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Nash equilibria of bimatrix games
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Nash equilibrium =
pair of strategies x,y with

X best response to y and
y best response to x.



Mixed equilibria
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only pure best responses can have probability > O



Best response condition

Let x and y be mixed strategies of player | and Il, respectively.
Then x is a best response to y
< for all pure strategies i of player I:

x>0 = (Ay)i=u=max{(Ay); |1 <k <mj}.

Here, (Ay); is the ith component of Ay, which is the expected
payoff to player | when playing row i.

Proof.

Ay = Z (Ay)i= Y i (u— (u—(Ay))

l i=1

because x; > 0 and u— (Ay); > 0 for all i. Furthermore,
XAy =u <= x;>0 implies (Ay); = u, as claimed.



Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Alternative view
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Chop off Toblerone prism
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Chop off Toblerone prism
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Best responses to mixed strategy of player 1
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Equilibrium = completely labeled strategy pair
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Equilibrium = completely labeled strategy pair
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Constructing games using geometry

low dimension: 2, 3, (4) pure strategies:

subdivide mixed strategy simplex into
response regions, label suitably

high dimension:

use polytopes with known combinatorial structure
e.g. for constructing games with many equilibria,
or long Lemke-Howson computations

[Savani & von Stengel, FOCS 2004,
Econometrica 2006]



The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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Why Lemke-Howson works

LH finds at least one Nash equilibrium because
o finitely many "vertices"

for nondegenerate (generic) games:
 unique starting edge given missing label

e unigue continuation

= precludes "coming back" like here:



The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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Odd number of Nash equilibria!
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Nondegenerate bimatrix games

Given: m xn bimatrix game (A,B)

X={xORmM | x=20, xa+...+xXm=1}
Y={yUORn | y=20, y1+...+yn =1}

supp(x) ={1 | xi>0}
supp(y) ={J | vi>0}

(A,B) nondegenerate < x OX, y oY:

| {]|]bestresponsetox}| < | supp(x) |,
| {1|ibestresponsetoy}| < | supp(y) |.



Nondegeneracy via labels

m X n bimatrix game (A,B) nondegenerate

= nox € X has more than m labels,
noy €Y has more than n labels.

E.g. xwith >m labels,
slabelsfrom{1,..., m},

[ >m-s labelsfrom{m+1,..., m+n}

= > |supp(x)| best responses to x.

[1 degenerate.




Example of a degenerate game
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Handling degenerate games

Lemke—Howson implemented by pivoting, i.e., changing from
one basic feasible solution of a linear system to another by choos-
iIng an entering and a leaving variable.

Choice of entering variable via complementarity (only difference
to simplex algorithm for linear programming).

Leaving variable is unique in nondegenerate games.

In degenerate games: perturb system by adding (e,...,e")',
creates nondegenerate system.
Implemented symbolically by lexicographic rule.



