A characterization of single-peaked single-crossing domain

Edith Elkind
University of Oxford

based on joint work with
Piotr Faliszewski and Piotr Skowron

Voters and Their Preferences

- n voters, m candidates
- Each voter has a complete ranking of the candidates (his preference order)
- <u>Problem</u>: with no assumption on preference structure
 - counterintuitive behavior may occur
 - computational problems are often hard

Α	_	В	С	D	В	C	Α	В	С
В		С	Α	Α	С	D	В	C	A
С		D	В	В	D	Α	C	Α	В
D		Α	D	C	Α	В	D	D	D

Single-Peaked Preferences

- <u>Definition</u>: a preference profile is <u>single-peaked</u> (SP) wrt an ordering < of candidates (axis) if for each voter v there exists a candidate C such that:
 - v ranks C first
 - if C < D < E, v prefers D to E</p>
 - if A < B < C, v prefers B to A</p>
- Example:
 - voter 1: C > B > D > E > F > A
 - voter 2: A > B > C > D > E > F
 - voter 3: E > F > D > C > B > A

Single-Crossing Preferences

```
Definition: a profile is single-crossing (SC)
wrt an ordering of voters (v_1, ..., v_n) if for each
pair of candidates A, B there exists
an i \{0, ..., n\} such that
voters v_1, ..., v_i prefer A to B, and
voters V_{i+1}, ..., V_n prefer B to A
```

Single-Peaked vs. Single-Crossing Preferences

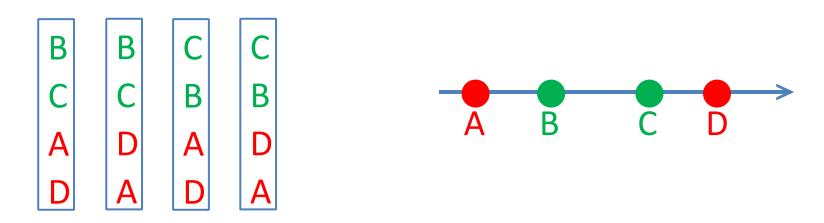
Similarities:

- both are motivated by the idea that the society is aligned along a single axis
- both can be checked in poly-time
- both ensure existence of a Condorcet winner
- both enable efficient algorithms for many social choice problems
- both admit forbidden minor characterization

• Differences:

order on candidates vs. order on voters

Single-Peaked Profile That Is Not Single-Crossing



- v₁ and v₂ have to be adjacent (because of B, C)
- v_3 and v_4 have to be adjacent (because of B, C)
- v_1 and v_3 have to be adjacent (because of A, D)
- v_2 and v_4 have to be adjacent (because of A, D) a contradiction

Single-Crossing Profile That Is Not Single-Peaked

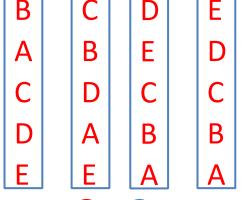
1	n	n		n	n
2	1	n-1		n-1	n-1
	2	1		n-2	n-2
	•••	2	•••		
n-2					
n-1	n-2			1	2
L _n	n-1	n-2		2	1

Each candidate is ranked last exactly once

Can we characterize preference profiles that are simultaneously single-peaked and single-crossing?

1D-Euclidean Preferences

- Both voters and candidates are points in R
- v prefers A to B if |v A| < |v B|
- Observation: 1D-Euclidean preferences are
 - single-peaked (wrt ordering of candidates on the line)
 - single-crossipg (wrt ordering of voters on the line)

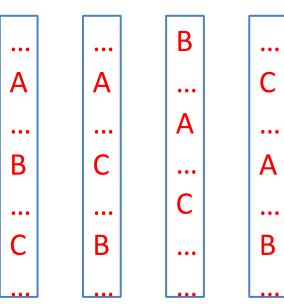


1-Euclidean Preferences: Bad News

 <u>Proposition</u>: There exists a preference profile that is SP and SC, but not 1-Euclidean

A Different Angle

- A preference profile is called narcissistic is every candidate is ranked 1st at least once
- <u>Proposition</u>: Every <u>narcissistic SC</u> profile is <u>SP</u>
 (axis = 1st vote)
- Proof:
 - suffices to show that
 if v₁ prefers A to B to C,
 then no voter ranks B
 last out of A, B, and C



Pre-NSC Preferences

- Are all SP-SC profiles narcissistic?
 - obviously no: being SP and SC is robust to deletions, and being narcissistic is not
- <u>Definition</u>: a profile is called <u>pre-NSC</u> if it can be <u>extended</u> to a <u>narcissistic SC</u> profile by adding voters
 - every pre-NSC profile is SP and SC
- Main Theorem: the converse is also true

Characterization

- Theorem: every SP-SC profile is pre-NSC
- Proof idea:
 - constructive argument: extend a SP-SC profile to a narcissistic one
 - crucial lemma: given a SP-SC profile $V = (v_1, ..., v_n)$, there is a vote v_0 such that $(v_0, v_1, ..., v_n)$ is SP and SC, and v_0 is an axis witnessing that V is SP
 - by the lemma, can assume that the profile is SP wrt 1st vote
 - use 1st vote as a guiding order to insert votes

Lemma: Proof Idea

• <u>Lemma</u>: given a SP-SC profile $V = (v_1, ..., v_n)$, there is a vote v_0 such that $(v_0, v_1, ..., v_n)$ is SP and SC and v_0 is an axis witnessing that V is SP

Proof idea:

- try to add an arbitrary axis
 witnessing that V is SP
- if this fails, pick a "minimal"
 pair of candidates that is at fault
- modify the axis by swapping tails
- argue that tail swap can be performed ≤m times

Algorithmic Perspective

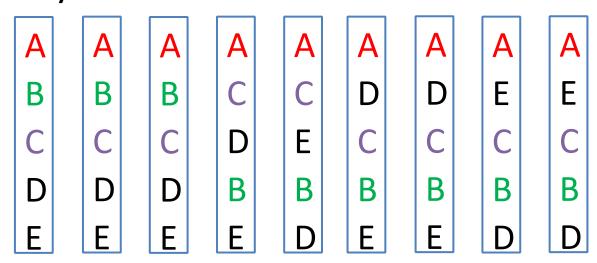
- Our proof implies a polynomial-time algorithm for
 - (1) checking whether a given profile V is pre-NSC
 - (2) finding a narcissistic profile extending it
- A simpler algorithm for (2) given (1):
 - for each missing candidate A, find possible positions in V to insert a vote v_A that ranks A first
 - turns out that there is ≤1 position for each candidate
 - if v_A is the only vote to be inserted between v_i and v_{i+1} , construct v_A by moving A to the top of v_i
 - if both v_A and v_B need to be inserted between v_i and v_{i+1},
 v_A precedes v_B iff A precedes B in v_i

Applications to Fully Proportional Representation: Monroe's Rule

- n voters, m candidates
- Task: elect a k-member parliament
- Constraints:
 - candidates are explicitly assigned to voters
 - each elected candidate represents $\approx n/k$ voters
 - voter's dissatisfaction is determined by the rank of his representative in his vote (via a scoring rule)
- Objective: minimize
 - sum of voters' dissatisfactions (Monroe⁺), or
 - maximum dissatisfaction (Monroe^{max})
- Both Monroe⁺ and Monroe^{max} are NP-hard for general preferences

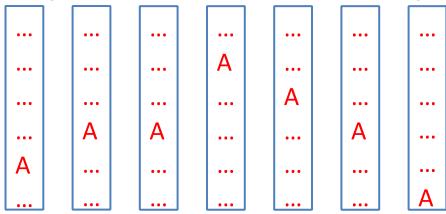
Monroe's Rule: Example

- k = 2, scoring rule = Borda
- A can be assigned to at most 5 voters
- For Monroe⁺, we can assign B to $v_1 v_4$ or C to $v_2 v_5$
- For Monroe^{max}, the only solution is to assign C to 4 arbitrary voters



Single-Peaked Trajectories

- above (A, i): # of candidates v_i ranks above A
- <u>Definition</u>: a profile is said to have <u>single-peaked</u> trajectories property (SPTP) if for every candidate A there exists a voter v_i such that
 - above (A, j) ≥ above(A, k) whenever $j < k \le i$
 - above (A, j) ≥ above(A, k) whenever $j > k \ge i$



Claim: pre-NSC profiles have SPTP

Monroe^{max} and SPTP

- <u>Claim</u>: if a profile has <u>SPTP</u>, then the set of voters matched to an elected candidate under <u>Monroe^{max}</u> is a contiguous segment of V
- <u>Corollary</u>: for pre-NSC preferences Monroe^{max}
 admits a very efficient DP algorithm
- [Betzler, Slinko, Uhlmann'13]: for single-peaked preferences Monroe^{max} admits a DP algorithm (but a much slower one)

Comment: Single-Peaked and Single-Crossing Profiles and SPTP

• Observation:

a single-crossing profile may fail to have SPTP

A A CB B XX C AC X B

Observation:

a single-peaked profile may fail to have SPTP (wrt natural order of the voters)

A B C E B D X C X A

Future Work: Other Applications

- Are there algorithmic problems that are
 - hard for single-peaked preferences
 - hard for single-crossing preferences
 - easy for pre-NSC preferences?
- I.e., the problem admits an algorithm that relies on SPTP
- Candidate problems:
 - manipulation of STV
 - certain questions about control and bribery

Future Work: Extensions

- Generalization: profiles that are single-peaked/single-crossing on a tree
- <u>Definition</u>: a profile V is <u>single-peaked</u> on a tree T if candidates can be matched to vertices of T so that the restriction of V to every path in T is <u>single-peaked</u>
- <u>Definition</u>: a profile V is <u>single-crossing</u> on a tree T if voters can be matched to vertices of T so that the restriction of V to every path in T is single-crossing
- Question: given T_1 and T_2 , can we characterize elections that are single-peaked on T_1 and single-crossing on T_2 ?