive probability, and therefore player 3 continues to
play (1, 0), in which case both players always receive payoff zero and nobody can
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improve. This holds symmetrically when player 2’s strategy is fixed at ( 12,
1
2 ). This

shows that the strategy profile is 2-super-strong.
However, the coalition of all three players can profitably change to all players

playing their second strategy, with payoffs (1, 1, 1). �

For games with three or more players, a remaining open question is a suitable
characterization of games that admit a strong Nash equilibrium.
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