Equilibrium Algorithms for Two-Player Games

Bernhard von Stengel

Department of Mathematics
London School of Economics

Nash equilibria of bimatrix games

$$
A=\begin{array}{ll}
0 & 6 \\
2 & 5 \\
3 & 3
\end{array}
$$

$$
B=\begin{array}{|ll}
2 & 1 \\
1 & 3 \\
4 & 3 \\
\hline
\end{array}
$$

Nash equilibrium =

pair of strategies x, y with
x best response to y and
y best response to x.

Mixed equilibria

$$
\begin{array}{ll}
A=\begin{array}{|cc}
0 & 6 \\
2 & 5 \\
3 & 3
\end{array} & B=\begin{array}{|cc}
2 & 1 \\
1 & 3 \\
4 & 3
\end{array} \\
x=\begin{array}{c}
2 / 3 \\
1 / 3 \\
0
\end{array} & x^{\top} B=5 / 3 \quad 5 / 3 \\
A y=\begin{array}{c}
4 \\
4 \\
3
\end{array} & y^{\top}=1 / 3 \quad 2 / 3
\end{array}
$$

Best response condition

Let \mathbf{x} and \mathbf{y} be mixed strategies of player I and II, respectively. Then \mathbf{x} is a best response to \mathbf{y}
\Longleftrightarrow for all pure strategies i of player I:

$$
x_{i}>0 \Longrightarrow(\mathbf{A y})_{i}=u=\max \left\{(\mathbf{A y})_{k} \mid 1 \leq k \leq m\right\}
$$

Here, $(\mathbf{A y})_{i}$ is the i th component of $\mathbf{A y}$, which is the expected payoff to player I when playing row i.
Proof.

$$
\begin{aligned}
\mathbf{x A} \mathbf{y} & =\sum_{i=1}^{m} \mathbf{x}_{i}(\mathbf{A} \mathbf{y})_{i}=\sum_{i=1}^{m} \mathbf{x}_{i}\left(u-\left(u-(\mathbf{A y})_{i}\right)\right. \\
& =\sum_{i=1}^{m} \mathbf{x}_{i} u-\sum_{i=1}^{m} \mathbf{x}_{i}\left(u-(\mathbf{A y})_{i}\right)=u-\sum_{i=1}^{m} \mathbf{x}_{i}\left(u-(\mathbf{A y})_{i}\right) \leq u
\end{aligned}
$$

because $\mathbf{x}_{i} \geq 0$ and $u-(\mathbf{A y})_{i} \geq 0$ for all i. Furthermore, $\mathbf{x A y}=u \quad \Longleftrightarrow \quad \mathbf{x}_{i}>0$ implies $(\mathbf{A y})_{i}=u$, as claimed.

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

payoffs to
player I

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

(4) 5		
$(1$	0	6
(2)	2	5 = A
(3)		3
	payof playe	lfs to

best response polyhedron

Best responses to mixed strategy of player 2

best response polyhedron with facet labels

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 2

payoffs to player I

Best responses to mixed strategy of player 1

	(4) 5	
1	2	1
(2)	1	3
3	4	3

payoffs to
player II

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

Alternative view

Chop off Toblerone prism

Best responses to mixed strategy of player 1

Best responses to mixed strategy of player 1

(4) 5		
1	2	1
(2)	1	3
3	4	3

payoffs to
player II

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

$$
\text { (5) } \stackrel{(3)}{(2)}
$$

Equilibrium = completely labeled strategy pair

$$
\text { (5) } \underset{(3)}{\square}
$$

Constructing games using geometry

Iow dimension: 2, 3, (4) pure strategies:
subdivide mixed strategy simplex into response regions, label suitably
high dimension:
use polytopes with known combinatorial structure e.g. for constructing games with many equilibria, or long Lemke-Howson computations [Savani \& von Stengel, FOCS 2004, Econometrica 2006]

The Lemke-Howson algorithm

The Lemke-Howson algorithm

The Lemke-Howson algorithm

The Lemke-Howson algorithm

The Lemke-Howson algorithm

missing label (2)

The Lemke-Howson algorithm

missing label (2)

The Lemke-Howson algorithm

missing label (2)

The Lemke-Howson algorithm

missing label (2)

The Lemke-Howson algorithm

found label (2)

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

- finitely many "vertices"
for nondegenerate (generic) games:
- unique starting edge given missing label
- unique continuation
\Rightarrow precludes "coming back" like here:

The Lemke-Howson algorithm

The Lemke-Howson algorithm

The Lemke-Howson algorithm

Odd number of Nash equilibria!

Nondegenerate bimatrix games

Given: $\quad m \times n$ bimatrix game (A, B)

$$
\begin{aligned}
& X=\left\{x \in \mathbf{R}^{m} \mid x \geq \mathbf{0}, x_{1}+\ldots+x_{m}=1\right\} \\
& Y=\left\{y \in \mathbf{R}^{n} \mid y \geq \mathbf{0}, y_{1}+\ldots+y_{n}=1\right\}
\end{aligned}
$$

$\operatorname{supp}(\mathrm{x})=\left\{\mathrm{i} \mid \mathrm{x}_{\mathrm{i}}>0\right\}$
$\operatorname{supp}(\mathrm{y})=\{\mathrm{j} \mid \mathrm{yj}>0\}$
(A, B) nondegenerate $\Leftrightarrow \forall x \in X, y \in Y$:
$\mid\{j \mid j$ best response to x$\}|\leq|\operatorname{supp}(\mathrm{x})|$,
$\mid\{i \mid i$ best response to y$\}|\leq|\operatorname{supp}(\mathrm{y})|$.

Nondegeneracy via labels

$m \times n$ bimatrix game (A, B) nondegenerate
\Leftrightarrow no $x \in X$ has more than m labels, no $y \in Y$ has more than n labels.
E.g. x with $>m$ labels, s labels from $\{1, \ldots, m$,
$\Rightarrow>m-s$ labels from $\{m+1, \ldots, m+n\}$
$\Leftrightarrow \quad>|\operatorname{supp}(x)|$ best responses to x.
\Rightarrow degenerate.

Example of a degenerate game

Handling degenerate games

Lemke-Howson implemented by pivoting, i.e., changing from one basic feasible solution of a linear system to another by choosing an entering and a leaving variable.

Choice of entering variable via complementarity (only difference to simplex algorithm for linear programming).

Leaving variable is unique in nondegenerate games.
In degenerate games: perturb system by adding $\left(\varepsilon, \ldots, \varepsilon^{n}\right)^{\top}$, creates nondegenerate system. Implemented symbolically by lexicographic rule.

