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Query complexity

Consider a normal form game with n players and m actions for
each player.

n is large, m is constant.
Who hard it is to compute an approximate Nash equilibrium in the
game?
Warning: The input size is exponential: nmn.
Who to overcome the warning?
We assume existence of a black box.
The algorithm asks queries about the game and the black box
returns answers.
Each queries is a pure action profile a. The answer is the payoff
profile u(a) = (ui (a))i .
The idea of query-complexity (QC) is to ask: how many queries
should the algorithm ask until it knows an answer to the problem?
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Deterministic QC vs. Probabilistic QC

Deterministic QC: We allow only deterministic algorithms.
The QC is the number of questions for the worst case input.

Probabilistic QC: We allow probabilistic algorithms.
The QC is the expected number of questions for the worst
case input.

Example- The 1-entry problem

INPUT: A vector v ∈ {0, 1}2n, with n 0s and n 1s (i.e.,
|{i : vi = 0}| = |{i : vi = 1}| = n).
OUTPUT: An index i s.t. vi = 1.
QUERIES: Each query is an index i ∈ [2n], and the answer is vi .
Deterministic QC = n.
Probabilistic QC ≤ 2.
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Related literature, correlated equilibrium

Query complexity of correlated equilibrium:

Deterministic QC Probabilistic QC

Exact CE
exp(n) exp(n)

[HN 2013]

Approximate CE
exp(n) poly(n)

[HN 2013] Regret minimizing
algorithms (e.g. [HM 2000])

Query complexity of Nash equilibrium:
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Notations

Set of probability distributions over B: ∆(B).

Support of a distribution: supp(x) = {b ∈ B : x(b) > 0}.
Players: [n] = {1, 2, ..., n}.
Actions set of player i : Ai , |Ai | = m.

Action profiles set: A = ×i∈[n]Ai .

Payoff function of player i : ui : A→ [0, 1].

Payoff function profile: u = (ui )i∈[n].

Best-reply value against x−i : bri (x−i ) := maxai∈Ai
ui (ai , x−i ).

x = (xi )i is an ε-well supported Nash equilibrium if
ui (ai , x−i ) ≥ bri (x−i )− ε for every ai ∈ supp(xi ).
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The Main Theorem

The well supported Nash problem, WSN(n,m, ε):

INPUT: n-players, m-actions game.
OUTPUT: An ε-well supported Nash equilibrium.
QUERIES: Each queries is a pure action profile a. The answer is
the payoff profile u(a) = (ui (a))i .

Theorem

QC (WSN(2n, 104, 10−8)) ≥ 2
n
3

2n4
≥ 2cn.

For every probabilistic algorithm that computes an (10−8)-well
supported Nash equilibrium in (2n)-players (104)-actions games,
there exists a game where the expected number of queries will be
at least 2cn.
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Very Short Outline of the Proof

1 We reduce the (2n)-players ε-well supported Nash equilibrium
problem to the problem of computing an approximate fixed
point of an n-dimensional Lipschitz function.

The reduction holds for constant values of ε!

2 We reduce the n-dimensional fixed point problem to the
problem of finding end of a simple path on the n-dimensional
hyper cube.
Hirsch, Papadimitriou, and Vavasis [1989] proved that the
deterministic query complexity of the n-dimensional fixed
point problem is exp(n). We prove that it is true even for
probabilistic query complexity.

3 We prove that the query complexity of end-of-a-simple-path is
exp(n).
Hart and Nisan [2013] proved that the query complexity of
end-of-path is exp(n). We show that even if it is known that
the path is simple the query complexity remain exp(n).
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Distribution Queries

Question

What if the algorithm is allowed to ask distribution queries?

QUERIES: Each query is a distribution over action profiles
x ∈ ∆(A). The answer is u(x).

Answer

The query complexity remains exponential!

Idea: The payoff profile u(x) can be very well approximated (with
an error of e−cn) using a sample of poly(n) pure action profiles.
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Approximate Nash equilibrium

Question

What about approximate Nash equilibrium (not well supported)?

Daskalakis, Goldberg, and Papadimitriou [2005] introduced a
computationally-efficient, and query-efficient (poly(n)) method for
constructing an ε-well-supported Nash equilibrium from an
ε2

n -Nash equilibrium.

Corollary

The query complexity of c
n -Nash equilibrium (c = 10−16) in

n-players games with constant number of actions (m = 104) is
exp(n).
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Consequences

Computational Complexity
This result provides evidence that existence of sub-exponential (in
n) algorithm for approximate Nash equilibrium is very unlikely. If
such an algorithm exists then it must depend on more complex
data of the game than payoffs under distributions.

Query Complexity of Approximate Fixed Point
We generalize the exp(n) lower bound of [HPV 1989], from the
case of deterministic algorithms to the case of probabilistic
algorithms.

Open question from [HPV 1989]

What if the algorithm is allowed to ask queries which are
distributions over the domain (rather than just points in the
domain)?

Answer

The query complexity remains exp(n).
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Consequences

Rate of Convergence of Adaptive Dynamics
Very useful tool for proving lower bounds on the rate of
convergence of dynamics to equilibrium, is to study the complexity
of equilibrium.

�� ��Uncoupled Dynamics ↔
�� ��Communication Complexity

Conitzer and Sandholm [2004]

Hart and Mansour [2010] used this idea to prove exp(n) lower
bound on the rate of convergence of uncoupled dynamics to exact
Nash equilibrium.
The question regarding the rate of convergence to approximate
Nash equilibrium remain open.
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k-Queries Dynamics�� ��k-Queries Dynamics ↔
�� ��Query Complexity

A dynamic is called k-queries dynamic if at each time t, k
additional queries of payoffs are sufficient are sufficient in order to
determine the mixed strategy of every player i at time t + 1.
Most of the studied dynamics are m-queries dynamics, where m is
the number of actions of each player. Usually the mixed strategy
of player i at time t depends on the set of payoffs
{ui (ai , a−i (t ′)) : ai ∈ Ai , t

′ ∈ [t]}.
Examples:

Regret minimizing dynamics (regret matching, smooth
fictitious play...).

Better reply dynamics (best-reply, log-it response...).

Evolutionary dynamics (replicator dynamics, Smith
dynamics...).
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k-Queries Dynamics

A lower bound to the rate of convergence to approximate
well-supported Nash equilibrium, for quite general class of
dynamics:

Corollary

For every k-queries dynamic where k = poly(n) there exists an
n-players m-actions game (m = 104) where it will take exp(n)
steps in expectation to converge to an ε-well supported Nash
equilibrium (ε = 10−8).
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Idea of the Proof of the Main Theorem

The reduction from Nash equilibrium to fixed point.

Proof of Brower’s fixed-point Theorem using Nash’s Theorem
[Shmaya’s blog 2012]

Given a mapping f : [0, 1]n → [0, 1]n we define 2-players game as
follows:
A1 = A2 = [0, 1]n.
u1(a1, a2) = −||a1 − a2||22.
u2(a1, a2) = −||a2 − f (a1)||22.
For every mixed strategy x2 ∈ ∆(A2) the unique best-reply of
player 1 is Ea∼x2 [a].
For every mixed strategy x1 ∈ ∆(A1) the unique best-reply of
player 2 is Ea∼x1 [f (a)].
Therefore every Nash equilibrium of the game is pure.
If (a1, a2) is a pure Nash equilibrium then a1 = a2 and a2 = f (a1),
so a1 = f (a1). �
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From Nash equilibrium to fixed point

A discrete version of the above game
Let f : [0, 1]n → [0, 1]n be a λ-Lipschitz mapping. We are
interested in computing an ε-fixed point of f .

We define (2n)-player game where

- player i ∈ [1, n] chooses the ith coordinate of a1 from a finite
grid { ck : c ∈ [k]},
- player n + i ∈ [n + 1, 2n] chooses the ith coordinate of a2 from a
finite grid { ck : c ∈ [k]}.
k = λ+3

ε does not depend on n.

Let ε′ = 3ε2

4(λ+3)2
, (ε′ does not depend on n).

In every ε′-well-supported Nash equilibrium each player i plays at
most 2 adjacent points on his grid with positive probability. All the
actions in the support of the equilibrium are approximate fixed
points of f .
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From fixed point to end of path

Hirsch, Papadimitriou, and Vavasis introduced the following
n-dimensional reduction from the problem of ε-fixed point of
λ-Lipschitz function to the end of simple path on a grid.
The reduction holds for constant ε and λ.
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Open Questions

n-player games with constant number of actions m.

1 What is the query complexity of ε-Nash equilibrium (not
well-supported), for constant ε?

2 What is the communication complexity of ε-Nash equilibrium
(well-supported or not)?

3 What is the computation complexity of approximate Nash
equilibrium?
N = nmn is the input size.

Evidence that probably sub-exponential (in n) algorithm does
not exist.
N logN algorithm exists [Lipton, Markakis, Mehta 2003].
N log logN algorithm exists [Daskalakis, Papadimitriou 2008],
[Hemon, Rougemont, Santha 2008].
N log log logN algorithm exists [Babichenko, Peretz 2013].

Does there exist a poly(N) algorithm?

Thank you!
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