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Abstract 

This paper integrates and extends the theory 'of the decomposition of multiattribute 
expected-utility functions based on "utility independence". In a preliminary section, the 
standard decision model of expected utility is briefly discussed, including the fact that the 
decision maker's preference for lotteries with two outcomes determines the utility function 
uniquely. The decomposition possibilities of a utility function are captured by the concept of 
autonomous sets of attributes, an "affine separability" of some kind known as "generalized 
utility independence". Overlapping autonomous sets lead to biaffine-associative, i.e. multi- 
plicative or additive decompositions. The multiplicative representation shows that autonomy 
has stronger closure properties than utility independence, for instance with respect to 
set-theoretic difference. Autonomy is also a concept with a wider scope since it applies to the 
decomposition of Boolean functions, games and a number of other topics in combinatorial 
optimization. This relationship to the well-known theory of substitution decomposition in 
discrete mathematics also reveals a kind of "discrete core" behind the decomposition of 
utility functions. The entirety of autonomous sets can be represented by a compact data 
structure, the so-called composition tree, Which frequently corresponds to a natural hierarchy 
of attributes. Multiplieative/additive or multi-afflne functions correspond to the hierarchy 
steps. The known representation of multi-affine functions is shown to be given by a Moebius 
inversion formula. The entire approach has the advantage that it allows the application of 
more sophisticated representation methods on a detailed level, whereas it employs only finite 
set theory and arithmetic on the main levels in the hierarchy. 
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1. Motivat ion 

This paper  presents  the decompos i t ion  of  mul t ia t t r ibute  expected-uti l i ty func-  
t ions based on  the concept  o f  (generaliTed) uti l i ty independence .  This app roach  
has been k n o w n  in the l i terature for  more  than  a decade  (cL Keeney  and  Rai f fa  
[12] and references). The  presenta t ion given here  is comprehens ive  and  largely 
self-contained, and  provides a n u m b e r  of  results and  simplifications in addi t ion  
to those already known,  as indicated in the abstract .  The  ma in  methodologica l  
improvement  is the "composit ion t ree"  ( in t roduced  by  G o r m a n  [10] for  value 
functions),  a compac t  data  structure describing a unique " t o p - d o w n "  iterative 

© LC. Baltzer A.G. Scientific Publishing Company 



162 B. yon Stengel / Decomposition of utility functions 

decomposition of the given function (which is more systematic than the "utility 
independent chains" suggested in [12, sect. 6.9]). The underlying independence 
condition asserts an "affine separability" of a set of coordinates (i.e. attributes) of 
the "outcome" space that is the domain of the utility function. This condition is 
invariant under invertible affine transformations, which in turn can therefore be 
regarded as a kind of "isomorphisms" [24, p. 468]; intuitively, this means that 
(conditional) utility functions can always be suitably "scaled", which simplifies a 
number of representation theorems. The use of the conditions essentially involves 
operations on finite sets (of coordinates) and these isomorphisms, as indicated in 
sect. 4. The composition tree can be regarded as a suitable representation for the 
resulting set-theoretic structure. 

Since the decomposition theorems of this approach rely only on conditions 
involving finite sets and arithmetical expressions, discrete representations of 
parameters (like attribute levels) can be freely used. This is in contrast to 
theorems about value functions that typically rely on topological conditions (like 
connectedness of domains, requiring the use of real intervals); an example is the 
additive decomposition of a value function that holds if the attributes are 
"mutually preferentially independent" (cf. [12, p. 105] or Gorman [10, p. 382]). 
The approach is therefore more robust as far as possible misinterpretations of its 
assumptions are concerned. Also, the involved (positive-) affine transformations 
are trivial in comparison to the (usually necessary) monotonical transformations 
for value functions. The conceptually easier theory presented here may therefore 
even be used for modelling decisions under certainty (with the interpretation of 
"measurable value functions", cf. Dyer and Sarin [5]). This point is further 
promoted by Miyamoto [14], who argues that functions that are affine in a 
suitably chosen real "scale" for each attribute are hkely to be found in quite a 
number of measurement settings (like that of differences as in [5]). The theory is 
also an alternative to the widely used additive models since the possible introduc- 
tion of a hierarchy and the use of multiplicative and (small-dimensional) multi-af- 
fine functions aUo.ws the decision maker to model a greater variety of applied 
decision problems and/or  to attain (with reasonable effort) a higher level of 
precision in his modelling. 

Since the approach is compatible with discrete representations (and also 
related to decomposition theories for discrete structures, cf. the beginning of sect. 
4), it seems particularly suitable for the use of utility functions in automated 
domains, like decision support systems. This holds in particular for the data 
structure given by the composition tree. This data structure can serve as a model 
to systematically store and aggregate all the information gathered during an 
interactive construction of a utility function, as specified in sect. 5. A paper with 
details on algorithmic aspects of the decomposition of utility functions is in 
preparation. 
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2. The decision model of expected utility 

In this section, we will briefly recapture the decision model in which a utility 
function reflects the decision maker's preferences and risk behavior. The decision 
situation is thereby understood to be given by a set of decision alternatives (i.e. 
possible actions, including that of not doing anything), one of which is to be 
selected. It is assumed that the choice is determined by the decision maker's 
preference for outcomes of the decision. This preference can be regarded as a 
binary relation given by the (hypothetical) choice between any two actions or 
outcomes. If the consequences of the decision are certain, actions and outcomes 
can be identified. The concept of a value function applies to this situation. This is 
a real-valued function u defined on outcomes such that u(x) >1 u(y) iff outcome 
x is (not necessarily strictly) preferred to outcome y; consequently, a most 
preferred action is one with highest value of the value function. Obviously, a 
value function u can be replaced by a function G(u(x)) of x, where G is strictly 
increasing on the range of u. Apart from such strictly increasing transformations, 
a value function is unique. 

The choice might however be given among actions with uncertain conse- 
quences. Then a frequently used approach is that of identifying each decision 
alternative with a probability distribution on the set of outcomes; one-point 
measures thereby represent safe choices. For this model, a utility function (also 
called "von  Neumann-Morgenstern utility function") is a real-valued function 
defined on outcomes that is "weighted" with the occurring probabilities to 
represent the preference for alternatives. In other words, the expected value of the 
utility function expresses the decision maker's preference for a probability 
distribution on outcomes. This implies that an (implicit) preference for gambles, 
i.e. a risk behavior, will be specified explicitly via the utility function. 

Of course, a utility function can only represent a preference relation satisfying 
certain constraints, which however do not involve any preconceptions about 
"uti l i ty" as a psychological mechanism. Certain weak consistency requirements 
about the decision maker's preference and risk behavior suffice to guarantee the 
existence of a real-valued function that is a utility function as described above, 
whose values may permit some interpretation as "personal utility". These require- 
ments are known as the so-called "axioms of rationality" by yon Neumann and 
Morgenstern [21], which constitute one of the fundamental contributions to 
decision theory. A major condition of these is that the preference is a so-called 
total pre-order, that is, a binary relation that is reflexive, transitive and total; any 
real-valued (utility) function necessarily induces such a preference relation. Prac- 
tically, any preference that is not a total pre-order is inconsistent in the sense that 
in the relevant cases, e.g. for incomparable alternatives (if the preference relation 
is not total), a choice can not be uttered and is thus arbitrary, which results in 
factual indifference. Nevertheless, questionaires directed to the decision maker 
may possibly reveal inconsistencies in his preference structure. It is assumed here 
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that the decision maker is interested in correcting such inconsistencies, and 
perhaps clarifying his preferences with the aid of a decision analysis. In practice, 
decision makers calling for decision support generally strive for consistency (cf. 
[11, p. 157], [12, pp. 7-19], [19, pp. 81ff]). A second important consistency 
requirement involves the decision maker's preference for lotteries (or gambles) of 
outcomes. If x and y are the two possible outcomes of a lottery, where x will 
occur with probability p, 0 ~< p ~< 1, let this lottery be denoted by xpy. (By finite 
iteration, all lotteries (with finitely many outcomes) can thus be obtained if y is 
thereby permitted to be a lottery itself.) The so-called "independence of irrele- 
vant alternatives" then states that if z is any lottery and p a nonzero probability, 
xpz is preferred to ypz if outcome x is preferred to outcome y. It is reasonable to 
assume this axiom as well (cf. Raiffa [17, sect. 4.9]). In conjunction with the 
requirement that the preference relation is a total pre-order, this condition 
essentially guarantees the existence of a utility function. There are other, not 
mentioned conditions of rather technical interest (cf. [21, p. 26]), in particular if 
probability distributions besides finite-discrete ones are admitted (e.g. for assert- 
ing integrability of the utility function; cf. Fishburn [7, th. 10.3]). 

The "axioms of rationality" assume that the decision maker's preference 
relation is defined for all possible lotteries of outcomes. As concerns testing these 
axioms, it might be somewhat hard for the decision maker to grasp the meaning 
of such complex prospects. Nevertheless, test choices between some kinds of 
gambles are clearly necessary in order to get information on a risk behavior (cf. 
Wilhelm [24, p. 481]). If the preference is already assumed to be consistent, 
however, lotteries with only two possible outcomes suffice for establishing a 
utility function uniquely, except a trivial "scaling", i.e. a choice of scale and 
origin, as the following lemma asserts. (Therefore, any behavioral concept given 
by a property of the utility function, e.g. that of "uti l i ty independence" below, 
can also be expressed in terms of choices among two-outcomes lotteries.) In the 
literature, the uniqueness of the utility function up to positive-affine transforma- 
tions is usually asserted under the assumption of (full) convexity of the regarded 
set of probability distributions (e.g. [21], [6, p. 61], [24, prop. 3]). Debreu [4, p. 
17f] shows that a continuous utility function on a connected domain is already 
uniquely determined by the decision maker's preference for even-chance lotteries 
with two sure outcomes. The next lemma, however, employs two-outcome lot- 
teries with arbitrary probabilities in order to avoid topological conditions. 

(1.) LEMMA 
Let the preference relation be defined for all outcomes x, y and gambles xpy 

with 0 ~ p ~ 1, and let it be represented by a utility function u, in the sense that 

(*) fu dP >1 fu dQ iff P is (not necessarily strictly) preferred to Q 

holds for any P, Q taken from a set of probability distributions on outcomes that 
includes these one- and two-point measures. Then v is another such utility 
function iff v = a- u + b for some suitable reals a,b, a > O. 
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Proof 
(A similar proof is given in Wilhelm [24, p. 489f]). Clearly, if u has the 

property ( * ), so does a .  u + b if a > 0, since the integral is a linear functional. 
On the other hand let (*)  hold also with v instead of u. This and the assumptions 
imply for 0 ~ p  ~< 1 and any outcomes x, y, z: 

u ( x )  > u ( y )  iff v ( x )  > v ( y ) ,  

u ( x )  = u ( y )  iff v ( x )  = v ( y ) ,  

p .  u ( x )  + (1 - p ) .  u ( y )  = u ( z )  iff p . v ( x )  + (1 - p ) . v ( y )  = v ( z )  

(note that p .  u (x )  + (1 - p ) .  u ( y )  is the expected value fu  d P  of u with respect 
to P = xpy ). 
Let i and o be outcomes such that u(i)  > u(o) (if u is constant, so is v; in this 
case let a -- 1, b = v - u). Then the system of equations 

a . u ( i ) + b = v ( i )  

a . u ( o ) + b = v ( o )  
has a unique solution in a, b, where a > 0 by the above. For  another outcome z, 
for instance, let 

u(i) u(z) >1 u(o) 
hold. Then u(z)  = p .  u( i )  + (1 - p ) .  u(o)  for some p,  0 ~<p ~< 1, and therefore 
(s.a.) 

o(z) =p.  v(i) + (1 - p ) .  v(o), 
thus v ( z ) = p . [ a . u ( i ) + b ] + ( 1 - p ) . [ a . u ( o ) + b ] = a . u ( z ) + b .  Similarly, if 
u(z)  > u(i),  let u(i)  = p .  u(z)  + (1 - p ) .  u(o)  for some p, 0 ~<p ~< 1; since p 4:0 
holds because of u( i ) 4= u( o ), one can conclude v( z ) = a . u( z ) + b analogously, 
and in the same fashion for u( o) > u( z). Thus for all z, v( z)  = a . u( z) + b. (End 
of proof.) 

If the presented model is accepted for a decision analysis, there is the practical 
need to determine and to represent the set of decision alternatives, the set of 
outcomes, the probability distributions on outcomes associated with the alterna- 
tives, and the utility function. We will focus on aspects of constructing the utility 
function. The outcomes can usually be represented by vectors of attribute levels, 
which for each attribute can, for example, be real values or elements of a given 
finite set, e.g. to indicate how a particular sub-goal of the decision is met. (The 
attributes must usually be chosen judiciously to model the decision situation 
successfully, cf. Keeney and Raiffa [12, pp. 50if]. In fact, this is about the most 
essential part  in any practical work on decision support. In trying to organize this 
task, focusing on value aspects seems to be advantageous, cf. Keeney [11].) The 
utility function then takes vectors as a~guments. The task of constructing it is 
substantially alleviated using "decomposit ion" methods, in particular the one 
discussed in the following (for others, cf. the overview in Farquhar  [6]). 
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3. The concept of utility independence 

Constructing a utility function is a hard task for the decision maker,  if the 
dependency on the different attribute levels has to be  observed for all attributes 
at the same time. This task is conceptually even more difficult if lotteries are 
involved [12, p. 311]. The decomposition approach therefore aims at testing 
whether a utility function can be expressed in a simple manner  as a kind of 
aggregation in terms of functions of fewer variables. Each of these functions 
should only involve a fraction of the attributes and thereby express a restricted 
and conceptually easier dependency of the decision maker 's  preference on the 
achievement of attribute levels. The concept of "uti l i ty independence" applies to 
sets of attributes and asks for a unique preference and risk behavior concerning 
these attributes, independent of the levels of the other ones. In order to define 
this concept technically, we introduce some conventions, as follows. 

Let M be a set of names for the attributes, or more generally just a finite set; 
an element of M shall be called coordinate. S i shall be a given set representing 
the possible levels for attribute i ~ M (e.g. a real interval for the possible amounts 
of money if i represents "costs"). For  a set A of coordinates, let S A = I-I~ e A S~ be 
the space spanned by the "coordinate axes" S,. corresponding to the coordinates i 
in A. For  a vector x ~ S M, let x A be the subvector consisting of the  components  
corresponding to A _c M, i.e. the projection of x onto S A. By x~ we denote, for the 
sake of simplicity, the-projection x{~} of x on StJ}. (Note  that x~ is the empty 
vector, which can be considered as the identity element of pairing, i.e. (y ,  x~) = y.) 
In  summary,  let the following assertions generally hold. 

(2.) CONVENTIONS 
Let M be a non-empty finite set, and S i be a non-empty  set for each i ~ M. 

For  A _ M, let S A = I-IiEASi, and for x ~ SM, let xA = (xi)i~A, where x = x M. 

We assume that a utility function exists, given (according to the preceding 
conventions) as a function u: SM ~ R. "Uti l i ty  independence" is then defined as 
follows. 

(3.) DEFINITION 
Let  u: S M ~ R be a utility function. Then A is called utility independent (with 

respect to u), with corresponding sub-utility function h, if A is a non-empty  set of 
coordinates (i.e. ~ ~ A c_ M),  B -- M - A, h: SA ~ R,  and there are some suitable 
functions a, b: SB ~ R,  such that the following assertions hold: 

(a) a ( y ) > O  fo ra l l  y e S s ,  

(b) = + b ( x , )  for all x e 
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Utility independence of a set A of attributes can be interpreted as follows (cf. 
also Keeney and Raiffa [12, sect. 5.2]; for a formal characterization in terms of 
the preference relation the utility function represents, cf., for instance, [6, p. 66], 
or [14, p. 166]). Let B be the set of the remaining attributes, i.e. B = M - A .  A 
vector x of attribute levels (x  ~ SM) splits into the two subvectors x,4, xs; for 
simplicity of notation, we assume xA is the "first half" of x, i.e. x = (xA, xB). If 
x is varied in such a way that x 8 is always the same subvector b ~ Ss, the 
corresponding values u(xA, b) of the utility function express the decision maker's 
choice in dependence on the levels of the attributes in A, i.e, of XA- In view of 
lemrna (1.), the assertions (3.a) and (3.b) then state that this restricted preference 
and risk behavior (which can be tested with two-outcome lotteries) is the same 
regardless of the choice b for x B, and can be described by the sub-utility function 
h. This sub-utility function is therefore constructed as a by-product if A is 
successfully tested as utility independent (but not necessarily the functions a, b 
in (3.b)). Utility independence is frequently observed, or in practice is at least a 
good approximation of the decision maker's behavior (cf. Keeney and Raiffa [12, 
pp. 264ff, p. 370]). 

The notion of utility independence is in (3.) defined as a property of the utility 
function. Its practical importance is given by the fact that it expresses a certain 
behavior of the decision maker which can be tested before the utility function is 
completely known. The information that a set of attributes is utility independent 
can then in turn be used to conclude that the utility function has a specific 
representation, like (3.b), whose constituent parts (in (3.b), the functions a, h, b) 
can be more easily constructed than the utility function directly. Particularly 
useful is the information about several utility independent sets of attributes, 
above all, if these sets overlap. Using these conditions jointly, so-called multi- 
plicative/additive or multi-affine representations of the utility function hold, as 
discussed in the next sections. 

Subsequently, we will mathematically investigate the implications of utility 
independence with respect to a given utility function u. The "positive-affine 
separability" of u given by this concept can be weakened to an "affine separabil- 
ity" if the requirement (3.a) is dropped, without impairing the possible investiga- 
tions; in fact, the resulting theory is more coherent, as will be indicated. As 
concerns the behavioral interpretation, the notion defined by (3.) without condi- 
tion (3.a) is known as "generalized utility independence" (cf. Fishburn and 
Keeney [8], [9]). It includes the modified assertion of (3.a) given by " a ( y )  >/0 for 
y ~ SB", which defines a unique preference and risk behavior for the attributes in 
A, except a possible complete indifference. It might be practically relevant to 
consider this weaker condition. Also allowing for a ( y ) <  0 for some y ~ SB 
means a complete reversal of preferences. However, this case as a third (and only) 
additional possibility is probably rather tare; nevertheless, it might apply to some 
situations [9, p. 929]. 
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4. Autonomous sets of  coordinates 

In this and the next section, we will regard "aff ine  decompositions" of some 
given function of several variables, such as a utility function with several 
attributes. The underlying concept of "generalized utility independence" will 
thereby be called " 'autonomy" (cf. Mrhring and Radermacher [15] for a discus- 
sion of analogous concepts in a variety of applications concerning combinatorial 
optimization, relational systems, set systems and Boolean functions). Whenever 
appropriate, additional remarks and interpretations concerning the more special 
notion of utility independence will be made. 

An affine (sometimes also called linear) function is here understood as a 
real-valued function G defined on a subset T of R such that G ( t ) =  a.  t +  b 
holds for all t ~ T, for suitable reals a, b. If G is affine, it can be directly 
extended to an affine function R--* R; this extension is unique if the original 
domain T contains at least two elements. Obviously, if G is invertible, i.e. if 
a 4= 0, then G -a is affine, and so is the functional composition of two affine 
functions. A function of several variables is called affine in a variable if that 
variable takes real values and the function is affine Whenever the other variables 
are fixed. It is called multi-affine (or n-affine) if it is affine in each of its (n)  
variables. A variable of a function of one or more variables is called essential if 
the function actually depends on that variable. Without explicit notice, the 
variables of a function are always assumed to be essential. This can be done 
without loss of generality, since for a given function, a variable that is not 
essential can be dropped, and in the cases below where a function of several 
variables is defined in terms of others, all its variables must be essential, too. 

(4.) DEFINITION 
Given (2.), let f :  S M ~ R. Then A is called autonomous (with respect to f )  

with corresponding divisor h (of f ) ,  if J~ ~ A ___ M, B = M - A, h: SA ~ R,  and 
there is some function: g: R × Ss --* R that is affine in its first variable, such that 

f ( x )  = g ( h ( x A ) ,  xB) 

holds for all x ~ SM. 

M is always an autonomous set of coordinates with respect to f :  SM ~ R, with 
f itself as a corresponding divisor. However, there are generally no other trivial 
autonomous subsets of M, with the following exception: if a "coordinate  axis" Si 
has only two elements for some i ~ M, the singleton ( i}  is autonomous (Si must 
contain at least two elements, since otherwise xi would be an inessential variable 
of f ) .  This holds because in that case, the two elements of Si can be mapped by a 
suitable function h to two reals, e.g. 0 and 1, which in turn can be mapped to any 
given real values by an affine (but not necessarily strictly increasing) function. By 
this observation, parts of well-known decomposition theories for Boolean func- 
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tions (cf. e.g. Curtis [3], or [15]), or for more general functions of two-valued 
variables (like characteristic functions of cooperative n-person games, as in Shap- 
ley [20] and Megiddo [13]), turn out to be special cases of the "affine" de- 
composition theory based on definition (4.) presented here. These applications 
(for details cf. von Stengel [22], [23]) indicate that it can be useful in certain 
respects to study the concept of "autonomy" rather that o f"  utility independence", 
since it has a wider scope. 

If e, f :  S A ---> R, for some A ___ M, let e and f be called isomorphic if 
e ( y ) =  G(f(y) )  for Y~SA,  for some invertible affine function G: R--->R. 
According to the introductory remarks on affine functions, "is isomorphic to" is 
an equivalence relation. The following lemma states that this equivalence "pre- 
serves" in some sense the decompositions regarded here; it simplifies a number of 
proofs (in particular of lemmas 2, 3 in Miyamoto [14] about proper choices of 
"sequences of scales"). 

(5.) LEMMA 
Given (2.), let A be autonomous with respect to f; SM ~ R with a correspond- 

ing divisor h, and B = M - A. Then 
(a) H is a divisor of f corresponding to A iff h and H are isomorphic. 
(b) If F and f are isomorphic, then A is autonomous with respect to f ,  and h is 

a divisor of F. 
(c) If f ( x ) =  g(h(XA), xs), and g is affine in its first variable, then g is unique. 

Proof 
If h and H are isomorphic, H is obviously a divisor of f .  The converse follows 

from the observation that f itself, with the variables corresponding to B fixed at 
suitable values (such that the resulting function is not constant), is isomorphic to 
any divisor that corresponds to A. Assertion (b) is obvious, and (c) holds since an 
affine function is determined if only two different values for its argument are 
given. (End of proof.) 

The preceding lemma shows that the system of autonomous subsets of M with 
respect to a given function f :  S M ~ R characterizes the decomposition possibilities 
of f ,  or of any function isomorphic to f;  the possible corresponding divisors or 
functional representations as in (5.c) are then determined. We will demonstrate in 
sect. 5 that this system can be represented very succintly by a so-called "'composi- 
tion tree", using the fact that specific relationships hold between different 
autonomous sets. In doing so, we try to embed the present problem into the 
general framework discussed in [15]. Seen from this general point of view, certain 
properties of autonomy are needed in the present context. One such property is a 
kind of transitivity of autonomy, which we will indeed obtain in the following 
lemma that treats the case of two comparable autonomous sets. 
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(6.) LEMMA 
Let ~ 4~ B c A c M, and A be autonomous with respect to f :  S g ~ R with 

corresponding divisor h. Then B is autonomous with respect to f iff B is 
autonomous with respect to h. 

Proof 
The consideration is similar to that for (5.a) above. Note that by (5.b), the 

autonomy of B with respect to h does not depend on the choice of h. (End of 
proof.) 

Lemmas (5.) and (6.) hold correspondingly-by the same arguments-for  '" util- 
ity independent" instead of "autonomous",  if "isomorphic" is re-defined as 
"equal up to a (not only invertible, but) strictly increasing affine transformation", 
and if "divisor" is replaced by "sub-utility function". The so modified assertion 
(5.b) states the desirable property that utility independence does not depend on 
the particular choice of the utility function, which is unique only up to positive- 
affine transformations. A sub-utility function can also be arbitrarily scaled by 
(5.a). The statement corresponding to (6.) asserts that utility independence can be 
regarded within a natural hierarchy of attributes. In an application of that 
statement, A may be a large set of attributes (e.g. comprising the "'financial 
aspects" of the decision) that defines a main objective of the decision and is 
utility independent, and a subset of it (e.g. "maintenance costs") may correspond 
to a particular sub-objective that is "locally independent" and therefore utility 
independent, too (" via transitivity"; cf. also [12, pp. 340ff]). 

With respect to some given function f :  SM ~ R, it suffices by (6.) to examine 
autonomous proper subsets of M that are maximal, since one can then recur- 
sively look at the corresponding divisors and their decompositions. Two maximal 
autonomous sets can either be disjoint or overlap. The latter is the more 
interesting case. It applies for instance to the following theorem, which states that 
the system of autonomous sets is closed under non-disjoint unions and intersec- 
tions. 

(7.) THEOREM 
Let A and B be non-disjoint autonomous sets with respect to f :  SM --' R. Then 

A U B and A A B are autonomous. 

Proof 
Cf. Fishburn and Keeney [9, p. 931, La. 1] or von Stengel [22, p. 36]. 

In view of the observation in the proof of (5.a), the preceding assertion for the 
intersection is very obvious, but not so for the union. If in (7.), A U B = M, the 
result is uninteresting, too. But (6.) and (7.) allow us to confine ourselves to just 
this case for further investigations on overlapping autonomous sets A, B, since 



B. yon Stengel /Decomposit ion of utility functions 171 

otherwise A tO B is an autonomous proper  subset of M and then A and B are not 
maximal. In what follows, a function • : R X R ~ R, written in infix notation, is 
associative iff u • ( v .  w) = (u • v ) .  w for all real u, v, w; the parentheses can then 
consequently be omitted. 

(8.) THEOREM 
Let M be the disjoint union of the non-empty sets A, B, C, and let A U B and 

B U C be autonomous with respect to f :  S M .-+ R.  Then 

f ( x )  = a (xA)"  b ( xB)"  C(Xc) 

for suitable functions a, b, c, and a biaffine (i.e. 2-affine) associative function -. 

Proof 
In view of (9.), the assertion is a special case of (10.) below. 

The equation in (8.) implies that A and C are autonomous with corresponding 
divisors a and c, respectively. With (6.) and (7.), this shows that union, intersec- 
tion and differences of overlapping autonomous sets are autonomous. In fact, this 
also holds for the symmetrical difference, since the following theorem implies that 
all biaffine associative functions are symmetric. This theorem characterizes the 
possible biaffine associative functions in (8.). Interestingly, it can also be used to 
characterize the associative Boolean functions known for switching circuit decom- 
position, given (up to complementation) by addition and multiplication modulo 
2; cf. von Stengel [23, p. 526]. 

(9.) THEOREM 
• is a biaffine associative function iff for all real x, y either 

(a) G ( x ' y )  = G ( x ) .  G(y) ,  
where G is a unique invertible affine function, or 

(b) G ( x ' y )  = G(x)  + G(y) ,  
where G is affine and invertible, and unique up to a nonzero multiplicative 
constant. [Remark: in (b), it can be assumed w.l.o.g, that G ( t ) =  t + r, for 
some unique real r; then x "y = x  + y  + r.] 

Proof 
A function • defined by x ' y  = G - I ( G ( x )  • G(y)) ,  or with + instead of -, is 

associative and biaffine because • and + are, and because G is affine. The 
converse follows in a straightforward way from the associativity equation for a 
biaffine function • (cf. Acz61 [1, p. 59f]), using the fact that such a function is of 
the form x •y = p x y  + qx + ry + s for some real numbers p, q, r, s. The latter is 
actually asserted by theorem (14.) below. (End of proof.) 

Is it interesting to consider theorems 7 and 8 with respect to the concept of 
utility independence instead of autonomy. Theorem 7 then also holds and is 
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proved analogously (el. Keeney and Raiffa [12, p. 317]). The replacement of 
"autonomous" by "' utility independent" trivially leaves theorem 8 valid, since it 
only strengthens the assumptions. However, the conclusion has different implica- 
tions if the involved biaffine associative function is "multiplicatively represented" 
as in (9.a). Given (9.a), application of G on both sides of the equation in (8.) 
yields 

G( f ( x ) )  = G((a(xA)" b(xa) ) " C(Xc) ) = G( a(xA)* b(xa)) " G(c(xc))  

(*) = O( a(xA)) . O( b(xB)) . O(c(xc)).  

It is possible that the first and the third factor on the right never change sign, e.g. 
are always positive. In that case, B t3 C and A U B are utility independent (with 
respect to G(f(x)),  and also with respect to f;  it is thereby not relevant whether 
G is a positive- or negative-affine function, nor which sign the factors have, since 
one can always choose the sign of the sub-utility function appropriately). Never- 
theless, it is not possible to conclude that A (or C) is utility independent, since in 
(*), the second factor may change sign. This holds, for instance, for the function 
f: [0, 1] 3 ~ R defined by f (x l ,  x2, x3) = (xl + 1)- (x2 - 0.5). (x 3 + 1). Here, the 
sets (2,3} and {1,2} are utility independent subsets of M ( =  (1, 2, 3}), but their 
differences (3} and (1} are not, nor is in fact their symmetrical difference (1, 3}. 
The collection of utility independent sets of coordinates with respect to a given 
function is therefore only closed with respect to union and intersection of 
overlapping sets. In comparison with the remark following (8.), this shows that 
"autonomy" has nicer" mathematical properties than "utility independence", as 
concerns the deduction of new decomposition possibilities from known ones. 
Furthermore, invertible affine transformations, which may be negative, are the 
natural isomorphisms with respect to the concept of autonomy (cf. (5.) above), 
whereas utility independence is only invariant under the positive-affine transfor- 
mations admitted for utility functions. But for multiplicative representations of 
atility functions f ,  as (*) above, negative transformations G may be necessary. In 
fact, gi,~en certain scaling conventions for sub-utility functions (cf. (11.) below), a 
aegative transformation can be interpreted as asserting a frequently observed 
;'substitutioity" of the attributes, whereas a positive transformation describes a 
"complementarity" (of. Keeney and Raiffa [12, p. 240t]). 

The following theorem is an extension of (8.), with the generalized assumption 
9f several overlapping autonomous sets of coordinates. A partition of a set S is 
~ereby understood as a set of non-empty, pairwise disjoint sets whose union is S. 

11o3 THEOREM 
Let { Aj I1 ~<j < k } be a partition of M, k >/3, and M - Ay be autonomous 

ruth respect to f :  SM ---' R for 1 ~ j  < k (note these are k - 1 conditions). Then 
ia) there exist: an invertible affine function G, and suitable functions a j, 1 ~<j ~< k, 

such that G(f(x))  =- al(xA1 ) . . . . .  ak(XAk ), 
where • is either multiplication or addition. 
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(b) Given (a), U j ~ , A j  is autonomous with respect to f ,  for any non-empty 
subset L of (1 . . . . .  k }. 

Proof 
For (a), cf. Fishburn and Keeney [9, La. 2]; (b) holds by (5.b) and because both 

multiplication and addition are biaffine, symmetric and associative. (End of 
proof.) 

The preceding theorem asserts that a given function can be multiplicatively or 
additively represented if certain strong assumptions about autonomous sets of 
coordinates hold. However, it would be desirable to have additionally an explicit 
criterion to decide which of the representations hold, and to determine the 
necessary affine transformation (i.e. G in (10.a)) of the given function. Further- 
more, under the assumptions of (10.), Aj is autonomous for 1 ~<j ~< k according 
to (10.b), with corresponding divisor aj as in (10.a). In practice, there is usually 
some given divisor hj that corresponds to A j, for 1 ~ j  ~< k, for instance in form 
of a sub-utility function. Then aj is isomorphic to hj by (5.a), and the affine 
transformations to obtain aj from hj also need be determined (for 1 ~<j ~< k). 
This information can indeed be obtained by evaluating the given function for a 
number of suitably chosen arguments, essentially to obtain "equations" out of 
which the "unknowns" (i.e. the pairs of reals describing the affine transforma- 
tions in question) can be extricated. Under additional assumptions of utility 
independence, O(k)  many (e.g. k + 2) arguments suffice, as the following theo- 
rem demonstrates. 

(11.) THEOREM 
Let (2.) hold, M = {1 . . . . .  k}, f:  S M ~ R and L be autonomous with respect 

to f for all L _c M, L 4= ft. Let { j } be utility independent with respect to f for 
1 <~j <~ k, with corresponding sub-utility function h /  Sj --, R, and for suitable oj, 
i j ~ S j :  
(a) hj(oj) = O, hj(ij) = 1 for j ~ M, and furthermore f ( o l , . . . ,  Ok) = O, 
f ( i  1 . . . . .  ik) = 1. 
Then f is uniquely determined by the positive real numbers cj given by 
(b) cj = f ( o l , . . . ,  oj_ 1, ij, oj+ I . . . . .  Ok) for j ~ M. 

If Ej~Mcj = 1, then 
(c) f ( x )  = E j ~ M c j . h j ( x j )  for x ~ SM, 
otherwise 
(d) G ( f ( x ) )  =I - l j~MG(cj .h j (x j ) )  for x ~ SM, 
where G(t) = d. t + 1 for t E R; d is thereby the only root greater than - 1  
besides 0 of the polynomial p: R ~ R  given by p( t )  = I-l~.~M(cj. t +  1) - t -  1. 

Proof 
Cf. Keeney and Raiffa [12, p. 238] (for k = 2), [12, p. 289, p. 347f] (for k >/3). 
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The preceding theorem asserts the well-known "multiplicative/additive repre- 
sentation" of a utility function under the assumption of so-called "mutual utility 
independence" of the given attributes [12, p. 289]. (As a mere notational simplifi- 
cation, the underlying partition of the set M of coordinates in (10.) is in (11.) 
assumed to be given by the set of singletons; this can always be achieved by 
re-defining the underlying "coordinate axes" 5:,. in (2.) as the subspaces SA for the 
elements A of the original partition, or, in terms of utility theory, by regarding 
"'vector attributes" as new sin~e attributes.) In (ll.a), it is assumed that each 
sub-utility function hi, for the attribute j ~ M, is scaled by suitable "reference" 
attribute levels o/, ij. Since { j } is utility independent, o/can be interpreted as a 
less (possibly least) preferred level of attribute j ~ M compared to i/. Corre- 
spondingly, both the individual sub-utility functions and the entire utility func- 
tion f can be assumed to be scaled by 0 and 1, given these less- and more-pre- 
ferred attribute levels as respective arguments. ( l l .b)  says that each "scaling 
constant" cj, l<~j<~k, is obtained by arising the "reference level" of the 
corresponding attribute from low (oj) to high (i/) and evaluating the utility 
function. Of course, these constants make sense only with respect to the given 
scale (i.e., the reference levels), and can therefore not be interpreted as indicators 
of absolute importance of the attributes (cf. Keeney and Raiffa [12, sect. 5.9]). For 
the multiplicative representation (ll.d), the sign of the affine transformation G 
indicates, as mentioned, whether the attributes interact as substitutes (d < 0) or 
complements ( d >  0). The root d of the given polynomial that determines this 
transformation can be found using a suitable numerical procedure, e.g. Newton's 
method. 

A representation of the utility function as a product or sum is in practice very 
desirable since the amount of information that is to be obtained from the decision 
maker is then only proportional to the number of attributes, viz. one "one-dimen- 
sional" sub-utility function and one "scaling constant" in the form of an absolute 
utility value per attribute. Furthermore, the required independence conditions can 
then also be tested with proportional effort, e.g. by establishing (with the notation 
used in (11.)) ( i, i + 1} as autonomous for 1 ~< i < k and using the properties of 
overlapping autonomous sets as remarked after (8.). (Using the notion of prefer- 
ential independence and further topological conditions (connectedness of the 
domain and continuity), even further simplifications are possible, which may in 
practice be quite relevant; cf. Keeney and Raiffa [12, p. 311], or Fishburn and 
Keeney [8, th. 2].). The additive representation allows additional independence 
tests, since it is characterized by a certain "lack of interaction" between the 
attributes (cL Fishburn [7, ch. 11], [12, sect. 6.5], [6, p. 64f]). In the next section, it 
will be shown that the multiplicative/additive representation applies to one of 
two basic types of "quotient" that occurs as a "building block" in a unique 
hierarchical decomposition of a given function. 
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5. The unique hierarchical decomposition 

The system of autonomous sets of coordinates with respect to a given function 
f is ordered by inclusion. The following theorem, if applied iteratively in a 
" top-down" manner, gives a complete description of this system. The theorem 
actually ties in with the general theory of substitution decomposition [15], since 
only the set-theoretic closure properties of overlapping autonomous sets stated 
above are used, as well as the fact that smaller autonomous sets can be regarded 
with respect to suitable divisors (lemma (6.)); these properties are also character- 
istic for the general setting [15, pp. 313-315]. 

(12.) THEOREM 
Given (2.), let f :  SM ~ R, and let A be the set of those coordinates that are 

contained in at least one proper subset of M that is autonomous with respect to 
f .  Then there exists a unique partition P(f )  of A, P(f )  = (Aj I 1 ~<j ~< k}, such 
that either 
(a) k> /0  (k>~2 if A = M ) ,  and Aj is autonomous with respect to f for 

1 <~j<~k, or 
(b) k/> 3, A = M ,  and Uj~LAj is autonomous with respect to f ,  for any 

non-empty subset L of { 1 . . . . .  k ), 
and in either case 
(c) any other set that is autonomous with respect to f ,  except M, is a proper 

subset of an element of P(f). 

Proof 
Cf. Gorman [10, p. 375, th. 2]. 

With respect to a given function f :  S M ---> R, the autonomous proper subsets of 
M can be stepwise described using the preceding theorem (12.). The union of 
these sets is in (12.) called A. If  there are no such sets, i.e. if A = ~, the given 
function is not "aff ine decomposable"; this is the termination condition for the 
iterative application of (12.). Otherwise, P(f)  as described in (12.) is a partition 
of A into autonomous sets. It suffices to consider the corresponding divisors in 
order to obtain the autonomous sets with respect to f other than those which are 
the elements of P(f)  or their unions (in case (12.b) holds), because of (12.c) and 
(6.). These divisors are "proper"  in that they depend on fewer variables than f ,  
which is asserted by the conditions on k in (12.a) and (12.b). f can be 
functionally expressed in terms of these divisors and an additional function 
(which may be called "quotient" [15, p. 269]) that corresponds to P(f) ,  as 
asserted by the next theorem. In case of (12.b), this function is either a product or 
a sum as in (10.a). (12.a) represents the (so far not  considered) case that the 
maximal autonomous sets with respect to f are disjoint, and that they possibly do 
not include some coordinates, viz. those of M - A. Except with respect to an only 
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trivially expressible dependency on these coordinates, the mentioned " top  quo- 
tient" of f is a multi-affine function; this single functional representation 
captures the "affine separabilities" of f given by several disjoint autonomous 
sets. 

(13.) THEOREM 
Given (2.), let f :  S M --, R, and let A and P ( f )  be given as in (12.), P ( f ) =  

{Asl l  ~<j ~< k}, and B = M - A .  (B shall be called the ~'ee set [10, p. 313].) For 
the cases (a) and (b) as in (12.), the following assertions respectively hold: 
(a) If h s is any divisor corresponding to A s, for 1 ~<j ~< k, then 

f ( x ) = g ( h l ( x A , ) , . . . , h k ( X A , ) ,  Xo) 

for a suitable function g: R k × S o --, R, which is affine in each of its first k 
variables. 

(b) There are divisors hj corresponding to A j, for 1 ~<j ~< k, and an invertible 
affine function G, such that 

c(f(x)) = h,(>:A,) . . . . .  

where • is either multiplication or addition. 

Proof 
Because of (10.), only (a) needs to be shown. Let hj be a divisor corresponding 

to A j, 1 ~<j ~< k. For 0 ~< i ~< k, we define a function 

gi: Ri × Ss, -" R, where B i = M - U~=IAj, by 

(*) gi(hi(xA, ) . . . . .  hi(xA, ), xs, ) = f ( x ) ,  for x ~ S M. 

We show by induction on i that (*) is an admissible definition of g~, that is, 
independent of the particular choices y or z from SA, if h i (Y )=  hi(z), for 
1 ~<j < i, and that gi is affine in its j-th variable for 1 < j  ~< i. (For real values of 
its j- th argument not in the range of hi, 1 < j  < i, the functional value of g~ is not 
of interest.) The claim is trivially true for i = 0. Assume, as induction hypothesis, 
that for some i, 1 ~< i ~< k, 

gi-l(ha(x,al) . . . . .  hi(xA,_,), xA, u s , ) = f ( x )  

holds for x ~ SM, where gi-i  is affine in each of its first i -  1 variables. 
Furthermore, by assumption (autonomy of A;), 

g'(h,(x,,,), x,,,_,,,)=f(x) 
holds for some g ' :  R x SM-A, + R that is affine in its first variable. Regarding 
(*) as a definition, the preceding two equations show that it is admissible, and 
that if the arguments other than hj(xaj ) are fixed, the resulting function is affine, 
for 1 6 j  ~< i. This completes the induction step. Finally, we let g = gk, with 
B = Bk, which then fulfiUs the assertion of (13.a) as it was to be shown. (End of 
proof.) 
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As shown, the decomposition of a given function f ,  based on the concept of 
autonomy, can be hierarchically structured. This structure can be depicted by a 
tree, which is the same as the so-called "utility tree" introduced by Gorman [10] 
for value functions. It will be called here the composition tree for f (after [15, p. 
328]); it also applies to a unique hierarchical decomposition known for certain 
discrete structures, like Boolean functions, graphs and more general relational 
systems and set systems (in a slightly specialized form, since "free sets" are 
absent because of the remarks following (4.); cf. MShring and Radermacher [15, 
pp. 324ff]). The composition tree is a data structure that, properly labeled, carries 
all the information about the decomposition possibilities of f.  It can be described 
as follows. Each node of the tree is a non-empty set of coordinates (with an 
optional label); the successors of an inner (non-leaf) node form a partition of 
their predecessor. The root of the tree is the set M of all coordinates, which 
define the space SM that is the domain of the underlying function f .  The node is 
labeled by "(a)" or "(b)", say, according to whether case (a) or (b) applies in 
theorem (12.). Each element of P( f )  becomes a successor node of the root and 
serves as the root of a subtree that is the composition tree for the corresponding 
divisor; these nodes are autonomous sets. For the case (12.a), it is possible that 
the free set B as defined in (12.) is not empty. It then becomes an additional 
successor node (possibly the only one), and a leaf of the tree. Any leaf is such a 
free set, since in an iterative application of (12.), eventually A = j~ must hold, e.g. 
if M is a singleton. Any set that is autonomous with respect to f can be obtained 
from the composition tree for f ,  either as an inner node of the tree, or as the 
union of some successors of a node labeled "(b)". Note that thereby the system of 
autonomous sets, which is possibly exponential in size (as compared to the 
number of coordinates), can be described by a data structure of linear size [15, p. 
330]. A forthcoming paper will elaborate more precisely on the computational 
complexity of algorithms based on the presented decomposition approach. 

The composition tree for f:  SM -o R describes (as presented so far) the autono- 
mous sets. It can, in a canonical fashion, carry further information about the 
functional representation of the divisors of f corresponding to the inner nodes, 
based on theorem (13.); this information is associated with the "quotient". For a 
node of type "(b)", it can be given by a pair of real numbers to define the affine 
function G (or G -1) in (13.b), and an information "bit"  to indicate whether the 
multiplicative or the additive representation applies. For "(a)" type nodes, the 
quotient g as in (13.a) can be represented by 2 k real-valued functions defined on 
the space SB, where B is the free set (if B is empty, these functions are constants), 
according to the next theorem. This theorem is given in [9, p. 938], but is here 
proved more formally. It is thereby shown that the special form of the involved 
parameters is naturally proved using the so-called "Moebius inversion formula"; 
furthermore, the uniqueness of these parameters is provided, which is missing in 
[12, p. 293], as Miyamoto [14, p. 172] remarks; finally, a properly defined 
induction on the number of arguments allowed to take arbitrary real values 
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completes the reasoning in [9, p. 938], and is simpler than the proof by Miyamoto 
[14, pp. 158ff] of this result. 

Essentially, the following theorem asserts that a k-affine function is a poly- 
nomial in its variables (that is, a sum of products of non-negative powers of these 
variables), where each variable appears in at most its first power (in [14] called 
"first order polynomial"). The coefficients of this polynomial are unique, and can 
be computed from the function evaluated for arguments that are either 0 or 1. 
The employed notation is to be understood as follows: for x ~ R k, 1 ~ i <~ k, x~ is 
the i-th component of x, i.e. x = (xl  . . . . .  Xk). The special vectors of R k only 
consisting of O's and l 's (the comers of the k-dimensional unit cube) are called 
1A, where A is the set of coordinates that have the value 1; that is, (1A) i = 1 if 
i ~ A  and (1A);=0 if i E K - A ,  for A__cK= (1 . . . . .  k}. 

(14.) THEOREM 
Let k >/0, K--- {1,. . . ,  k}, S be a non-empty set, g: R k × S --* R,  and let g be 

affine in each of its first k variables. Then 

(a) g(x ,  s ) - -  E cA(S)" I - I x i  f o r x ~ R k ,  s ~ S ,  
A ~ K  iE.4 

where, for each A _ K, cA: S ~ R is a unique function given by 

(b) cA(s ) = E (--1) tA-Bl-g(la, S), for s ~  S. 
B ~ A  

Proof 
Let s ~ S be given. With f: R k -~ R defined by f ( x )  = g(x,  s) for x ~ R k and 

d A = cA(s ) for A c_ K, the equations (a) and (b) are then equivalent to 

(a') f ( x ) =  E dA" I-I xi 
Ac_K iEA 

(for x ~ Rk), and 

(b') a n =  E (--.1) I'4-BI'f(1B), 
B ~ A  

where f is k-affine by assumption. 
The proof will now be given in three parts. First, it will be shown that with (b'), 
(a') is true if x = 1 o for any C __q_ K. Second, that there is at most one choice for 
each dA, A c K, such that (a') holds. Third, that (a') holds for any x ~ R k given 
f is k-affine. Let (b') hold. Then for C _ K, 

dA1--I(lc), = E d a =  Z Z (--1)IA-~I ' f (1B) 
A g K  i ~ A  Ac_C Ac_C Bc_A 

= E E ( -1)  IA-al'f(la) 
Bc_C A: Bc_Ac_C 

= E f(la)" E (--1) ITI=f(lc) ' 
Bc_C T c _ C - B  
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since the second sum in the last line is 1 for C - B = ~, otherwise (1 - 1) t c -  s I, 
i.e. 0 for B =~ C, by  the binomial theorem. (Remark:  This is a special case of the 
usual proof  of a so-called Moebius inversion formula, cf. Rota  [18].) 

To  prove the second part, the uniqueness of the ciA's, read (a ' )  as proved as a 
system of 2 k equations for 2 k unknowns d c, C G K (after Owen [16, p. P79]): 

f ( l c ) =  E dA (Cc_K). 
A G C  

It  is sufficient to show that the corresponding set of homogeneous equations 

0 =  E d ,  ( C _ K )  
A G C  

has only the trivial solution. Indeed, the assumption d c 4= 0 for some minimally 
chosen C would yield the contradiction 0 = Y'A c C dA = dc 4= O. 

For  the third part,  let (b ' )  hold, f be k-affine, and n be a natural  number.  < n 
shall denote the set of all the members  of K less than n, similarly >/n = 
{ n . . . . .  k }, etc. Thus, >/1 = K and < 1 = ~[. Analogously to (2.), x > ,  shall 
denote the vector x projected on its last k - n  coordinates, e.g. for x = 1 c, 
C G K. We prove for 1 -%< n ~< k + 1 by induction on n: 

A G  < n  B G C  

For  n = 1, this equation has been proved in the first par t  above. I f  n = k + 1, (*)  
represents (a ' )  as to be proved for all x ~ R k. Assume (* )  holds for some n, 
1 ~< n ~< k. Proving it for n + 1 amounts to showing 

:(y, z, (lc)>,,)= Z (Fie,)- E Z E 
A G  < n  i E A  B c C  A G  < n  " B ~ C  

fo ra l l  y ~ R  "-1, z ~ R ,  C G > n .  
A similar equation is known from the fact that f is affine in its n-th variable z, 
viz. 

f ( y ,  z, w ) = a ( y ,  w ) . z + b ( y ,  w) fo ra l l  y ~ R  "-1, z E R ,  w ~ R  k-" 

for some suitable functions a, b: R k-1 + R .  Letting z = 0 and z = 1 in this 
equation, one can conclude 

b(y,  w ) = f ( y ,  O, w), 

a(y ,  w ) = f ( y ,  1, w ) - f ( y ,  O, w). 
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But for w = ( lc)  > , ,  for any C ___ > n, f(y, 0, w) and f(y, 1, w) are known from 
the induction hypothesis. It is easy to verify that in this case (*) yields indeed 

w)-- z (rIy; )z  aAu., 
AC_<n lEA B ~ C  

clAuC,, u,,, 
A~_<n i ~ A  B ~ C  

which remained to be shown. (End of proof.) 

Theorem (13.) shows that a given function f ,  say a utility function, can be 
iteratively constructed using two types of "quotient" as in (13.a) and (13.b). 
These assertions have their explicit counterparts in theorems (14.) and (11.) (the 
latter with additional assumptions). This analogy is particularly strong if the free 
set B in (13.a) is empty (i.e. S = S~ in (14.); subsequently, a variable ranging in 
S~ is inessential and will thus be omitted as an argument). In that case, 
f(x) =g(hl(xO,..., hk(xk)) holds (with the simplifying assumption as in (11.) 
that K is the set of attributes, i.e. M =  K =  {1 . . . . .  k}). If the divisors hj are 
scaled by suitable "reference" attribute levels oj, ijESj by hj(oj)=0 and 
hj(ij) = 1 for 1 ~<j ~< k as in (11.a), there are 2 k "reference vectors" 1A ~ SM that 
can be formed from these, where (IA) j = ij for j ~ A and (IA)j = Oj for j E K - A, 
for all A ___ K ( =  M). Since f(1A) = g(1A) holds (for A _ K) ,  the utility values 
corresponding to these reference vectors determine the "scaling parameters" cA as 
in (14.b). For insta~ace, for j ~ K, c(j} - g ( l i j ) )  - g(l~) =f(l{j}) -f(lsj ). With 
the scaling convention f(Iz) ( = f ( o l  . . . . .  ok) ) = 0 for f ,  this is actually equation 
(ll .b).  In fact, ( l l .c) and ( l l .d)  can be transformed into a single closed fo rm(by  
distributing the factors in (l l .d)) that is a special case of (14.a) substituted into 
(13.a) (with S = S~), sometimes also called the "'quasi-additive representation" 
(cf. Keeney and Raiffa [12, p. 289]). The uniqueness assertion in (14.) shows that 
this form is unique, which could be added as a further claim in (11.). The utility 
values f(1A) for A ___ K can in practice be determined using suitable lotteries (cf. 
Keeney and Raiffa [12, p. 303]). 

If an inner node of the composition tree for f is labeled "(a)",  and has k 
successors, but no free set (leaf) among them, 2 k reals cA for A ___ K =  {1, . . . ,  k} 
can be permanently associated with this node to represent the corresponding 
divisor (in terms of the divisors that correspond to the successors) according to 
(14.a). If it has an additional leaf B as a successor, real-valued functions defined 
on S n take the place of these reals. In some sense, the presented decomposition 
approach ends and gives no further information as far as the representation of 
these functions is concerned. This representation depends on the domain of the 
functions, that is, on the "coordinate axes" Si, i ~ B, about which no assumption 
is made in definition (4.). The coordinate axes may, for example, be finite sets or 
real intervals to represent possible attribute levels, and corresponding function 
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values may be represented by tables, or by some ad-hoc means like polynomials 
for interpolation. 

For a utility function f ,  any leaf B of the composition tree for f is ideally a 
singleton, such that only functions depending on the possible levels of a single 
attribute have to be estimated, which can be done using methods of "one-dimen- 
sional utility theory" (cf. Keeney and Raiffa [12, ch. 4]). However, some care has 
to be taken concerning a proper scaling of these functions. If (with the notation 
of the preceding paragraph) k = 0, then B is a minimal autonomous set, and 
there is only 1 (i.e. 2 °) function to be determined, which is the divisor (h, say) 
corresponding to B. (Note that B appears twice in the composition tree, as a leaf 
and its predecessor; this is systematic since in regarding the tree as a "bot tom 
up" evaluation scheme for f (x) ,  x ~ SM, one can associate the respective subvec- 
tor x n of the given vector x with the leaf, and the real value h(xB) with the inner 
node.) The scaling of this divisor can be done arbitrarily. For k >t 1, the functions 
c A for A _oK= {1 . . . . .  k} defined on SB as in (14.b) are "conditional utility 
functions" that need to be scaled in a mutually consistent fashion. For instance, 
the special case k = 1 in (13.a) and (14.) describes the familiar situation P( f )  = 
{A}, i.e. A is autonomous with respect to f ,  and f (x )=g(h(xA) ,  xB) for a 
function g that is affine in its first argument. If for suitable "reference" 
subvectors o, i ~ SA, h(o) = 0 and h(i) = 1, then, according to (14.a), 

g(x 1, s) = c~j(s) + co~ ( s ) . x  1, where by (14.b) 

c~(s) =g(0 ,  s )=g(h(o ) ,  s ) = f ( o ,  s) and 

c(a}(s ) =g(1 ,  s ) -g (O,  s )=g(h( i ) ,  s ) - g ( h ( o ) ,  s ) = f ( i ,  s ) - f ( o ,  s) 

(assuming a suitable arrangement of the coordinates such that those in A "come 
first" in a vector x ~ SM). The "conditional utility functions" of s f(i ,  s) and 
f(o, s) thereby need to be estimated with lotteries subject to an arbitrary scale to 
determine their "relative shape", and then be scaled according to the scaling of f 
with specific choices of arguments s, that is, again with the aid of "'scaling 
constants" given by absolute utility values. This holds also in general, if 2 k 
(k >/1) conditional utility functions need to be determined (cf. also [12, p. 245, p. 
326]). For the case of free sets with two or more attributes, other approaches, like 
direct estimation methods using interpolation (cf. Bell [2]) or more general 
decomposition approaches (cf. [12, sec. 5.7], and Farquhar [6] and references), 
can apply. 

The presented approach should provide a helpful, systematic tool for decision 
analysis. Many of its features could and should be automated in an interactive 
computer program. This program could perform automatic scaling and re-transla- 
tion of utility values, and the all-important consistency checks and sensitivity 
analyses (cf. e.g. [12, p. 310, pp. 349ff]). Furthermore, it could observe that 
qualitative properties like risk aversion (for single attributes, cf. [12, pp. 159ff]; 
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for  multiple attributes ("substi tut ivi ty") ,  cf. [12, p. 240]) are main ta ined  during 
changes, and compute  and display the identified independence  condi t ions  with 
the composi t ion  tree. Of  course, this area of  research could only  be touched  u p o n  
here. 
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